ON THE DISTRIBUTION OF ARGUMENTS OF GAUSS SUMS

Igor E. Shparlinski

Abstract

Let \mathbf{F}_{q} be a finite field of q elements of characteristic p. N. M. Katz and Z. Zheng have shown the uniformity of distribution of the arguments $\arg G(a, \chi)$ of all $(q-1)(q-2)$ nontrivial Gauss sums $$
G(a, \chi)=\sum_{x \in \mathbf{F}_{q}} \chi(x) \exp (2 \pi i \operatorname{Tr}(a x) / p),
$$ where χ is a non-principal multiplicative character of the multiplicative $\operatorname{group} \mathbf{F}_{q}^{*}$ and $\operatorname{Tr}(z)$ is the trace of $z \in \mathbf{F}_{q}$ into \mathbf{F}_{p}.

Here we obtain a similar result for the set of arguments arg $G(a, \chi)$ when a and χ run through arbitrary (but sufficiently large) subsets \mathscr{A} and \mathscr{X} of \mathbf{F}_{q}^{*} and the set of all multiplicative characters of \mathbf{F}_{q}^{*}, respectively.

1. Introduction

Let \mathbf{F}_{q} be a finite field of q elements and let \mathbf{F}_{q}^{*} be the multiplicative group \mathbf{F}_{q}.

For $a \in \mathbf{F}_{q}^{*}$ and a non-principal multiplicative character χ of the multiplicative group \mathbf{F}_{q}^{*}, we consider the Gauss sums

$$
G(a, \chi)=\sum_{x \in \mathbf{F}_{q}} \chi(x) \exp (2 \pi i \operatorname{Tr}(a x) / p),
$$

where $\operatorname{Tr}(z)$ is the trace of $z \in \mathbf{F}_{q}$ into \mathbf{F}_{p}, we refer to [3, Chapter 3] for a background on characters and Gauss sums.

Since $|G(a, \chi)|=q^{1 / 2}$, we can define its argument $\arg G(a, \chi)$ by the relation

$$
G(a, \chi)=e^{i \arg G(a, \chi)} q^{1 / 2}
$$

N. M. Katz and Z. Zheng [4] have shown that if χ runs through all multiplicative characters of \mathbf{F}_{q}^{*} and a runs through all elements of \mathbf{F}_{q}^{*}, then the ratio $\arg G(a, \chi) / 2 \pi$ is asymptotically uniformly distributed in $[0,1]$, see also [3, Theorem 21.6].

Here we obtain a similar result for the set of arguments $\arg G(a, \chi)$ when a and χ run through arbitrary (but sufficiently large) subsets \mathscr{A} and \mathscr{X} of \mathbf{F}_{q}^{*} and of the set of all multiplicative characters of \mathbf{F}_{q}^{*}, respectively. Namely, our result is nontrivial if

$$
\begin{equation*}
\# \mathscr{A} \# \mathscr{X} \geq q^{1+\varepsilon} \tag{1}
\end{equation*}
$$

for some fixed $\varepsilon>0$ provided that q is large enough. We also show that this condition is tight and for any field \mathbf{F}_{q} with and odd q there are corresponding sets \mathscr{A} and \mathscr{X} with

$$
\# \mathscr{A} \# \mathscr{X}=(q-1) / 2
$$

for which $\arg G(a, \chi)$ for all $a \in \mathscr{A}$ and $\chi \in \mathscr{X}$ is constant and thus is not uniformly distributed.

Throughout the paper, the implied constants in the symbols ' O ', and ' $<$ ' are absolute. We recall that the notations $U=O(V)$ and $V \ll U$ are both equivalent to the assertion that the inequality $|U| \leq c V$ holds for some constant $c>0$.

2. Discrepancy

To formulate and prove our main result we need to use some notions and facts from the theory of uniform distribution.

For a sequence of N real numbers $\gamma_{1}, \ldots, \gamma_{N} \in[0,1)$ the discrepancy is defined by

$$
\Delta=\max _{0 \leq \gamma \leq 1}|T(\gamma, N)-\gamma N|,
$$

where $T(\gamma, N)$ is the number of $n \leq N$ such that $\gamma_{n} \leq \gamma$, see $[1,5]$.
We recall that a sequence $\gamma_{1}, \ldots, \gamma_{N} \in[0,1)$ is called uniformly distributed if for its the discrepancy satisfies $\Delta=o(N)$.

