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SEIBERG-WITTEN-FLOER HOMOLOGY AND THE GEOMETRIC
STRUCTURE R x H?

TAKAHISA Y AMASE

Abstract!

The Seiberg-Witten-Floer homology of an oriented closed 3-manifold M with the
geometric structure R x H? is computed.

1. Introduction

In [5], A. Floer constructed a remarkable invariant for an oriented closed 3-
manifold, so-called Floer homology, whose developments of this work are widely
discussed in [4]. Variants of Floer homology are described in [8], [17]. Floer’s
work is based on Yang-Mills gauge theory. So it is natural to attempt to define
a similar homology for Seiberg-Witten gauge theory.

By the efforts of several geometers, one can obtain a notion of Floer
homology in the framework of Seiberg-Witten gauge theory, so-called Seiberg-
Witten-Floer homology. In several geometric situations, Seiberg-Witten-Floer
homology is computed. See [3], [11], [15], for example.

In Seiberg-Witten gauge theory, the monopole class « = ¢ (L) plays an
essential role in computing the Seiberg-Witten invariant. Also the scalar cur-
vature of a 3-manifold crucially appears in Seiberg-Witten gauge theory as in [10].

In fact, we introduce in [6] a certain equality of the L?-norm between the
monopole class and the scalar curvature of an oriented closed 3-manifold M, an
equality which is closely related to the dual Thurston norm. Moreover in [7], we
show that this equality holds if and only if M admits the geometric structure
R x H?> which is one of the eight model geometries introduced by Thurston.
Taking a suitable complex line bundle L associated with a Spin(3)° structure, we
make clear the structure of the moduli space of the solutions to the 3-dimensional
Seiberg-Witten equations. These results are stated as follows.

THEOREM 1.1 ([7]). Let M be an oriented closed 3-manifold with a monopole
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class o= c¢1(L) associated with the principal Spin(3) bundle induced by TM of
M. Suppose that M admits a smooth metric h which satisfies

1
HOChH(LZ,h) = E”%H(L{h)'

Then, (1) M carries the geometric structure R x H* and furthermore (2) L =
F® K3\ Here, F is a complex line bundle with a flat connection and Ki;' — M
is a complex line bundle naturally induced from the (anti-)canonical line bundle K#
over H* by the quotient map: R x H> — M.

In the above theorem, [[oy ||,z ) is the L?-norm of the harmonic represen-
tative of o, and ||ss[|(2, ) is the L*-norm of the scalar curvature for the given
metric #. The statement (1) is also proved in [6]. The statement (2) follows
from comparing the first Chern classe of L with the first Chern class of F ® K ;—}1.

We call o =c¢ (L) a monopole class, when corresponding 3-dimensional
Seiberg-Witten equations (or monopole equations)

{c(*FA) =D -0 Idy
Dy® =0

have a solution for all Riemannian metrics # on M. We denote by ¥ the set
of the solutions to the monopole equations, which is invariant under the gauge
action

(A, ®) — (A+g tdg,g'®), ge9=T(M;UQ)).

Therefore we can consider the moduli space .# =.%/%. In our case, ./ is
described as follows.

THEOREM 1.2 ([7]). Let M be an oriented closed 3-manifold carrying the
geometric structure R x H? with the (anti-)canonical line bundle K3'. Suppose
bi(M) > 1. It follows then that (1) the moduli space of the solutions to the
monopole equations associated with the class o = c¢i(K3;') and the metric h such
that n*h = dt* ® a’gy consists of a single point and is transversal at this point and
that (2) a = c\(K5') is a monopole class.

In this theorem, 7 is the quotient map n: R x H> — M, a is a positive
constant and gy is a hyperbolic metric. The transversality of the moduli space is
equivalent to the surjectivity of the map

T4,0)(a,9)
1
(i da) —p©® - © ¢ +3 (0.0 + <O p3) i Dap + i)

which is the linearization of the 3-dimensional Seiberg-Witten equations. This
surjectivity follows from direct computation ([7]).
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It is known that .# is a 0-dimensional compact oriented manifold. So the
Seiberg-Witten invariant is defined by counting the points of the moduli space
with sign ([2]). Therefore Theorem 1.2 implies that

SW (M, K = +1.

Notice that the metric independence of the invariant follows from well-known
cobordism argument. In the case that b;(M) =0 or 1, we need a so-called wall
crossing formula ([12]). Since this argument strays from our purpose, we omit it
in this article.

