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FORMULAS OF F-THRESHOLDS AND F-JUMPING COEFFICIENTS

ON TORIC RINGS*

Daisuke Hirose

Abstract

Mustaţǎ, Takagi and Watanabe define F-thresholds, which are invariants of a pair

of ideals in a ring of characteristic p > 0. In their paper, it is proved that F-thresholds

are equal to jumping numbers of test ideals on regular local rings. In this note, we

give formulas of F-thresholds and F-jumping coe‰cients on toric rings. By these

formulas, we prove that there exists an inequality between F-jumping coe‰cients and

F-thresholds. In particular, we observe a di¤erence between F-pure thresholds and F-

thresholds on certain rings. As applications, we give a characterization of regularity for

toric rings defined by simplicial cones, and we prove the rationality of F-thresholds on

certain rings.

1. Introduction

Let R be a commutative Noetherian ring of characteristic p > 0. Suppose a
is an ideal of R and c is a positive real number. In [HY], Hara and Yoshida
defined a generalized test ideal tðacÞ of a with exponent c. This is a gener-
alization of the test ideal tðRÞ, which appeared in the theory of tight closure
(cf. [HH]). On the other hand, this ideal is a characteristic p analogue of a
multiplier ideal (cf. [Laz]). Similarly, one can define a characteristic p analogue
of a jumping coe‰cient of a multiplier ideal, which is called the F-jumping
coe‰cient. In other words, a positive real number c is an F-jumping coe‰cient
of an ideal a of R if tðacÞ0 tðac�eÞ for all positive real numbers e.

Mustaţǎ, Takagi and Watanabe studied F-jumping coe‰cients. In [MTW],
they defined an another invariant of singularities, which is called the F-threshold.
They proved that an F-threshold coincides with an F-jumping coe‰cient on a
regular local ring of characteristic p > 0. Using this relation, they proved basic
properties of F-jumping coe‰cients. Blickle, Mustaţǎ and Smith studied F-
jumping coe‰cients or F-thresholds on F-finite regular rings. In particular, they
proved the rationality and discreteness of F-thresholds for F-finite regular rings
under some assumptions (cf. [BMS1] and [BMS2] for details), which partially
solves an open problem in [MTW].
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However, if rings have singularities, F-thresholds may not coincide with
F-jumping coe‰cients. In [HMTW], Huneke, Mustaţǎ, Takagi and Watanabe
studied various topics of F-thresholds. For example, they defined a new
invariant called the F-threshold of a module, which coincides with an F-jumping
coe‰cient for F-finite and F-regular local normal Q-Gorenstein rings. As a
corollary, they proved an inequality between the F-threshold and the F-pure
threshold, which is the smallest F-jumping coe‰cient for a fixed ideal. They also
gave examples of non-regular rings and ideals whose F-thresholds coincide with
their F-pure thresholds.

In this paper, we consider F-thresholds and F-jumping coe‰cients of
monomial ideals for toric rings, which are not necessarily regular. We give
the explicit formula of F-thresholds in section 3, which is written in terms of
cones corresponding to toric rings and Newton polyhedrons corresponding to
monomial ideals. Using this formula, we attempt a comparison between F-
thresholds and F-jumping coe‰cients in section 4. As applications, we give
a characterization of regularity of toric rings defined by simplicial cones in
Theorem 5.3. We also prove the rationality of F-thresholds of monomial ideals
for toric rings defined by simplicial cones in Theorem 5.5.

2. The definition of F-thresholds

Throughout this paper, we assume that every ring R is reduced and contains
a perfect field k whose characteristic is p > 0. Let F : R ! R be the Frobenius
map which sends an element x of R to xp. For a positive integer e, the ring
R viewed as an R-module via the e-times iterated Frobenius map is denoted
by eR. We assume that a ring R is F-finite, that is, 1R is a finitely generated
R-module. We also assume that a ring R is F-pure, that is, the Frobenius map
F is pure. For an ideal J and a positive integer e, J ½pe� is the ideal generated
by pe-th power elements of J. We recall the definition and some remarks of
F-thresholds which are defined by Mustaţǎ, Takagi and Watanabe in [MTW].
These are invariants of a pair of ideals.

Definition 2.1 (F-threshold, cf. [MTW, §1]). Let a and J be nonzero
proper ideals of a ring R such that aJ

ffiffiffi
J

p
. The pe-th threshold nJa ðpeÞ of a

with respect to J is defined as

nJa ðpeÞ :¼ maxfr A N j ar U J ½pe�g:
Then we define the F-threshold cJðaÞ of a with respect to J as

cJðaÞ :¼ lim
e!y

nJa ðpeÞ
pe

:

Remark. Since R is F-pure, if u B J ½pe�, then up B J ½peþ1�. This implies that
nJa ðpeÞ=pe a nJa ðpeþ1Þ=peþ1, and hence cJðaÞ exists under our assumption. Fur-

thermore, if aJ
ffiffiffi
J

p
, then cJðaÞ is a finite number. However, in general, the
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existence of this limit has not proved. In [HMTW], Huneke, Mustaţǎ, Takagi
and Watanabe defined cJ�ðaÞ and cJþðaÞ as

cJ�ðaÞ :¼ lim inf
nJa ðpeÞ
pe

; cJþðaÞ :¼ lim sup
nJa ðpeÞ
pe

;

for ideals a and J such that aJ
ffiffiffi
J

p
. When cJ�ðaÞ ¼ cJþðaÞ, they call it the F-

threshold of a with respect to J, which is denoted by cJðaÞ. They give a
su‰cient condition when cJðaÞ exists (cf. [HMTW, Lemma 2.3]).