The most common way of estimating the discrepancy is via the following Erdös-Turán inequality (see [1, 5]), which links the discrepancy with exponential sums.

Lemma 1. For any integer $H \geq 1$, the discrepancy Δ of a sequence of N real numbers $\gamma_{1}, \ldots, \gamma_{N} \in[0,1)$ satisfies the inequality

$$
\Delta \ll \frac{N}{H}+\sum_{h=1}^{H} \frac{1}{h}\left|\sum_{n=1}^{N} \exp \left(2 \pi i h \gamma_{n}\right)\right| .
$$

3. Incomplete power moments of Gauss sums

Lemma 2. Let $\mathscr{A} \subseteq \mathbf{F}_{q}^{*}$ and let \mathscr{X} be a set of nonprincipal multiplicative characters of \mathbf{F}_{q}^{*}. For any integer $h \geq 1$, we have

$$
\sum_{a \in \mathscr{A}} \sum_{\chi \in \mathscr{X}} G(a, \chi)^{h} \leq q^{(h+1) / 2} \sqrt{d \# \mathscr{A} \# \mathscr{X}}
$$

where $d=\operatorname{gcd}(h, q-1)$.
Proof. As in [4], we recall that

$$
\begin{equation*}
G(a, \chi)=\bar{\chi}(a) G(1, \chi), \tag{2}
\end{equation*}
$$

where $\bar{\chi}(a)$ is the complex conjugate character, see [3, Lemma 3.2]. Therefore,

$$
\begin{equation*}
\sum_{a \in \mathscr{A}} \sum_{\chi \in \mathscr{X}} G(a, \chi)^{h} \ll \sum_{\chi \in \mathscr{X}}|G(\chi, 1)|^{h}\left|\sum_{a \in \mathscr{A}} \bar{\chi}(a)^{h}\right|=q^{h / 2} W_{h}, \tag{3}
\end{equation*}
$$

where

$$
W_{h}=\sum_{\chi \in \mathscr{X}}\left|\sum_{a \in \mathscr{A}} \bar{\chi}(a)^{h}\right| .
$$

By the Cauchy inequality we obtain

$$
\begin{equation*}
W_{h}^{2} \leq \# \mathscr{X} \sum_{\chi \in \mathscr{X}}\left|\sum_{a \in \mathscr{A}} \bar{\chi}(a)^{h}\right|^{2} \tag{4}
\end{equation*}
$$

Let ϑ be a primitive root of \mathbf{F}_{q}. For $a \in \mathbf{F}_{q}^{*}$ we define ind a by the relations

$$
a=\vartheta^{\operatorname{ind} a} \quad \text { and } \quad 0 \leq \operatorname{ind} a \leq q-2
$$

Then for every integer $s=0, \ldots, q-2$, the function

$$
\chi_{s}(a)=\exp (2 \pi i s \text { ind } a /(q-1))
$$

is a multiplicative character of \mathbf{F}_{q}^{*}, and every character can be represented in such a way (where $s=0$ corresponds to the principal character χ_{0}). Thus, extending the summation in (4) over all multiplicative characters (including the principal character), we derive

$$
\begin{aligned}
W_{h}^{2} & \leq \# \mathscr{X} \sum_{s=0}^{q-2} \mid\left.\sum_{a \in \mathscr{A}} \exp (2 \pi i h s \text { ind } a /(q-1))\right|^{2} \\
& =\# \mathscr{X} \sum_{s=0}^{q-2} \sum_{a, b \in \mathscr{A}} \exp (2 \pi i h s(\text { ind } a-\operatorname{ind} b) /(q-1)) \\
& =\# \mathscr{X} \sum_{a, b \in \mathscr{A}} \sum_{s=0}^{q-2} \exp (2 \pi i h s(\text { ind } a-\operatorname{ind} b) /(q-1)) .
\end{aligned}
$$

Clearly the inner sum vanishes unless

$$
\begin{equation*}
h(\operatorname{ind} a-\operatorname{ind} b) \equiv 0 \quad(\bmod q-1), \tag{5}
\end{equation*}
$$

in which case it is equal to $q-1$. Clearly, the congruence (5) is equivalent to ind $a \equiv \operatorname{ind} b(\bmod (q-1) / d)$. For every $b \in \mathscr{A}$ we see that ind a is uniquely defined modulo $(q-1) / d$ and thus belongs to at most d residue classes modulo $q-1$, after which a is uniquely defined. Thus (5) has at most $d \# \mathscr{A}$ solutions in $a, b \in \mathscr{A}$. Therefore $W_{h}^{2} \leq d(q-1) \neq \mathscr{A} \# \mathscr{X}$. Recalling (3), we conclude the proof.

