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Abstract

In this paper we introduce and study a certain intricate Cantor-like set C contained

in unit interval. Our main result is to show that the set C itself, as well as the set of

dissipative points within C, both have Hausdor¤ dimension equal to 1. The proof uses

the transience of a certain non-symmetric Cauchy-type random walk.

1. Introduction

In this paper we estimate the Hausdor¤ dimension of the set Cy of dissipative
points within a certain Cantor-like subset C of the unit interval ½0; 1ÞHR. Our
motivation for considering the sets C and Cy stems from the investigations in [16]
of the geometry of limit sets of Kleinian groups with singly cusped parabolic
dynamics. However, for the purposes of this paper this link can safely be
considered to be irrelevant. Nevertheless, to give at least a taste of this link we
have included a brief summary of it in an appendix at the end of this paper. Let
us remark that intuition coming from Kleinian groups has historically played a
very important role in the development of Real and Complex Dynamics, and this
paper can be seen as adding to this tradition.

Let us begin with by giving the slightly intricate, but nevertheless down-to-
earth fractal geometric construction of the sets C and Cy. For this we have to
define certain families of fundamental intervals by induction as follows. We start
with the unit interval ½0; 1Þ, and then partition the left half of ½0; 1Þ into the
infinitely many intervals

I1 :¼ 0;
3

p2

� �
; and Ikþ1 :¼

3

p2

Xk
l¼1

l�2;
3

p2

Xkþ1

l¼1

l�2

" !
; for k A N:
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The family of these first-level intervals will be denoted by C1. Note that the
right half 1

2 ; 1
� �

of the unit interval, which is clearly not captured by C1, should
be interpreted as ‘the hole at the first level’. The second step is to partition
each element Ik1 A C1 as follows. By starting from the left endpoint of Ik1 , we
partition the left half of Ik1 into infinitely many mutually adjacent intervals

Ik1k1þ1; . . . ; Ik1k1þl ; . . . ;

where the diameters of these intervals are given by

jIk1k1þl j ¼
3

p2

jIk1 j
l2

; for l A N:

Similarly, by starting from the right endpoint of Ik1 we insert into the right half of
Ik1 the ðk1 þ 1Þ mutually adjacent intervals

Ik1k1 ; Ik1k1�1; . . . ; Ik10;

with diameters given by

jIk1k1�l j ¼

3

p2

jIk1 j
ð2k1Þ2

for l ¼ 0

3

p2

jIk1 j
l 2

for l A f1; . . . ; k1g:

8>>><
>>>:

The family of these second-level intervals will be denoted by C2. Note that in
this way we have perforated each Ik1 A C1 such that there is a ‘hole’ in Ik1 with
diameter of order jIk1 j=k1.

We then proceed by induction as follows. Suppose that for nb 2 the n-th
level interval Ik1���kn has been constructed. The ðnþ 1Þ-th level intervals arising
from Ik1���kn are then obtained as follows. There are two cases to consider. The
first case is that kn ¼ 0, and here the partition only continues in the left half of
Ik1���kn�10. More precisely, in this case we start from the left endpoint of Ik1���kn�10

and partition the left half of Ik1���kn�10 into infinitely many mutually adjacent
intervals

Ik1���kn�101; . . . ; Ik1���kn�10l ; . . . ;

with diameters given by

jIk1���kn�10l j ¼
3

p2

jIk1���kn j
l 2

; for l A N:

In the second case we have that kn A N, and here we start from the left endpoint
of Ik1���kn and partition the left half of Ik1���kn into infinitely many mutually adjacent
intervals

Ik1���knknþ1; . . . ; Ik1���knknþl ; . . . :

The diameters of these intervals are
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jIk1���knknþl j ¼
3

p2

jIk1���kn j
l2

; for l A N:ð1Þ

Similarly, by starting from the right endpoint of Ik1���kn we insert into the right
half of Ik1���kn the ðkn þ 1Þ mutually adjacent intervals

Ik1���knkn ; Ik1���knkn�1; . . . ; Ik1���kn0;

with diameters given by

jIk1���knkn�l j ¼

3

p2

jIk1���kn j
ð2knÞ2

for l ¼ 0

3

p2

jIk1���kn j
l2

for l A f1; . . . ; kng:

8>>><
>>>:

ð2Þ

The so obtained set of intervals of the ðnþ 1Þ-th level will be denoted by Cnþ1.
That is,

Cn ¼ fIk1���kn : k1 A N; kiþ1 A N0 for i A N; and if ki ¼ 0 then kiþ1 0 0g:
Again, note that by this we have perforated Ik1���kn such that in the first case ‘the
hole’ is precisely the right half of Ik1���kn , whereas in the second case the diameter
of the hole is of order jIk1���kn j=kn. Also, let us emphasize that by construction,
the state 0 necessarily has to renew itself. That is, the generation following the
interval Ik1���kn�10 is given by fIk1���kn�10knþ1

: knþ1 A Ng. Moreover, note that the
system can only be stationary at states kn A N, which means that if Ik1���kn is a
given interval of some level n then Ik1���knkn exists if and only if kn 0 0. Finally,
note that we always assume that the intervals Ik1...knare half open, namely closed
to the left and open to the right.