Let R� be the set of elements of R which are not contained in any minimal
prime ideals of R. Let a be an ideal of R such that aVR� 0j, and let c be a
positive real number. For an R-module D, we define the ac-tight closure of the
zero submodule in D as the following. We denote it by 0�a c

D . For an element
z of D, an element z is contained in 0�a c

D if there exists an element x of R� such
that

xadcp
eeð1n zÞ ¼ 0 A eRnD;

where e runs all su‰ciently large positive integers.

Definition 2.2 (test ideal). Let a be an ideal of R such that aVR� 0j, and
c a positive real number. We define the R-module E as 0

m
ERðR=mÞ, where m

runs all maximal ideals of R and ERðR=mÞ is the injective hull of the residue field
R=m. The test ideal tðacÞ of a with exponent c is defined as

tðacÞ :¼ 7
DJE

AnnR 0�a c
D ;

where D runs all finitely generated R-submodules of E.

In [MTW], Mustaţǎ, Takagi and Watanabe also proved the connection
between F-thresholds and test ideals on regular local rings. Moreover, in
[BMS2], Blickle, Mustaţǎ and generalized it on regular rings.

Theorem 2.3 ([MTW, Proposition 2.7] and [BMS2, Proposition 2.23]). Let
a and J be proper ideals of a regular ring R such that aJ

ffiffiffi
J

p
. Then

tðac J ðaÞÞJ J:

On the other hand, for a positive real number c, the ideal a is included in
ffiffiffiffiffiffiffiffiffiffiffi
tðacÞ

p
,

and also

ctða
cÞðaÞa c:

In addition, there exists a map from the set of F-thresholds of a to the set of
test ideals of a which sends the test ideal J to cJðaÞ. Moreover, this map is
bijective. The inverse map sends an F-threshold c of a to tðacÞ.
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By the two inequalities in Theorem 2.3, F-thresholds on a regular ring are
equal to F-jumping coe‰cients. They are analogues of jumping coe‰cients of a
multiplier ideal.

Corollary 2.4. For a fixed nonzero proper ideal a of a regular ring R, the
set of F-thresholds of a is equal to the set of F-jumping coe‰cients of a.

3. A formula of F-thresholds on toric rings

Let us begin with fixing the notation about toric geometries. Let N be the
lattice of rank d, and M the dual lattice of N. We recall that M is isomorphic
to Zd . We denote NnZ R and MnZ R by MR and NR respectively. The
duality pairing of MR and NR is denoted by

h ; i : MR �NR ! R:

For a strongly convex rational polyhedral cone s in NR, we define the dual cone
s4 of s as

s4 :¼ fu A MR j hu; vib 0; Ev A sg:
Let R be a toric ring defined by s. In other words, R is the subalgebra of
Laurent polynomial k½XG1

1 ; . . . ;XG1
d � generated by sets fX u j u A s4VMg, where

X u expresses X u1
1 � � �X ud

d for a lattice point u ¼ ðu1; . . . ; udÞ of M. Since we
always assume that k is a perfect field, a toric ring is F-finite under our
assumption. A proper ideal a of R is said to be a monomial ideal if a is
generated by monomials. For a monomial ideal a, we define two types of sets
in s4.

Definition 3.1. The Newton polyhedron PðaÞ of a is defined as

PðaÞ :¼ convfu A M jX u A ag;
and QðaÞ is defined as

QðaÞ :¼ 6
X u A a

uþ s4:

Suppose l is a positive real number. The sets lPðaÞ is defined as

lPðaÞ :¼ flu A MR j u A PðaÞg:

We define lQðaÞ by the same way.

The following proposition is basic properties of QðaÞ and PðaÞ, which follows
immediately.

Proposition 3.2. Let a be a monomial ideal of a toric ring R defined by a
cone s in NR.
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(i) For e A Z>0, it holds that QðaÞ ¼ ð1=peÞQða½pe�Þ.
(ii) PðaÞ þ s4JPðaÞ.
(iii) If a ¼ ðX a1 ; . . . ;X asÞ, then PðaÞ ¼ convfa1; . . . ; asg þ s4.

Using this notation, we give a computation of F-thresholds. This formula is
a generalization of [HMTW, Example 2.7]. Let R be a toric ring defined by a
cone s in NR. Let a be a monomial ideal of R. For an element u of s4, we
define laðuÞ as

laðuÞ :¼ supfl A R>0 j u A lPðaÞg:

If u is not contained in lPðaÞ for all positive real numbers l, then we set
laðuÞ :¼ 0 by convention.