4. Main result

Theorem 3. Let $\mathscr{A} \subseteq \mathbf{F}_{q}^{*}$ and let \mathscr{X} be a set of nonprincipal multiplicative characters of \mathbf{F}_{q}^{*}. For the discrepancy $\Delta(\mathscr{A}, \mathscr{X})$ of the set

$$
\left\{\frac{\arg G(a, \chi)}{2 \pi}: a \in \mathscr{A}, \chi \in \mathscr{X}\right\}
$$

we have the following bound:

$$
\Delta(\mathscr{A}, \mathscr{X}) \leq \sqrt{\# \mathscr{A} \# \mathscr{X}} q^{1 / 2+o(1)}
$$

Proof. Using Lemma 1 we see that for every integer $H \geq 1$

$$
\begin{aligned}
\Delta(\mathscr{A}, \mathscr{X}) & \ll \frac{\# \mathscr{A} \# \mathscr{X}}{H}+\sum_{h=1}^{H} \frac{1}{h}\left|\sum_{a \in \mathscr{A}} \sum_{\chi \in \mathscr{X}} \exp (i h \arg G(a, \chi))\right| \\
& =\frac{\# \mathscr{A} \# \mathscr{X}}{H}+\sum_{h=1}^{H} \frac{1}{h q^{h / 2}}\left|\sum_{a \in \mathscr{A}} \sum_{\chi \in \mathscr{X}} G(a, \chi)^{h}\right| .
\end{aligned}
$$

Applying the bound of Lemma 2 we obtain

$$
\begin{aligned}
\Delta(\mathscr{A}, \mathscr{X}) & \ll \frac{\# \mathscr{A} \# \mathscr{X}}{H}+\sqrt{q \# \mathscr{A} \# \mathscr{X}} \sum_{h=1}^{H} \frac{\sqrt{\operatorname{gcd}(h, q-1)}}{h} \\
& \leq \frac{\# \mathscr{A} \# \mathscr{X}}{H}+\sqrt{q \# \mathscr{A} \# \mathscr{X}} \sum_{d \mid q-1} d^{1 / 2} \sum_{\substack{h=1 \\
h \equiv 0(\bmod d)}}^{H} \frac{1}{h} \\
& \leq \frac{\# \mathscr{A} \# \mathscr{X}}{H}+\sqrt{q \# \mathscr{A} \# \mathscr{X}} \sum_{d \mid q-1} d^{1 / 2} \sum_{1 \leq k \leq H / d} \frac{1}{k d} \\
& <\frac{\# \mathscr{A} \# \mathscr{X}}{H}+\sqrt{q \# \mathscr{A} \# \mathscr{X} \log H} \sum_{d \mid q-1} d^{-1 / 2} .
\end{aligned}
$$

Taking $H=q$ and recalling that

$$
\sum_{d \mid q-1} d^{-1 / 2} \leq \sum_{d \mid q-1} 1=q^{o(1)}
$$

as $q \rightarrow \infty$, see [3, Bound (12.82)], we obtain

$$
\Delta(\mathscr{A}, \mathscr{X}) \ll \# \mathscr{A} \# \mathscr{X} q^{-1}+\sqrt{\# \mathscr{A} \# \mathscr{X}} q^{1 / 2+o(1)} .
$$

Clearly, $\# \mathscr{A} \# \mathscr{X} q^{-1} \leq \sqrt{q \# \mathscr{A} \# \mathscr{X}}$, thus the first term can be discarded, which concludes the proof.