With this inductive construction of the generating intervals Ik1���kn at hand,
the Cantor-like set C is defined by

C :¼ 7
n AN

6
I ACn

I :

Next, we define the set of dissipative points in C. For this we require the
following canonical coding of the elements in C. A finite or infinite sequence
ðk1; k2; . . .Þ is called admissable if Ik1���kn A Cn, for all n A N. Clearly, the diameter
of Ik1���kn tends to zero as n tends to y, for every fixed infinite admissable
sequence ðknÞn AN, and therefore,

7
y

n¼1

Ik1���kn is a singleton:

In particular, each x A C is coded uniquely by an infinite admissable sequence,
and this gives rise to the bijection

r : S ! C; ðk1; k2; . . .Þ 7! 7
y

n¼1

Ik1���kn ;
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where S refers to the set of all admissable sequences. Using this coding, the set
Cy HC of dissipative points is then given by

Cy :¼ x A C : x ¼ rðk1; k2; . . .Þ and lim
n!y

kn ¼ y
n o

:

The following theorem gives the main result of this paper. Here, dimH refers to
the Hausdor¤ dimension.

Main Theorem. For C and Cy as defined above, we have

dimHðCyÞ ¼ dimHðCÞ ¼ 1:

Remark 1.1. Note that our analysis does not allow to draw any conclusion
for the Lebesgue measure of C and/or Cy. However, recent studies in the
theory of Kleinian groups (cf. [1] [6], and also [7]) have confirmed the Ahlfors
Conjecture, and applying this loosely to our situation here, this strongly suggests
that C and Cy are both of 1-dimensional Lebesgue measure equal to 0. How-
ever, here we can only conjecture that the Lebesgue measure of C and Cy is
equal to zero, and it would be desirable to have an elementary proof of this
conjecture.

Acknowledgement. We like to thank the EPSRC for supporting a one week
visit of the first author to the School of Mathematics at the University of St.
Andrews. During this visit we began with the work towards this paper. Also,
we like to thank the Erwin Schrödinger Institute, Vienna for supporting the
workshop Ergodic Theory—Limit Theorems and Dimensions (Vienna, 17–21
December 2007) during which we made the finishing touches to this paper.
Finally, we are grateful to Tatyana Turova for very helpful discussions con-
cerning the random walk argument which we employ here.

2. Proof of the Main Theorem

Since Cy HCH ½0; 1Þ, we have

dimHðCyÞa dimH Cð Þa 1:

Therefore, our strategy will be to construct a family of probability measures ma
on Cy, for 1=2 < a < 1, such that the Hausdor¤ dimension dimHðmaÞ of the
measure ma tends to 1 for a tending to 1. Clearly, this will then be su‰cient for
the proof of the Main Theorem.

2.1. The family of measures ma
Let 1=2 < aa 1 be fixed. We then define a set function ma on the intervals

Ik1���kn by induction in the following way. Define I0 :¼ ½0; 1Þ and set I0k :¼ Ik for
all k A N. Then let
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maðI0Þ :¼ 1;

and define ma Ik1���knknþ1

� �
for each finite admissable sequence ðk1; . . . ; knþ1Þ as

follows. With zðsÞ :¼
Py

m¼1 m
�s referring to the Riemann zeta function, we

define for kn 0 knþ1,

maðIk1���knknþ1
Þ :¼

maðIk1���knÞ
2zð2aÞ

1

jknþ1 � knj2a
þ 1

ðknþ1 þ knÞ2a

 !
for knþ1 0 0

maðIk1���knÞ
2zð2aÞ

1

k2a
n

for knþ1 ¼ 0:

8>>>><
>>>>:

Also, for kn ¼ knþ1 let

maðIk1���knknÞ :¼
maðIk1���knÞ
2zð2aÞ

1

ð2knÞ2a
:

On the first sight, this definition of the set function ma might appear to be slightly
artificial. However, in the next section we will see that this definition reflects the
transition probabilities of a certain (transient) random walk on N0, and therefore
is rather canonical. Before we come to this, let us first state the following
consistency property for ma. This property can also be deduced using the random
walk of Section 2.2. Nevertheless, the following gives an elementary proof of
this consistency property.