Theorem 3.3. Let R be a toric ring defined by s, and also let a and J be
monomial ideals of R such that aJ

ffiffiffi
J

p
. Then

cJðaÞ ¼ sup
u A s4nQðJÞ

laðuÞ:

Proof. We assume that a ¼ ðX a1 ; . . . ;X asÞ where ai are lattice points of M
for i ¼ 1; . . . ; s. To prove the theorem, we need the following two claims.

Claim 1. For all positive integers e, there exists an element u of s4nQðJÞ
such that nJa ðpeÞ=pe a laðuÞ.

Claim 2. For every element u of s4nQðJÞ, there exists a positive integer e
such that nJa ðpeÞ=pe b laðuÞ.

Claim 1 implies that

nJa ðpeÞ=pe
a sup

u A s4nQðJÞ
laðuÞ:

Thus cJðaÞa sup laðuÞ by the definition of F-thresholds. By the similar argu-
ment, Claim 2 implies cJðaÞb sup laðuÞ.

Proof of Claim 1. We fix a positive integer e. Since the definition of the
pe-th threshold, there are nonnegative integers ri with

P
ri ¼ nJa ðpeÞ such that

X T riai is not contained in J ½pe�. In particular,
P

riai B QðJ ½pe�Þ. This is equiv-
alent to the condition that ð1=peÞ

P
riai is not contained in ð1=peÞQðJ ½pe�Þ. By

Proposition 3.2 (i), we have ð1=peÞ
P

riai B QðJÞ. Hence

1

pe

X
riai ¼

nJa ðpeÞ
pe

X ri

nJa ðpeÞ ai;

which is an element of ðnJa ðpeÞ=peÞPðaÞ. Thus nJa ðpeÞ=pealaðð1=peÞ
P

riaiÞ.
r
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Proof of Claim 2. We fix u an element of s4nQðJÞ, such that laðuÞ0 0.
We find an integer e which satisfies the assertion of Claim 2 by three steps.

Step 1. We prove that there exists an element u 0 of the boundary
ðdpelaðuÞe=peÞPðaÞ such that u 0 B QðJÞ for su‰ciently large e. The following
sequence of real numbers

laðuÞa � � �a dpeþ1laðuÞe
peþ1

a
dpelaðuÞe

pe
a � � �a dplaðuÞe

p

induces the sequence of Newton polyhedrons

dplaðuÞe
p

PðaÞJ � � �J dpelaðuÞe
pe

PðaÞJ dpeþ1laðuÞe
peþ1

PðaÞJ � � �J laðuÞPðaÞ:

In particular, the above sequences are strict if laðuÞ B ð1=peÞZ for all integers e.
Since u B QðJÞ, we can find such u 0 by taking e su‰ciently large.

Step 2. We prove that there exist nonnegative integers ri such thatP
ri=p

e b laðuÞ and
P

riai=p
e is not contained in QðJÞ. We denote

P
riai=p

e

by u 00. Since u 0 is contained in ðdpelaðuÞe=peÞPðaÞ, u 0 can be written as

dpelaðuÞe
pe

X
ciai þ o

� �
;

where ci are nonnegative real numbers with
P

ci ¼ 1 and o A s4 by Proposition
3.2 (iii). Let

ri :¼ ddpelaðuÞecie:
Then X ri

pe
b

dpelaðuÞe
pe

X
ci b laðuÞ:

Moreover,

u 00 þ dpelaðuÞe
pe

o� u 0
����

����a
X ddpelaðuÞecie

pe
� dpelaðuÞeci

pe

����
���� � jaij < 1

pe

X
jaij:

Since u 0 B QðJÞ, an element u 00 þ ðdpelaðuÞe=peÞo is not contained in QðJÞ if we
choose e su‰ciently large. Hence u 00 is not contained in QðJÞ.

Step 3. Since u 00 B QðJÞ,
peu 00 B peQðJÞ ¼ QðJ ½pe�Þ:

Therefore X peu 00
is not contained in J ½pe�. On the other hand, X peu 00

A aT ri by
the construction of u 00. Therefore

P
rianJa ðpeÞ. This implies laðuÞanJa ðpeÞ=pe.

r

We complete the proof of Theorem 3.3. r
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4. A comparison between F-jumping coe‰cients and F-thresholds

In [TW], Takagi and Watanabe defined the F-pure threshold cðaÞ of an ideal
a of a ring R as

cðaÞ :¼ supfc A Rb0 j ðR; acÞ is F-pureg:
See [TW, Definition 1.3, Definition 2.1] for the details. They also proved that if a
ring R is strongly F-regular, then F-pure thresholds are described as in Definition
4.1. Since F-finite toric rings are strongly F-regular, we define F-pure thresholds
as follows.

Definition 4.1 (F-pure thresholds). Let R be a toric ring, and a a mono-
mial ideal. The F-pure threshold cðaÞ of a is defined as

cðaÞ :¼ supfc A Rb0 j tðacÞ ¼ Rg:

Hence the F-pure threshold of a is the smallest F-jumping coe‰cient of a.
In [HMTW], the inequality between an F-pure threshold and an F-threshold on a
local ring was given in terms of the F-threshold of a module ([HMTW, Section
4.]). In this section, we consider the inequality on toric rings, by a combinatorial
method. Furthermore, we consider the connection between arbitrary F-jumping
coe‰cients and F-thresholds. To compute F-pure thresholds and F-jumping
coe‰cients of monomial ideals, we introduce the following theorem given by
Blickle.