As is well known, Seiberg-Witten-Floer homology and Seiberg-Witten invari-
ant are closely related to each other. For example, by Proposition 3.3.12 in [12],
we can compute the Seiberg-Witten invariant SW(M,L) as the Euler charac-
teristic of the Z,-graded Seiberg-Witten-Floer homology y(HF.(M,L;Z,)) for an
oriented closed 3-manifold with a fixed complex line bundle L associated with a
Spin(3)¢ structure.

Our aim of this article is to compute the Seiberg-Witten-Floer homology of
an oriented closed 3-manifold which carries the geometric structure R x H?2.

We are going to introduce the solutions to the 3-dimensional Seiberg-Witten
equations as the critical points of the Chern-Simons-Dirac functional

1 1
C(4,®) = EJM(A — Ao) A (Fyq+ Fy,) +§JM D, D 4D dv.

Since this functional is not invariant under the gauge action, we add a suitable
condition. This condition induces .# which is a Z-covering of the moduli space
A of the solutions to the 3-dimensional Seiberg-Witten equations. By the
observation of the structure of .#, we define Seiberg-Witten-Floer homology
and compute it for our case as follows.

MAIN THEOREM. Let M be an oriented closed 3-manifold carrying the
geometric structure R x H* with the (anti-)canonical line bundle L = K3'.  Sup-
pose bi(M) > 1. Then, the Seiberg-Witten-Floer homology of M is computed as
follows.

Z (k=dm)
{0} (k # dm),
where d =ming|<{ci(L)Ulg], M]>|(#0), g] is the cohomology class of the form

%m,g’l dg for ge 9 =T(M;U(1)) and meZ.

Remark. (1) In Theorem 1.2 and Main Theorem, M has the structure of a
Seifert bundle 7 over a base orbifold B with e(r7) = 0 and y(B) < 0, where e(7) is
the orbifold Euler class and y(B) is the Euler characteristic ([18]). Notice that B
can be not only orientable but also non-orientable although M is oriented ([16]).

(2) Seiberg-Witten-Floer homology for the Seifert fibered homology spheres
are computed in [14].

HF (M, L) = {
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In general, the computation of d is not easy. However, in the case that the
structure of M is simple, we can compute d as follows.

PROPOSITION 1.3.  Under the assumption of Main Theorem, let M = S' x X,
where X is a closed Riemann surface whose genus gs > 2. Then, d =2(gs —1).

COROLLARY 1.4.

HF (S' x 2, K% )~

s {z (k = 2(gs — 1)m)

{0} (k #2(gz — )m).

Remark. Seiberg-Witten-Floer homology of S' x X for other Spin(3)¢
structures is described with its algebraic aspects in [15].

2. Chern-Simons-Dirac functional

This section is mainly due to [12]. We are going to review the basic
properties of the Chern-Simons-Dirac functional.

Let M be an oriented closed 3-manifold. Then there exists a Spin(3)¢
structure on M defining the principal Spin(3)“-bundle P associated with the
tangent bundle 7M. Let W be the spinor bundle associated with P and
L =det(W) be the determinant line bundle of W. For a unitary connection
A on L and a section @ of W, we define the Chern-Simons-Dirac functional as
follows.

DeFmNITION 2.1.  The Chern-Simons-Dirac functional on the space .7 =
& x T'(W), where € is the space of unitary connections on L and I'(W) is the
space of smooth sections of W, is defined as

1 1
C(4,®) = zJMVl A0 A (Fa+ Fa) +§jM (®, DD db.

Here, A is a fixed smooth connection, F, is the curvature form of 4 and D, is
the Dirac operator twisted with A4, namely,

Dy:T(W) L T(T"M @ W) S T(W),

where V, is the spin connection on W and c¢: T*M — End(W) denotes the
Clifford multiplication.

We can deduce the 3-dimensional Seiberg-Witten equations from the gradient
of the functional C.
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ProPOSITION 2.2.
VC(A4,D) = < x Fy+ ¢! (CD ® D" — %|(D‘2 Idw),DACD>,

where x is the Hodge star operator.

Proof. Set A= Ay+ia, acQ'(M). Computing directly, we obtain

C(A+ 1A, ® + 1D)
t=0

dt

1 1
:—J idA(FA—I—FA(])—f——J ianida
2 u 2)u

+ %JM (D, ic(a)®) dv + J Re(®D, DD dv
J

J (D, ic(a)D) dv +J Re(®, DD dv
M M

1 .
= | ianF,+ —J (D, ic(a)D dv + J Re(®, D, @ dv
M 2 M M

1
= —J ia, ¥F > dv—i—J <ia,c—1 (@@@* — @) IdW)> dv
M M 2

J Re{®, D, dv.