Lemma 2.1. For each finite admissable sequence ðk1; . . . ; knÞ, we have

maðIk1���knÞ ¼
X

knþ1b0

maðIk1���knknþ1
Þ:

Proof. For kn ¼ 0, we have

X
knþ1b0
knþ100

maðIk1���kn�10knþ1
Þ ¼ maðIk1���kn�10Þ

2zð2aÞ
Xy
l¼1

2

l 2a
¼ maðIk1���kn�10Þ:

If kn 0 0, then we computeX
knþ1b0

maðIk1���knknþ1
Þ

¼
X

knþ1>0
knþ10kn

1

2zð2aÞ
1

jknþ1 � knj2a
þ 1

ðknþ1 þ knÞ2a

 !
maðIk1���knÞ

þ 1

2zð2aÞk2a
n

maðIk1���knÞ þ
1

2zð2aÞð2knÞ2a
maðIk1���knÞ
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¼ maðIk1���knÞ
2zð2aÞ

X
knþ1>0
knþ10kn

1

jknþ1 � knj2a
þ 1

ðknþ1 þ knÞ2a

 !
þ 1

k2a
n

þ 1

ð2knÞ2a

0
BB@

1
CCA

¼ maðIk1 � � � knÞ
2zð2aÞ

 X
knþ1>kn

1

ðknþ1 � knÞ2a
þ

X
0<knþ1<kn

1

ðkn � knþ1Þ2a

þ
X

0<knþ1<kn

1

ðknþ1 þ knÞ2a
þ
X

knþ1>kn

1

ðknþ1 þ knÞ2a
þ 1

k2a
n

þ 1

ð2knÞ2a

!

¼ maðIk1���knÞ
2zð2aÞ � 2

Xy
l¼1

1

l2a
¼ maðIk1���knÞ: r

The following is an immediate consequence of the previous lemma.

Corollary 2.2. The measure ma is a probability measure on C.

2.2. The associated random walk
In this section we show that the measure ma can be interpreted in terms of

a certain random walk. In particular, this will give that ma has the Markov
property. For this, let the random variables ~XX a

n be defined by the probability
(with respect to ma) being in the interval Ik1���knknþ1

given that in the previous step
the process has been in the interval Ik1���kn . That is, the random variables ~XX a

n is
given as follows.

� For knþ1 > 0 such that knþ1 0 kn, let

Pð ~XX a
nþ1 ¼ Ik1���knknþ1

j ~XX a
n ¼ Ik1���knÞ :¼

maðIk1���knknþ1
Þ

maðIk1���knÞ

¼ 1

2zð2aÞ
1

jknþ1 � knj2a
þ 1

ðknþ1 þ knÞ2a

 !
:

� For knþ1 > 0 such that knþ1 ¼ kn, let

Pð ~XX a
nþ1 ¼ Ik1���knkn j ~XX a

n ¼ Ik1���knÞ :¼
maðIk1���knknÞ
maðIk1���knÞ

¼ 1

2zð2aÞ
1

ð2knÞ2a
:

� If knþ1 ¼ 0, then

Pð ~XX a
nþ1 ¼ Ik1���kn0 j ~XX a

n ¼ Ik1���knÞ :¼
maðIk1���kn0Þ
maðIk1���knÞ

¼ 1

2zð2aÞ
1

k2a
n

:

Clearly, these conditional probabilities do not depend on k1; . . . ; kn�1. Hence,
we can define an associated random walk X a

n on N0 by the following transition
probabilities.
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� For l;m A N0, let

PðX a
nþ1 ¼ l jX a

n ¼ mÞ :¼

1

2zð2aÞ
1

jm� lj2a
þ 1

ðmþ lÞ2a

 !
for l0 0; l0m

1

2zð2aÞ
1

ð2mÞ2a
for l0 0; l ¼ m

1

2zð2aÞ
1

m2a
for l ¼ 0; m0 0

0 for l ¼ m ¼ 0:

8>>>>>>>>>><
>>>>>>>>>>:

The random walk X a
n is very closely connected to our original geometric setting,

since it allows to recover the measure ma as follows.

PðX a
1 ¼ k1; . . . ;X

a
n ¼ knÞ

¼ PðX a
n ¼ kn jX a

n�1 ¼ kn�1Þ � PðX a
n�1 ¼ kn�1 jX a

n�2 ¼ kn�2Þ
� . . . � PðX a

1 ¼ k1 jX a
0 ¼ 0Þ

¼ maðIk1���knÞ
maðIk1���kn�1

Þ
maðIk1���kn�1

Þ
maðIk1���kn�2

Þ � � �
maðIk1Þ

mað½0; 1ÞÞ
¼ maðIk1���knÞ:

The aim now is to show that the random walk X a
n is transient. This will then

allow us to deduce that ma is non-trivial on Cy.

Theorem 2.3. For each 1=2 < a < 1, the random walk X a
n on N0 is transient.