Theorem 4.2 ([B, Theorem 3]). We set fvjg are the set of primitive lattice
points of N. We consider a cone s generated by fvjg. Let R be the toric ring
defined by s, and a a monomial ideal of R. Then for a positive real number c,
the test ideal tðacÞ of a with exponent c is also a monomial ideal. Moreover,
X u A tðacÞ for a lattice point u of M if and only if there exists an element o of
MR such that

ho; vjia 1 ð j ¼ 1; . . . ; nÞ;
and

uþ o A IntðcPðaÞÞ:
By this theorem, the F-pure threshold of a monomial ideal of a toric ring can

be described as in the following corollary.

Corollary 4.3. Let R and a be as in Theorem 4.2. Then the F-pure
threshold cðaÞ of a is described as

cðaÞ ¼ sup
u A s4nO

laðuÞ;

where

O :¼ fu A s4 j b j; hu; vjib 1g:
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Proof. First, we assume that cðaÞ < sup laðuÞ. Then there exists a positive
real number a such that

cðaÞ < a < sup laðuÞ:

By the definition of F-pure thresholds, tðaaÞ is a proper ideal of R. Then there
exists a positive real number b such that

a < b < sup laðuÞ

and b ¼ laðu 0Þ for an element u 0 of s4nO. This implies that u 0 A bPðaÞ. In
particular, u 0 is an element of IntðaPðaÞÞ. In addition, hu 0; vji < 1 for all j.
By Theorem 4.2, it contradicts that tðaaÞWR. Therefore cðaÞb sup laðuÞ.
Second, we assume cðaÞ > sup laðuÞ. There exists a positive number a such that

sup laðuÞ < a < cðaÞ

and tðaaÞ ¼ R. This implies that there exists an element o of s4 such that
ho; vjia 1 for all j and

o A IntðaPðaÞÞ:

If 1 > e > 0, then hð1� eÞo; vji < 1 for all j. Thus ð1� eÞo is contained in
s4nO. On the other hand, since o A IntðaPðaÞÞ, it holds that

ð1� e 0Þo A aPðaÞ;

for su‰ciently small e 0. Therefore

sup
u A s4nO

laðuÞ < laðð1� e 0ÞoÞ;

which is a contradiction. Thus cðaÞb sup laðuÞ, which completes the proof of
the corollary. r

Using this presentation, we give an inequality between an F-pure threshold
and an F-threshold with respect to the maximal monomial ideal on a toric ring.

Proposition 4.4. Let R, s and a be as in Theorem 4.2, and m the maximal
monomial ideal of R. Then

cðaÞa cmðaÞ:

Proof. By the definitions, it is enough to show that QðmÞJO. In par-
ticular, it is enough to show QðmÞVMJO. It follows immediately. r

Remark. In general, for an ideal a, we have cJ
0 ðaÞa cJðaÞ, where J and J 0

are ideals such that JJ J 0 and aJ
ffiffiffi
J

p
. Therefore the F-pure threshold of a is

less than or equal to all F-thresholds of a.
Now we give a generalization of this comparison.
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Proposition 4.5. Let R, s and a be as in Theorem 4.2. For a lattice point u
of s4, we define the nonnegative number maðuÞ as

maðuÞ :¼ sup
o A s4nO

laðuþ oÞ;

and the nonnegative number c iðaÞ as

c iðaÞ ¼ inf
X u A tðac i�1ðaÞÞ

maðuÞ;

where c0ðaÞ :¼ 0. Then c iðaÞ is the i-th F-jumping coe‰cient of a.

Lemma 4.6. Let R, s and a be as in Theorem 4.2. Suppose o and o 0 are
elements of s4. For all j ¼ 1; . . . ; n, we assume that

ho; vjia ho 0; vji:

Then laðoÞa laðo 0Þ.

Proof. If laðoÞ ¼ 0, it is trivial. We prove this lemma in the case
laðoÞ0 0. By the assumption, there exists an element o 00 of s4 such that
o 0 ¼ oþ o 00. Let l :¼ laðoÞ. Since o=l A PðaÞ and o 00=l A s4,

o 0

l
A PðaÞ þ s4:

By Proposition 3.2 (ii), we have o 0=l A PðaÞ. Hence la laðo 0Þ. r

Proof of Proposition 4.5. We show that c iðaÞ is a jumping number of the
test ideal. We assume that

tðac i�1ðaÞÞ ¼ ðX b1 ; . . . ;X btÞ:
By Lemma 4.6,

c iðaÞ ¼ inf
j¼1;...; t

maðbjÞ:

Since fbjg is a finite set, there exists j 0 such that c iðaÞ ¼ maðbj 0 Þ. By the
definition of c iðaÞ, for all elements o of s4nO,

bj 0 þ o B IntðciðaÞPðaÞÞ:
This implies that X bj 0 B tðac iðaÞÞ by Theorem 4.2. On the other hand, there exists
an element o 0 of s4nO such that

bj 0 þ o 0 A Intððc iðaÞ � eÞPðaÞÞ;
for all positive real numbers e. This also implies that X bj 0 A tðac iðaÞ�eÞ.
Therefore tðac iðaÞÞW tðac iðaÞ�eÞ and hence c iðaÞ is a jumping number.