+

:J <,4‘,*FA+CI(<D®<1>*1|c1>|21dW)>dv
M 2
+

J Re(®, DD dv. O
M

g

It is clear that the critical points of C are exactly the solutions to the 3-
dimensional Seiberg-Witten equations. Moreover we can show that the irre-
ducible solution studied in [7] is a non-degenerate critical point. We call a
solution (4, ®) irreducible, when ® is not identically zero.

ProposSITION 2.3.  Let (A,®) be the irreducible solution to the 3-dimensional
Seiberg-Witten equations with V4O = 0, namely, a critical point of C, with the
(anti-)canonical line bundle L = K3;'. Then, (A,®) is a non-degenerate critical
point of C.
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Proof. Let H4 ) be the Hessian operator of C at a critical point (4, ®).
Set (As, @;) = (4, D) + s(ia, p). For

1 1
Clto®) =3 | (= o) APy + Fa)+5 | <@uDA0

we may collect the second order terms of s to compute the Hessian operator.
2

. S . .
The first term includes the term EIM ianida. The second term includes the
terms

2
— (J Lo, ic(a)®) dv + J D, ic(a)p) dv+ J {p,D40> dv).
2 \Jm M M

Therefore C includes the terms

2
2([ an (o= (@0 005 S (co0> + 0.0 10w ) )
M

+ JM 9, Dag + ic(a)®) dv).
Hence we obtain
CHia,0)(a,9), (a,9))
= <ia, i da — x¢”! (go RO +DPR " — % ({p, @) + (D, p)) Idw)>

+<p, Dap +ic(a)D).

In [7], we have already shown that the linearization of the 3-dimensional Seiberg-
Witten equations at the solution (A4,®) with V,® = 0, namely,

T4, 0)(a,0)

~(cti+da) - 9 ® "~ 0@+ (0> + 0. 03) Wy Dap + cla)

is surjective. It is obvious that H4 ¢)(a,¢) is equivalent to T{, ¢)(a,p). Hence
the critical point (A4,®) is non-degenerate. O

Next we observe how C changes under the gauge action.
ProOPOSITION 2.4.

C(A+g" dg,g ' ®) = C(4, D) + 4n*<c1 (L) Ug], [M]),

where [g] is the cohomology class of the form %g’l dg.
T
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Proof. By definition, we get
C(A+g " dg,g7' @)

1 1
= JM(A + gf1 dg — Ao) A (Faig1ag+ Fay) + —JM <g’1(I), D g dg(g’l(I))> dv

) 2
1 i , 1
=—| (A—Ao)A(Fa+Fa)+=| g dgnQ2F4 +ida)+=| <(O,D D) dv
2)u 2 u 2
j 1
=C(4,D Vg AFy = C(A,®)+4n2 | LF n—g!
C( ) )+JMg dq/\ Ay C( ) )+ T JM I Ao N ang dg

= C(4,@) +4n*a(L)U[g], [M]>. O
To make C invariant under the gauge action, we consider the space #; =

o/ /%y, where
YL ={g9e¥[<{a(L)U[g],IM]> =0}

is a subgroup of 4. The next proposition implies that the space %, is a covering
space of # = .o//% with fiber Z.

PROPOSITION 2.5. Let 9, be a subgroup of 4 given by
Y ={ge9|{a(L)U[g],[M]) = 0}.
Then, 9/%; =~ {0} or dZ, where d =ming|{ci(L)U]g|,[M])|, g€ %Y, g¢ .

Proof. 1t is obvious that if ¥ =%9;, then ¥4/%9, = {0}. So we suppose
% < % and consider the following sequence:

1
gL H(M;Z) 52, g) = 59 dg,  g(n) = <er(L) Un, [M]).

Composing 4 and ¢, we obtain a homomorphism y = po A : ¥ — Z whose kernel
is

Keryy ={ge % [<ci(L)UA(g),[M]) =0} = 9.

Therefore we get 9/%;, ~Imy = Z. Since Im is a nontrivial subgroup of
Z, we easily see that Im yy = {dm|m € Z}, where d = min,|<c;(L)UA(g), [M])|,
g€Y, g¢ Y. O

Remark. Since L=det(W), W=Wy®L;, Wo=M x C?, we obtain
L=1L} so that ¢(L)=c(L})=2c/(Li). Therefore <{c;(L)Un,[M]) =
2{er(Ly)Un, [M)y, ne H'(M;Z), which implies that d is an even number. We
are going to examine this number in Section 4.
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By the above proposition, we can consider a Z-covering space .# = & /%1 of
M=F]%. In the infinite dimensional Morse theory, we cannot always define
Morse index. So we define relative Morse index

(@) —p(b) abe.d

as the spectral flow of H along a path which connects two critical points
a=[Az,®; and b= [A;,®;]. This is well defined as follows.