That is, we have P-almost surely,

lim
n!y

X a
n ¼ y:

Proof. Let 1 < b < 2 be fixed, and consider the Cauchy-type random walk
Y b

n on Z, given by the transition probabilities

PðY b
nþ1 ¼ mþ l jY b

n ¼ mÞ :¼ 1

2zðbÞ
1

jljb
for n A N; m A Z and l A Znf0g:

It is well known that Y b
n is symmetric, and that Y b

n is transient if and only if
b < 2. Let ~YY b

n denote the non-negative random walk jY b
n j which arises from

Y b
n . Clearly, ~YY b

n can be thought of as being a mirror image of Y b
n , in the sense

that the non-positive part of Y b
n gets reflected at the origin, and hence becomes

non-negative. Moreover, note that since Y b
n is a symmetric random walk, this

modification of Y b
n to ~YY b

n does not e¤ect the probabilities of any of the sample
paths. Therefore, it immediately follows that the transience of Y b

n implies that
~YY b
n is transient. Using the fact that by symmetry of Y b

n we have PðY b
n ¼ mÞ ¼

PðY b
n ¼ �mÞ, we now compute the transition probabilities of the random walk

~YY b
n on N0 as follows. For l;m A N0 such that l0 0; and m0 l, we have
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Pð ~YY b
nþ1 ¼ l j ~YY b

n ¼ mÞ ¼ PðjY b
nþ1j ¼ l j jY b

n j ¼ mÞ

¼
PðjY b

nþ1j ¼ l;Y b
n ¼ m or Y b

n ¼ �mÞ
PðY b

n ¼ m or Y
b
n ¼ �mÞ

¼
PðjY b

nþ1j ¼ l;Y b
n ¼ mÞ

2PðY b
n ¼ mÞ

þ
PðjY b

nþ1j ¼ l;Y b
n ¼ �mÞ

2PðY b
n ¼ �mÞ

¼
PðjY b

nþ1j ¼ l;Y b
n ¼ mÞ

PðY b
n ¼ mÞ

¼ 1

2zðbÞ
1

jm� ljb
þ 1

ðmþ lÞb

 !
:

Similarly, we obtain for l ¼ m0 0,

Pð ~YY b
nþ1 ¼ m j ~YY b

n ¼ mÞ ¼ 1

2zðbÞ
1

ð2mÞb
;

and for l ¼ 0 and m0 l,

Pð ~YY b
nþ1 ¼ 0 j ~YY b

n ¼ mÞ ¼ 1

2zðbÞ
1

mb
:

Finally, note that we immediately have

Pð ~YY b
nþ1 ¼ 0 j ~YY b

n ¼ 0Þ ¼ 0:

This shows that the transition probabilities of ~YY b
n coincide with the ones of X

b=2
n .

Therefore, since ~YY b
n is transient, it follows that X

b=2
n is transient. This finishes

the proof of the theorem. r

As already announced before, Theorem 2.3 has the following important impli-
cation.

Corollary 2.4. For every 1=2 < a < 1, we have

maðCyÞ ¼ 1:

Remark 2.5. Note that the proof of Theorem 2.3 relies heavily on the fact
that 1=2 < a < 1. Namely, for instance for a ¼ 1 the associated random walk is
recurrent, and consequently the measure ma vanishes on Cy.

2.3. Approximating the essential support of ma
In order to prepare our estimate of the lower pointwise dimension of ma, we

need a further approximation of the essential support of this measure. We will
see that ma-almost surely the diameters of the coding intervals of an element of
Cy do not shrink too fast. For this we define, for g A R,

Cg
y :¼ x A Cy : x ¼ rðk1; k2; . . .Þ such that lim sup

n!y

jknþ1 � knj
ng

a 1

� �
:
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Lemma 2.6. For each 1=2 < a < 1 and g > 1=ð2a� 1Þ, we have

maðCg
yÞ ¼ 1:

Proof. The proof is an easy consequence of the Borel-Cantelli lemma.
Indeed, first note that for b ¼ 2a and k A N we have

PðjY b
n � Y

b
n�1jb kÞbPðj ~YY b

n � ~YY b
n�1jb kÞ:

The latter is an immediate consequence of the fact that the random walk Y b
n has

the same distribution as ~YY b
n , but without reflections at 0. Hence, it su‰ces to

prove the lemma for the symmetric random walk Y b
n . For this we define

pg
n :¼ PðjY b

n � Y
b
n�1jb ngÞ:

We then have, for each n A N and with cðbÞ > 0 referring to some universal
constant,

pg
n ¼

1

zðbÞ
Xy
k¼n g

1

k b
a cðbÞ 1

ngðb�1Þ :

Since the series
Py

n¼1 p
g
n converges for g > 1=ðb � 1Þ, the Borel-Cantelli Lemma

implies that P-almost surely there are at most finitely many n which satisfy the
inequality

jY b
n � Y

b
n�1jb ng:

This shows that for ma-almost every x ¼ rðk1; k2; . . .Þ A C we have

lim sup
n!y

jknþ1 � knj
ng

a 1: r

2.4. The lower pointwise dimension on fundamental intervals
The main result of this section will be the following estimate for the lower

pointwise dimension of the measure ma restricted to the fundamental intervals
Ik1���kn .