5. Comments

Clearly the bound of Theorem 3 is nontrivial, that is, of the form $o(\# \mathscr{A} \# \mathscr{X})$, under the condition (1). Now, for an odd q, we take \mathscr{A} to be the set of all quadratic residues of \mathbf{F}_{q} and \mathscr{X} to be the set consisting of just one quadratic character χ_{2}. Since $\overline{\chi_{2}}(a)=\chi_{2}(a)=1$, we now see from (2) that $G\left(a, \chi_{2}\right)$ takes just one value. for all $a \in \mathscr{A}$. Hence in general (1) cannot be substantially relaxed. Certainly this is a somewhat pathological example as the set \mathscr{X} consists of just one element. So one may ask whether it is possible to replace (1) with a weaker condition provided that both sets \mathscr{A} and \mathscr{X} are not too small, for example, under the additional assumption that

$$
\# \mathscr{A} \geq q^{\varepsilon} \quad \text { and } \quad \# \mathscr{X} \geq q^{\varepsilon}
$$

for some fixed $\varepsilon>0$. We show that this is still impossible, and in fact for any $\varepsilon>0$ there are infinitely many primes p for which there are sets \mathscr{A} and \mathscr{X} over \mathbf{F}_{p} with

$$
\# \mathscr{A} \geq p^{1 / 2-\varepsilon}, \quad \# \mathscr{X} \geq p^{1 / 2+\varepsilon / 2} \quad \text { and } \quad \# \mathscr{A} \# \mathscr{X} \geq(p-1) / 2
$$

and such that either

$$
\arg G(a, \chi) \in[0,1 / 2], \quad a \in \mathscr{A}, \chi \in \mathscr{X},
$$

or

$$
\arg G(a, \chi) \in[1 / 2,1], \quad a \in \mathscr{A}, \chi \in \mathscr{X} .
$$

By a result of K. Ford [2, Theorem 7] there are infinitely many primes p such that $p-1$ has a divisor d with

$$
p^{1 / 2-\varepsilon} \leq d \leq p^{1 / 2-2 \varepsilon / 3}
$$

(in fact this holds for a set of primes of positive relative density). We take \mathscr{A} to the set of all d elements $a \in \mathbf{F}_{p}$ of order d, that is, $a^{d}=1$ for $a \in \mathscr{A}$. Since for any $a \in \mathscr{A}$ there is $b \in \mathbf{F}_{p}$ with $a=b^{(p-1) / d}$, the relation (2) implies that for any character χ of order $(p-1) / d$, that is, for any character with $\chi^{(p-1) / d}=\chi_{0}$, we have

$$
G(a, \chi)=\bar{\chi}(a) G(1, \chi)=\bar{\chi}\left(b^{(p-1) / d}\right) G(1, \chi)=\bar{\chi}(b)^{(p-1) / d} G(1, \chi)=G(1, \chi) .
$$

Let us separate the $(p-1) / d$ characters of order $(p-1) / d$ into two sets \mathscr{X}_{0} and \mathscr{X}_{1} depending whether $\arg G(1, \chi) \in[0,1 / 2]$ or $\arg G(1, \chi) \in[1 / 2,1]$. Taking \mathscr{X} as the largest set out of \mathscr{X}_{0} and \mathscr{X}_{1} we have $\# \mathscr{X} \geq(p-1) /(2 d)$ and the desired assertion follows (provided that p is large enough).
N. M. Katz and Z. Zheng [4] have also considered a similar question for the set of all Jacobi sums

$$
J(\chi, \psi)=\sum_{x \in \mathbf{F}_{q}} \chi(x) \psi(1-x),
$$

where χ and ψ are nonprincipal multiplicative characters of \mathbf{F}_{q}^{*} with $\psi \neq \bar{\chi}$ and shown that their arguments are uniformly distributed. It would be interesting to obtain an analogue of this result in the case where χ and ψ run through arbitrary sufficiently large sets of characters.

References

[1] M. Drmota and R. Tichy, Sequences, discrepancies and applications, Springer-Verlag, Berlin, 1997.
[2] K. Ford, The distribution of integers with a divisor in a given interval, Annals Math. $\mathbf{1 6 8}$ (2008), 367-433.
[3] H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society, Providence, RI, 2004.
[4] N. M. Katz and Z. Zheng, On the uniform distribution of Gauss sums and Jacobi sums, Analytic number theory, Allerton Park, 1995, Progress in mathematics 139, Birkhäuser, Basel, 1996, 537-558.
[5] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience, New York-London-Sydney, 1974.

Igor E. Shparlinski
Department of Computing
Macquarie University
Sydney, NSW 2109
Australia
E-mail: igor@ics.mq.edu.au