We show that c iðaÞ is the i-th F-jumping coe‰cient of a. In other words,
tðac iðaÞ�eÞ ¼ tðac i�1ðaÞÞ for all positive numbers e such that c i�1ðaÞa c iðaÞ � e.
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The inclusion tðac iðaÞ�eÞJ tðac i�1ðaÞÞ follows immediately from Theorem 4.2. The
opposite inclusion follows from the definition of c iðaÞ. In fact, if X u A tðac i�1ðaÞÞ,
then c iðaÞa maðuÞ by definition of c iðaÞ. Hence there exists an element o of
s4nO such that

uþ o A Intððc iðaÞ � eÞPðaÞÞ:
This implies that X u A tðac iðaÞ�eÞ by Theorem 4.2. We complete the proof of the
proposition. r

Proposition 4.7. We have the following inequality:

c iðaÞa ctða
c i ðaÞÞðaÞ:

Proof. Since tðac iðaÞÞW tðac i�1ðaÞÞ, there exists a lattice point u in s4 such
that X u A tðac i�1ðaÞÞ and X u B tðac iðaÞÞ. By Proposition 4.5,

c iðaÞa maðuÞ:ð1Þ
We claim that for all elements o of s4nO,

oþ u A s4nQðtðac iðaÞÞÞ:ð2Þ
By Theorem 3.3, this claim implies that

maðuÞa ctða
ci ðaÞÞðaÞ:ð3Þ

The proof of the proposition is completed from inequalities (1) and (3). Now we
prove the claim (2). We assume that there exists an element o of s4nO such
that uþ o A Qðtðac iðaÞÞÞ. There exist a lattice point u 0 of M and an element

o 0 of s4 such that X u 0
A tðac iðaÞÞ and uþ o ¼ u 0 þ o 0. Thus u� u 0 and o 0 � o

are lattice points. On the other hand, since u is a lattice point, u ¼ u 0 þ o 0 � o
and X u B tðac iðaÞÞ, we have o 0 � o B s4. That is, there exists j such that
hðo 0 � oÞ; vji < 0. Therefore

0a ho 0; vji < ho; vji < 1:

It contradicts that o 0 � o A M. Hence we have the claim, and then we complete
the proof of the proposition. r

Remark. Since an F-finite toric ring is strongly F-regular, aJ tðac iðaÞÞ.
Hence ctða

ci ðaÞÞðaÞ exists and is a finite number.

5. Applications

Let us give some applications of the results of the previous sections. As we
see in Corollary 2.4, for an arbitrary ideal a, the set of the F-thresholds of a is
equal to the set of the F-jumping coe‰cients of a on regular rings. By Theorem
3.3, if R is a toric ring which has at most Gorenstein singularities, then there
exists a monomial ideal a of R such that cðaÞ ¼ cmðaÞ.
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Proposition 5.1. Let R be a Gorenstein toric ring defined by a cone s in NR

and m the maximal monomial ideal. There exists a monomial ideal a of R such
that cðaÞ ¼ cmðaÞ.

Proof. We assume that s is generated by primitive lattice points v1; . . . ; vn
of N. For a Gorenstein toric ring R, there exists a lattice point o of s4 such
that ho; vji ¼ 1 for all j ¼ 1; . . . ; n. By Lemma 4.6, for a monomial ideal a of
R, we have

cðaÞ ¼ laðoÞ:

Let a be a monomial ideal generated by X o. We have PðaÞ ¼ oþ s4, and
clearly cðaÞ ¼ laðoÞ ¼ 1. Since o is a nonzero lattice point of M, we have
o A QðmÞ. Hence PðaÞJQðmÞ. By Theorem 3.3, that implies cmðaÞa 1. On
the other hand, the inequality cðaÞa cmðaÞ follows by Proposition 4.4. We
complete the proof of the proposition. r

For 2-dimensional toric rings, the opposite assertion of Proposition 5.1 holds.
However, it is false in general toric rings whose dimension are greater than 3.

Proposition 5.2. Let R be a 2-dimensional toric ring, and m the maximal
monomial ideal of R. If there exists a monomial ideal a of R such that cðaÞ ¼
cmðaÞ, then R has at most Gorenstein singularities.