Proposition 2.7. For each e > 0 there exists 1=2 < a < 1 and g > 1=ð2a� 1Þ
such that for every x ¼ rðk1; k2; . . .Þ A Cg

y,

lim inf
n!y

log maðIk1���knÞ
logjIk1���kn j

b a� e:

Furthermore, in here we have that a tends to 1 for e tending to 0.

Proof. Since we are interested in the asymptotic behaviour of Ik1���kn for
points x ¼ rðk1; k2; . . .Þ A Cg

y, Corollary 2.4 and Lemma 2.6 imply that we can
assume without loss of generality that kn > 0 and jknþ1 � knja ng, for all n A N.
Furthermore, for ease of exposition we only consider sequences which do not
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contain repetitions. That is, we assume that kn 0 knþ1, for all n A N. The case
with repetitions can be dealt with in similar way and is left to the reader. Using
the definition of ma, we then have

log maðIk1���knknþ1
Þ

logjIk1���knknþ1
j ¼ �logð2zð2aÞÞ

logjIk1���knknþ1
j þ

log
1

jknþ1 � knj2a
þ 1

ðkn þ knþ1Þ2a

 !
maðIk1���knÞ

" #

logjIk1���knknþ1
j

b
�logð2zð2aÞÞ
logjIk1���knknþ1

j þ
log

2

jknþ1 � knj2a
maðIk1���knÞ

" #

logjIk1���knknþ1
j

¼ �logð2zð2aÞÞ
logjIk1���knknþ1

j þ
log

2 � 2azð2ÞajIk1���knþ1
ja

jIk1���kn j
a maðIk1���knÞ

� �
logjIk1���knknþ1

j

¼
log

2azð2Þa

zð2aÞ
logjIk1���knknþ1

j þ
logðjIk1���knþ1

jaÞ
logjIk1���knþ1

j þ
log

maðIk1���knÞ
jIk1���kn j

a

logjIk1���knknþ1
j

¼ aþ
log

2azð2Þa

zð2aÞ
logjIk1���knknþ1

j þ
log

maðIk1���knÞ
jIk1���kn j

a

logjIk1���knknþ1
j :

Since

jIk1���knþ1
j < 1

2zð2Þ

	 �n
;ð3Þ

it follows for each k > 0 and for all n su‰ciently large,

log
2azð2Þa

zð2aÞ
logjIk1���knknþ1

j > �k:ð4Þ

Clearly, we even have that the limit of the latter expression is equal to 0. This
settles the second term in the final line in the above calculation. The third term
is more subtle, and for this we proceed as follows. Using (1) and (2), we derive
with the convention k0 1 0,

jIk1���kn j
a ¼

Yn�1

i¼0

1

2azð2Þa
1

jkiþ1 � kij2a

 !
:

Similarly, using the recursive definition of ma, we obtain

maðIk1���knÞ ¼
Yn�1

i¼0

1

2zð2aÞ
1

jkiþ1 � kij2a
þ 1

ðkiþ1 þ kiÞ2a

" # !
:
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Hence,

log
maðIk1���knÞ
jIk1���kn j

a

logjIk1���knknþ1
j ¼

log

Q n�1

i¼0

1

2zð2aÞ
1

jkiþ1 � kij2a
þ 1

ðkiþ1 þ kiÞ2a

" # !

Q n�1

i¼0

1

2azð2Þa
1

jkiþ1 � kij2a

 !

log
Qn

i¼0

1

2azð2Þa
1

jkiþ1 � kij2a

 ! !

¼
log

2azð2Þa

2zð2aÞ

� �nQn�1
i¼0 1þ jkiþ1 � kij

kiþ1 þ ki

	 �2a" # !

log
1

2azð2Þa
� �nþ1Qn

i¼0

1

jkiþ1 � kij2a

 !

¼
na logð2zð2ÞÞ � n logð2zð2aÞÞ þ

Pn�1
i¼0 log 1þ jkiþ1 � kij

kiþ1 þ ki

� �2a !

�ðnþ 1Þa logð2zð2ÞÞ þ
Pn

i¼0 log
1

jkiþ1 � kij2a

¼
logð2zð2aÞÞ � a logð2zð2ÞÞ � 1

n

Pn�1
i¼0 log 1þ jkiþ1 � kij

kiþ1 þ ki

� �2a !

nþ 1

n
a logð2zð2ÞÞ þ 1

n

Pn
i¼0 logjkiþ1 � kij2a

:

Let k > 0 be fixed. We then distinguish the following two cases.
First, if for some n A N we have

1

n

Xn�1

i¼0

log 1þ jkiþ1 � kij
kiþ1 þ ki

� �2a !
< k;

then we obtain for a su‰ciently close to 1,

logð2zð2aÞÞ � a logð2zð2ÞÞ � 1

n

Pn�1
i¼0 log 1þ jkiþ1 � kij

kiþ1 þ ki

� �2a !

nþ 1

n
a logð2zð2ÞÞ þ 1

n

Pn
i¼0 logjkiþ1 � kij2a

b�ðlogð2zð2aÞÞ � a logð2zð2ÞÞÞ � k

a logð2zð2ÞÞ þ 1

n

Pn
i¼0 logjkiþ1 � kij2a

b�ðlogð2zð2aÞÞ � a logð2zð2ÞÞÞ � kb�2k:

189the hausdorff dimension of the set of dissipative points



Here we made use of the fact that

lim
a!1

ðlogð2zð2aÞÞ � a logð2zð2ÞÞÞ ¼ 0;

which implies logð2zð2aÞÞ � a logð2zð2ÞÞ < k, for all a su‰ciently close to 1.
Also, note that in here the lower bound on a depends only on k and not on
n. In particular, we also have that a tends to 1 as k tends to 0.

Before we start with the discussion of the second case, first note that since

0 <
jkiþ1 � kij
kiþ1 þ ki

� �2a
a 1, we clearly always have

1

n

Xn�1

i¼0

log 1þ jkiþ1 � kij
kiþ1 þ ki

� �2a !
a log 2:ð5Þ

Furthermore, since kn tends to infinity, there exists jðkÞ A N such that

log
k2k2

i

4
>

2 log 2

k2
; for all ib jðkÞ:ð6Þ

Let us now come to the second case. That is, we now assume that for some
n A N we have

1

n

Xn�1

i¼0

log 1þ jkiþ1 � kij
kiþ1 þ ki

� �2a !
b k:

Since x > logð1þ xÞ for all x > 0, we then have

1

n

Xn�1

i¼0

jkiþ1 � kij
kiþ1 þ ki

� �2a
b k:

Let us make the following two observations. Firstly, using the fact that 0 <
jkiþ1 � kij
kiþ1 þ ki

� �2a
a 1, we can apply Chebyshev’s Inequality, which gives that for n

su¤ciently large,

card In > kn;

where

In :¼ i A ½ jðkÞ; n� : jkiþ1 � kij
kiþ1 þ ki

� �2a
b

k

2

( )
:

Secondly, note that for 1=2 < a < 1 the following implication holds.

If
jkiþ1 � kij
kiþ1 þ ki

� �2a
b

k

2
; then jkiþ1 � kij >

k

2
ki:

Combining these two observations with (6), we then compute
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1

n

Xn
i¼0

logjkiþ1 � kij2a b
a

n

X
i AIn

logjkiþ1 � kij2 b
a

n

X
i AIn

log
k2k2

i

4

b
a

n

X
i AIn

2 log 2

k2
>

log 2

k2n
card In >

log 2

k
:

Inserting this into our estimate above and using (5), it follows

logð2zð2aÞÞ � a logð2zð2ÞÞ � 1

n

Pn�1
i¼0 log 1þ jkiþ1 � kij

kiþ1 þ ki

� �2a !

nþ 1

n
logð2zð2ÞÞ þ 1

n

Pn
i¼0 logjkiþ1 � kij2a

b
�log 2

logð2zð2ÞÞ þ log 2

k

¼ �k
log 2

k logð2zð2ÞÞ þ log 2

b�k:

This finishes the second case.
Combining the latter results with (4), and putting e :¼ 3k, we have now

shown that

lim inf
n!y

log
maðIk1���knÞ
jIk1���kn j

a

logjIk1���knknþ1
j b�e;

and hence,

lim inf
n!y

log maðIk1���knÞ
logjIk1���kn j

b a� e:

Since a tends to 1 for e tending to 0, the proof is complete. r

2.5. The proof of the Main Theorem
Recall that the lower pointwise dimension dnðxÞ of a Borel measure n on R

at a point x A R is given by

dnðxÞ :¼ lim inf
r!0

log nðBðx; rÞÞ
log r

;

where Bðx; rÞ refers to the interval centred at x with diameter equal to 2r. The
idea is to apply the well-known Mass Distribution Principle of Frostman [9] and
Billingsley [4] (see also e.g. [8]).