Proof. Suppose that R is defined by a cone s. By taking a suitable change
of coordinates, it su‰ces to consider cones generated by ð1; 0Þ and ða; bÞ such that
b > 0 and the greatest common divisor of a and b is 1. The following three
cases are trivial: If a ¼ 0, then R is the polynomial ring. If a ¼ 1 and b ¼ 1,
then R ¼ k½X1;X

�1
1 X2�, which is a regular ring. If a ¼ 1 and b > 1, then R ¼

k½X1;X2;X
b
1 X

�1
2 �G k½x; y; z�=ðxz� ybÞ. We recall that Spec R has an Ab�1

singularity. Hence R is a Gorenstein ring. In the following, we assume that
a > 1. The dual cone s4 is generated by ð0; 1Þ and ðb;�aÞ. We set the point
o ¼ ð1; ð1� aÞ=bÞ, which satisfies

ho; ð1; 0Þi ¼ ho; ða; bÞi ¼ 1:

If o B QðmÞ, then for all monomial ideals a, we have cðaÞ < cmðaÞ. In fact, by
taking e > 0 with ð1þ eÞo B QðmÞ, we have a strict inequality;

cðaÞ < laðð1þ eÞÞa cmðaÞ:

By the assumption of the proposition, o A QðmÞ. Thus it is enough to prove
that o A M under the assumption o A QðmÞ. By the definition of QðmÞ, if
o A QðmÞ, then there exists a nonzero lattice point u of s4 such that o� u A s4.
Since u A s4, the lattice point u is written as u ¼ l1ð0; 1Þ þ l2ðb;�aÞ, where l1
and l2 are positive. Since o� u A s4, we have ð1=bÞ � l1b0 and ð1=bÞ � l2b0.
Since u is a nonzero lattice point and b is a positive integer, we have l2 ¼ 1=b.
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Hence u ¼ ð1; l1 � ða=bÞÞ. Since u is a lattice point, there exists an integer l such
that l ¼ l1 � ða=bÞ and

� a

b
a la

1� a

b
:

Since a and b are integers and the greatest common divisor of a and b is 1, we
have bl ¼ 1� a. Thus 1� a is divisible by b. This implies that o A M. The
remaining cases are a < 0. They follow by the same argument. We complete
the proof of the proposition. r

Example 1. Suppose N ¼ Z3. We define generators fvig of a cone s in
NR as

v1 :¼ ð1; 0; 0Þ; v2 :¼ ð1; 1; 0Þ; v3 :¼ ð0; 1; rÞ:

We also define an element o of s4 as ð1; 0; 1=rÞ. Since ho; vii ¼ 1 for all i, the
toric ring R defined by s has an r-Gorenstein singularity. A set of generators
fuig of s4 is written as

u1 :¼ ðr;�r; 1Þ; u2 :¼ ð0; r;�1Þ; u3 :¼ ð0; 0; 1Þ:
Then

o ¼ 1

r
u1 þ

1

r
u2 þ

1

r
u3:

Since o� ð1=rÞu3 is a lattice point of s4, we have o A QðmÞ, where m is the
maximal monomial ideal of R. Let a be a monomial ideal generated by X ro.
Then ð1=rÞPðaÞ ¼ oþ s4. Hence ð1=rÞPðaÞJQðmÞ. The same argument in
the proof of Proposition 5.1 implies cðaÞ ¼ cmðaÞ ¼ 1=r.

Example 2. Suppose N ¼ Zd , where d > 3. We consider the cone s gen-
erated by

v1 :¼ ð1; 0; 0; 0; . . . ; 0Þ
v2 :¼ ð1; 1; 0; 0; . . . ; 0Þ
v3 :¼ ð0; 1; r; 0; . . . ; 0Þ

vi :¼ ð0; 0; 0; 0; . . . ; 0; �11
i

; 0; . . . ; 0Þ; 3 < ia d:

Let R be a toric ring defined by s, then R is a d-dimensional r-Gorenstein
ring. By the same argument in Example 1, there exists a monomial ideal a of R
such that cðaÞ ¼ cmðaÞ.

Using F-thresholds and F-pure thresholds, we give a criterion of regularities
of a toric ring defined by a simplicial cone.
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Theorem 5.3. Let R be a toric ring defined by a simplicial cone s, and m the
maximal monomial ideal. If there exists a monomial ideal a such that

ffiffiffi
a

p
¼ m

and

cðaÞ ¼ cmðaÞ;
then R is a regular ring.

Proof. Since s is simplicial, we may assume that

s ¼ Rb0v1 þ � � �Rb0vd ;

where vj A N and fv1; . . . ; vdg are R-linearly independent. Hence there exist
lattice points ui of M and positive integers li such that

s4 ¼ Rb0u1 þ � � � þ Rb0ud ;

and hui; vji ¼ li dij . Moreover, for all i; j ¼ 1; . . . ; d, we assume that vj and ui
are primitive. Since s is simplicial, R is Q-Gorenstein. Hence there exists a
rational point o of MR such that

cðaÞ ¼ cmðaÞ ¼ laðoÞ:
By Theorem 3.3,

laðoÞPðaÞJQðmÞ:ð4Þ
To prove the theorem, it is enough to show that li ¼ 1 for every i ¼ 1; . . . ; d.
We derive a contradiction assuming li > 1 for some i. Since

ffiffiffi
a

p
¼ m, for a

su‰ciently large nonnegative integer l, we have X lui A a. In particular, laðoÞlui A
laðoÞPðaÞ. If we choose su‰ciently large l, then we have

0 <
li � 1

laðoÞlli � 1
< 1:

Let a be a positive real number such that 0 < a < ðli � 1Þ=ðlaðoÞlli � 1Þ. By the
definition of PðaÞ and (4),

alaðoÞlui þ ð1� aÞo A QðmÞ:
On the other hand, for all j,

halaðoÞlui þ ð1� aÞo; vji ¼ 1� a < 1 ð j0 iÞ;
alaðoÞlli þ 1� a < li ð j ¼ iÞ:

�

By the definition of QðmÞ, there exist a positive integer l 0i , a lattice point u of
QðmÞ and an element u 0 of s4 such that

hu; vji ¼ 0 ð j0 iÞ
l 0i < li ð j ¼ iÞ;

�

and

alaðoÞlui þ ð1� aÞo ¼ uþ u 0:
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However, the existence of u contradicts the primitiveness of ui. Thus li ¼ 1.
Eventually, for every i ¼ 1; . . . ; d, we have li ¼ 1. Therefore we complete the
proof of the theorem. r

On the other hand, there exist a toric ring R defined by a non-simplicial cone
with a maximal ideal m such that cðmÞ ¼ cmðmÞ.

Example 3 ([HMTW, Remark 2.5]). If R ¼ k½X1X3;X2X3;X3;X1X2X3� and
m ¼ ðX1X3;X2X3;X3;X1X2X3Þ, then R is a toric ring whose defining cone is

s ¼ Rb0ð1; 0; 0Þ þ Rb0ð0; 1; 0Þ þ Rb0ð�1; 0; 1Þ þ Rb0ð0;�1; 1Þ:

We denote by o the element ð1; 1; 2Þ of s4. Then

ho; ð1; 0; 0Þi ¼ ho; ð0; 1; 0Þi ¼ ho; ð�1; 0; 1Þi ¼ ho; ð0;�1; 1Þi ¼ 1:

By Corollary 4.3 and Lemma 4.6, for every monomial ideal a, we have cðaÞ ¼
laðoÞ. Hence cðmÞ ¼ 2. On the other hand, cmðmÞ ¼ 2.

Finally, we discuss the rationality of F-thresholds. This was given as an
open problem in [MTW]. For some regular rings, Blickle, Mustaţǎ and Smith
give the a‰rmative answer. In [BMS2], they prove the rationality of F-thresholds
of all proper ideals a with respect to ideals J which entail aJ

ffiffiffi
J

p
on an F-finite

regular ring essentially of finite type over k ([BMS2, Theorem 3.1]). In addition,
they also prove in cases that a is a principal ideal on an F-finite regular ring
([BMS1, Theorem 1.2]). On the other hand, Katzman, Lyubeznik and Zhang
prove it in cases that a is a principal ideal on an excellent regular local ring, that
is not necessarily F-finite ([KLZ]). We will prove the rationality of an F-
threshold of a monomial ideal a with respect to an m-primary monomial ideal J
on a toric ring. For an element v of NR and a real number l, we define the
a‰ne half space Hþðv; lÞ as

Hþðv; lÞ :¼ fu A MR j hu; vib lg:
We also define the hyperplane qHþðv; lÞ as

qHþðv; lÞ :¼ fu A MR j hu; vi ¼ lg:
Assume that a is a monomial ideal of a toric ring. Since PðaÞ is a convex
polyhedral set, it is written as an intersection of finite a‰ne half spaces. We
observe a form of PðaÞ.

Lemma 5.4. Let R be a toric ring defined by a cone s in NR, and a a
monomial ideal of R. Then there exist rational points v 0l of NR and rational

numbers l 0
l for l ¼ 1; . . . ; t such that PðaÞ ¼ 7 t

l¼1
Hþðv 0l ; l

0
l Þ.

Proof. Since s is a rational polyhedral cone, so is s4. Hence there exist
lattice points ui of M such that

s4 ¼ Rb0u1 þ � � � þ Rb0um:
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We assume that a ¼ ðX a1 ; . . . ;X asÞ. We define the rational polyhedral cone t of
MR � R as

t :¼ Rb0ða1; 1Þ þ � � � þ Rb0ðas; 1Þ þ Rb0ðu1; 0Þ þ � � � þ Rb0ðum; 0Þ:
For such t and PðaÞ,

tV ðMR � f1gÞ ¼ PðaÞ � f1g:ð5Þ
In fact, let ðu; 1Þ be an element of the left-hand side. Then

ðu; 1Þ ¼
Xs

i¼1

aiðai; 1Þ þ
Xm
j¼1

bjðuj; 0Þ;

where ai and bj are nonnegative numbers. By the definition,
P

ai ¼ 1. By
Proposition 3.2 (iii), u A PðaÞ. The similar argument implies the opposite inclu-
sion. Since t is the rational polyhedral convex cone, for l ¼ 1; . . . ; t, there exist
rational points ðv 0l ; mlÞ of NR such that

t ¼ 7
t

l¼1

Hþððv 0l ; mlÞ; 0Þ;ð6Þ

where Hþððv 0l ; mlÞ; 0Þ is the a‰ne half space of MR � R. The duality pairing of
MR � R and NR � R is defined as

hðu; lÞ; ðv; mÞi :¼ hu; viþ lm;

for all elements ðu; lÞ of MR � R and all elements ðv; mÞ of NR � R. Under this
duality,

Hþððv; mÞ; 0ÞV ðMR � f1gÞ ¼ Hþðv;�mÞ � f1g:
Therefore if we set l 0

l :¼ �ul for each l ¼ 1; . . . ; t, the assertion of the lemma
follows by (5) and (6). r

Theorem 5.5. Let R, s and a be as in Lemma 5.4. Furthermore, we assume
that s is a d-dimensional simplicial cone. Let J be an m-primary monomial ideal,
where m is the maximal monomial ideal of R. Then the F-threshold cJðaÞ of a
with respect to J is a rational number.