In order to be able to apply the Mass Distribution Principle, we still require
the following straight forward generalization of Furstenberg’s Lemma [10].
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Lemma 2.8. Let n be a Borel measure on R, and let ðrnÞ be a sequence of
positive numbers for which limn!y rn ¼ 0 and limn!yðlog rnþ1=log rnÞ ¼ 1. We
then have for every x A R,

dnðxÞ ¼ lim inf
n!y

log nðBðx; rnÞÞ
log rn

:

Proof. For r > 0 we define n ¼ nðrÞ :¼ maxfk A N : rk b rg. The asser-
tion of the lemma is then an immediate consequence of the following simple
calculation.

log nðBðx; rÞÞ
log r

b
log nðBðx; rnÞÞ

log rnþ1
¼ log rn

log rnþ1

log nðBðx; rnÞÞ
log rn

: r

Proof of the Main Theorem. Let e > 0 be given, and then fix 1=2 < a < 1
and g > 1=ð2a� 1Þ as in Proposition 2.7. By Lemma 2.6 we have that in order
to find a lower bound for dimHðmaÞ it is su‰cient to give an estimate for dmaðxÞ
from below, for each x ¼ rðk1; k2; . . .Þ A Cg

y. For this note that Proposition 2.7
implies

lim inf
n!y

log maðIk1���knÞ
logjIk1���kn j

b a� e:

In order to deduce the desired lower bound for dmaðxÞ, we then use (3) and the
definition of Cg

y, which gives for rn :¼ jIk1���kn j,

lim
n!y

log rnþ1

log rn
¼ 1þ lim

n!y

log
jIk1���knknþ1

j
jIk1 ���kn j

logjIk1���kn j

a 1þ lim
n!y

g log n

n logð2zð2ÞÞ ¼ 1:

Therefore, Lemma 2.8 implies that for each x A Cg
y,

dmaðxÞb a� e:

Combining this with Corollary 2.2, Corollary 2.4 and Lemma 2.6, we have by the
Mass Distribution Principle,

dimHðCÞb dimHðCyÞb dimHðCg
yÞb dimHðmaÞb a� e:

Finally, note that by Proposition 2.7 we have that a tends to 1 for e tending to
0. This completes the proof of the theorem. r

3. Appendix

The geometry of horosperically tame Kleinian groups, revisited
In this appendix we give a brief discussion of the concepts ‘singly cusped’

and ‘horospherical tameness’. The aim is to give a motivation for why the set C
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can be considered to be a 1-dimensional model for the geodesic dynamic in the
Nielsen region of a 3-manifold with a simply degenerated ending arising from a
singly cusped parabolic fixed point. For further details we refer to [13] [14] [16]
[17].

Let G be a finitely generated Kleinian group and M ¼ H3=G the associated
(oriented) hyperbolic 3-manifold. Recall that LðGÞ, the limit set of G, is the
derived set of some arbitrary point in hyperbolic 3-space H3, that is the set of
accumulation points of the G-orbit of that point. As usual, let WðGÞ ¼ ĈC� LðGÞ
denote the set of ordinary points in the boundary at infinity ĈC of hyperbolic space.
An element of LðGÞ is called radial limit point if it admits a conical approach
by orbit points from inside hyperbolic space [2] [15]. In order to introduce the
concept ‘singly cusped parabolic fixed points’, we recall that a parabolic fixed
point p of G has rank 1 or rank 2 depending on the type of its stabiliser Gp in
G. Namely, p has rank 1 if Gp is isomorphic to a finite extension of Z (and so is
necessarily cyclic or infinite dihedral), whereas p has rank 2 if Gp is isomorphic to
a finite extension of Z2. Moreover, a rank 1 parabolic fixed point p is called
doubly cusped if and only if there exists a pair of disjoint open discs in WðGÞ
tangent at p, and p is called bounded if and only if it is either of rank 2 or else is
doubly cusped. Then, by a well-known result of Beardon and Maskit [3] we
have that a finitely generated Kleinian group G is geometrically finite if and only
if every point of LðGÞ is either a radial limit point or a bounded parabolic fixed
point. In contrast to this, we now give the definition of a singly cusped rank 1
parabolic fixed points. By the result of Beardon and Maskit it will be clear that
groups with such points are necessarily geometrically infinite, that is they are not
geometrically finite. In particular, the class of singly cusped parabolic points
provides interesting examples of geometrically infinite ends for hyperbolic 3-
manifolds.

� A parabolic fixed point p of a Kleinian group G is called singly cusped if
there exists an open disc hp HWðGÞ with p on its boundary such that LðGÞ
intersects every open disc in ĈC which has p on its boundary and which is
disjoint from hp.

Let NðGÞ refer to the Nielsen region of G, that is the convex hull in H3 of
the limit set LðGÞ. The quotient CðGÞ ¼ NðGÞ=G is called the convex core of
M ¼ H3=G. It is standard to divide the Nielsen region and the convex core
into two parts, called the thick part and the thin part. Given a positive
number e, the e-thick part of NðGÞ consists of all those points x A NðGÞ for
which the hyperbolic ball of radius 2e centred at x does not contain gðxÞ, for
all g A Gnfid:g. Likewise, the e-thick part of CðGÞ consists of those points
x A CðGÞ whose e-neighbourhood in CðGÞ is an embedded ball. In both cases,
the e-thin part is defined to be the complement of the e-thick part. By a well
known result of Margulis [12], generalising a theorem of Leutbecher [11], there
exists a universal constant e0, called the Margulis constant, such that the e0-thin
part of NðGÞ is contained in a disjoint union of tubes around the axes of
loxodromic elements with translation length at most 2e0 and a set of pairwise
disjoint horoballs each tangent to ĈC at some point of the orbit GðpÞ. Note that
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the set fHgðpÞ : g A G=Gpg of these so-called Leutbecher horoballs is necessarily
precisely invariant under the action of G. Before discussing these horoballs
further, let us now first introduce the class of horospherically tame Kleinian
groups.