Proof. We denote by qQðJÞ the boundary of QðJÞ in s4, and also denote
by MQ the set of the rational points of MR. By Lemma 5.4, if there exists a
finite set B of MQ V qQðJÞ such that

cJðaÞ ¼ max
o AB

laðoÞ;

then cJðaÞ is a rational number.
First, we prove that

cJðaÞ ¼ sup
o A qQðJÞ

laðoÞ:
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By Theorem 3.3, if there exists an element o of s4 such that cJðaÞ ¼ laðoÞ, then
o is an element of qQðJÞ. In fact, if such o is contained in s4nQðJÞ, there
exists a positive real number e such that ð1þ eÞo A s4nQðJÞ. This implies that
cJðaÞb ð1þ eÞlaðoÞ. It is a contradiction.

Second, we prove the existence of B. We assume that s ¼ Rb0v1 þ � � � þ
Rb0vd , where vj are primitive lattice points. Since s is simplicial, for every j,
there exists an element uj of MQ such that

huj; vli ¼ djl ; l A f1; . . . ; dg:

Since J is m-primary, there exist nonnegative integers rj such that rjuj A QðJÞ.
That implies qQðJÞ is bounded. The order as over qQðJÞ is defined by uas u

0

if

hu; vjia hu 0; vji; Ej ¼ 1; . . . ; d:

Then qQðJÞ has maximal elements with respect to this order. Let B be the set
of maximal elements of qQðJÞ with respect to the order as. By Lemma 4.6, we
conclude

cJðaÞ ¼ sup
o A qQðJÞ

laðoÞ ¼ sup
o AB

laðoÞ:

To show that B is a finite set of MQ, we prove the following claim.

Claim. Let J be the ideal of R generated by elements X b1 ; . . . ;X bt . We
assume that u A B, that is,

(i) u A qQðJÞ,
(ii) u is a maximal element with respect to the order as in qQðJÞ.

Then for every j ¼ 1; . . . ; d, there exists integer ij such that

u A 7
d

j¼1

ðbij þ ðqHþðvj; 0ÞV s4ÞÞ:ð7Þ

In particular, B is a finite set and u A MQ.

Proof of Claim. We suppose that u does not satisfy (7). Then there exists
j 0 in f1; . . . ; dg such that

u B bi þ ðqHþðvj 0 ; 0ÞV s4Þ;ð8Þ

for all i ¼ 1; . . . ; t. We choose an element u 0 of s4 such that

hu 0; vji ¼ hu; vji; ð j0 j 0Þ;
hu 0; vj 0i ¼ bhu; vj 0ic þ 1:

Since s is simplicial, u 0 uniquely exists. We will show that the existence of u 0

contradicts the assumption (ii). By the construction of u 0, we have u 0 A QðJÞ.
To see u 0 B Int QðJÞ, we paraphrase the assumption (i). Since u B Int QðJÞ, we
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have u B bi þ Intðs4Þ for all i ¼ 1; . . . ; t. Furthermore, this is equivalent to the
existence of li such that

hu; vliia hbi; vlii;ð9Þ
for each i ¼ 1; . . . ; t. If li is not j 0, we have directly

hu 0; vlii ¼ hu; vliia hbi; vlii;

by the construction of u 0 and the relation (9). On the other hand, if li is j 0, then
the relations (9) and (8) imply

bhu; vj 0ica hbi; vj 0i� 1;

because bi is a lattice point of M. Hence hu 0; vliia hbi; vlii. Eventually, in
both cases, u 0 B Int QðJÞ. Therefore u 0 A qQðJÞ. By the construction of u 0, the
element u is not a maximal element in qQðJÞ. It contradicts the assumption
(ii). We complete the proof of Claim. r

We complete the proof of the theorem. r

Now we consider the rationality of F-jumping coe‰cients on Q-Gorenstein
toric rings. The rationality of F-jumping coe‰cients is the consequence of the
fact that test ideals are equal to multiplier ideals ([HY, Theorem 4.8] and [B,
Theorem 1]). However, we also give its proof by a combinatorial method.

Proposition 5.6. Let R, s and a be as in Lemma 5.4. Moreover, we
assume R is an r-Gorenstein toric ring. Then for all i, the i-th F-jumping co-
e‰cient c iðaÞ of a is a rational number.

Proof. In the proof of Proposition 4.5, we have seen that there exists a
lattice point b of M such that c iðaÞ ¼ maðbÞ, where X b is one of generators of

tðac i�1ðaÞÞ. By the similar argument in the proof of Proposition 5.1, there exists
an element o of s4 such that c iðaÞ ¼ laðbþ o=rÞ. Let oR be the canonical

module of R. Since o corresponds to the generator of o
ðrÞ
R , we see o A M.

Hence bþ o=r is in MQ. Therefore c iðaÞ is a rational number. r
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