� A group G is said to be horospherically tame if there exists t > 0 such
that NðGÞ is contained in the union over all g A G of the hyperbolic
t-neighbourhoods H t

gðpÞ of the horoballs HgðpÞ. In other words, the whole

of CðGÞ is contained in the hyperbolic t-neighbourhood of the e-thin part
of CðGÞ.

For ease of exposition for the rest of this appendix we will assume that G is a
horospherically tame group with a singly cusped rank 1 parabolic fixed point at
fyg, and that M ¼ H3=G has no geometrically infinite ends other than the one
arising from fyg (for the existence of such groups see [16], Section 3). We can
assume without loss of generality that our setting is normalised such that Gy is
generated by the parabolic transformation z 7! zþ 1 and the Leutbecher horoball
Hy is at height 1, that is Hy ¼ fðz; tÞ A H3 : t > 1g (cf. [11]). By definition of
singly cusped, there exists a horodisc hy in WðGÞ with fyg on its boundary.
We take this to be the largest precisely invariant horodisc at fyg in WðGÞ,
and we assume without loss of generality that this is normalised such that
hy ¼ fz A C : =ðzÞ > 0g. Then let h�

y be the hyperbolic half space with ideal
boundary hy. The pair ðhy;HyÞ will be called the horopair at fyg. We then
consider the image of the above configuration under the coset gGy. More
precisely, for an element g : z 7! ðazþ bÞ=ðczþ dÞ (with a; b; c; d A C and
ad � bc ¼ 1) of G not in the stabiliser of y (that is c0 0), we clearly have
that the point gðyÞ ¼ a=c is a singly cusped rank 1 parabolic fixed point. The
horoball Hg :¼ gðHyÞ is a Euclidean ball in H3 with

radius Rg :¼
1

2jcj2
and centre

a

c
;

1

2jcj2

 !
:

The horodisc hg :¼ gðhyÞ is a Euclidean disc in the Riemann sphere with

radius rg :¼
1

jcd � dcj
¼ 1

2jcj2=ðd=cÞ
and centre

ad � bc

cd � dc
:

Also, the half space h�
g :¼ gðh�yÞ is the Euclidean hemisphere in H3 with the same

centre and radius as hg. The pair ðhg;HgÞ will be referred to as the horopair at
gðyÞ. We then define the drift of such a horopair ðhg;HgÞ and the altitude of
Hg as follows.

� The altitude ag of the horoball Hg is defined to be the Euclidean distance
of gðyÞ from the boundary of hy. (Clearly, ag :¼ �=ða=cÞ measures how
far Hg is along the cusp at y.)

� The drift dg of the horopair ðhg;HgÞ measures the relative sizes of Hg and
hg, that is dg :¼ Rg=rg ¼ =ðd=cÞ.
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Let us now consider in H3 U ĈC the fundamental domain for Gy which contains
0 A ĈC, and in here in particular the part B which is in the complement of
Hy U h�

y, which is a ‘semi-infinite box’ (see Figure 1). Since G is horospherically
tame, B contains a chain fHgk1

: k1 A Ng of pairwise disjoint Leutbecher horoballs
such that H t

y VH t
gk1

0j and H t
gk1

VH t
gk1þ1

0j, for all k1 A N. Clearly, the radii
Rgk1

are all of comparable size roughly equal to 1=2. An elementary calculation
involving hyperbolic geometry (see [16], Lemma 2.2) then gives that if the altitude
agk1 of Hgk1

is of order say n then the drift dgk1 must be of order 1=n, and hence
also rgk1 has to be of order 1=n. Now, the shade of each of these horoballs Hgk1
(when viewed from fyg) again contains a chain of pairwise disjoint horoballs
fHgk1k2

: k2 A Ng such that H t
gk1

VH t
gk1k2

0j and H t
gk1k2

VH t
gk1k2þ1

0j, for all

k2 A N. Clearly, these are ordered along the ‘big horoball’ Hgk1
following an

obvious parabolic hierarchy, and the shadow in C (when viewed from fyg) of
the union of their hyperbolic t-neighbourhoods covers the shadow of Hgk1

nh�
gk1

.

Obviously, this procedure can be continued indefinitely. In particular, it should
be clear from this description why we refer to the Cantor-like set C which we
considered in the previous sections as to the 1-dimensional model for the geodesic
dynamics within the convex hull of the limit of a horospherically tame Kleinian
group.
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