PROPOSITION 2.6.  The spectral flow of the Hessian operator H of C around a
loop in By is zero.

Proof. For the proof of the statement, it is sufficient to consider a loop in
A1, but we consider a loop in # for the later use.

Let [4(1), ®(1)],c (.1 be a loop in # such that (A4(1), d(1)) = (4(0) +g7'dg,
g~'®(0)), g€ 9. Therefore we identify (4(0), ®(0)) with (4(1),®(1)) and glue
M x {0} to M x {1} so that we regard M x [0,1] as M x S'. Let L be a
complex line bundle over M x S' such that Ly, (p =L and A be a unitary
connection on L such that A|,,, (= A(1). We assume that A satisfies so-called
temporal gauge condition, namely, it has no dt component.

To compute the spectral flow of Hi) o) on the space # = .//¥, we

consider the following %-equivariant extention H( 4, o) on the space .o/:
- Hyo0) Guo)
H = * ’ ’ 9
(4,D) ( G(A,d)) 0

where G and G* are the infinitesimal gauge transformation and its adjoint with
respect to the L>-inner product:

Ga,0)(u) = (du, —iud), Gy ) (a,) =da—iIm{D,p).
Therefore we get

SF(Hat,000)ic o, = SEH (0. 00)) e 0,1

According to Theorem 7.4 in [1], the spectral flow along (A(),®(7))c(o 1y is
computed as follows:

- 0 -
SF(H (401, 0(1)))1e0,1) = Index <& + H(A(t).(D(t))) .

Taking notice the forms of H and G*, we obtain

0~ 0 0
Index (E + H(A(t),(l)(t))) = Index ( (E + *d) + (E + DA) =+ 5)

= Index(d™ + D ; +9),
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where d* : Q'(M x S') — Q*" (M x S') and D, is the twisted Dirac operator
for ['(M x S';n*W). Notice that the natural projection 7: M x S' — M in-
duces n*W =~ W' =~ W~, where W* are positive and negative spinor bundles
over M x S'. For the 4-dimensional Seiberg-Witten theory, see [9], [13].

Since the Euler number x(M)=0 and the first Pontrjagin class
p1(M x S') =0, the Euler number and the signature of M x S! are

2V xS = 700) - £(8") =0, o0 xS =3[ p(a x5 =0
MxS!

so that Index(d™ +96) =1(x+0) =0. Finally, we compute

Index(D ) = J A(M x SV - ch(wW)| = %JM La@na(d).

MxS!

Vol

The first equality is due to Atiyah-Singer index theorem. Here, .« is the .o/-class
. . dA .

and ch is the Chern character. Since F; = r Adt+ Fy;), we obtain FyAF ;=

dA
2F 4 A T dt. Therefore we get

1 A . -1 -1 dA
— L L)=— F ANF; =— F — Adt
ZJMxSl Cl( )/\Cl( ) 87T2JMxSI ANt 47T2Jstl A" dt "

-1 -1 1
_HJM (FA@ A Ll dA(t)) _%JM a(L)rg " dg

_ —j (L) A 5g™ dg = —er(L)U ), [M]>.
M

If ge%;, then {c|(L)Ulg],[M]) =0, namely, SF(H[A(f)“,(D(I)])te[O,l] =0. This

implies that relative Morse index u(a) — u(b) is independent of the choice of
paths connectiong a and . Hence the spectral flow is well defined in 4. O

Remark. In case g€ % and g ¢ 9;, we consider
—<e1(L)Ug],[M]> =0 (mod ¢), where £ =g.c.d.|<ci(L)Ulg], [ M])|.

Hence we can define relative Morse index by mod 7/ in 4.

3. Seiberg-Witten-Floer homology

By Proposition 2.6, for &,I;e,/%, we can define relative Morse index
w(@) — u(b) so that Floer complex is defined as follows.

DEFINITION 3.1.  For a fixed ay € M, we define Floer complex FC, as follows:

FCy = {ae M| u(a) — u(ay) = k}.
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DerFINiTION 3.2, The boundary operator J; is defined as follows:

6k : FCk —>FCk,1, akiz: Z ndgl;, BE.%N,
n(b)=u(@)=1

where n;; is given by counting the number of paths connecting @ and b with sign.

It is shown that d; 0 0x+; = 0 in [3]. So we can define Seiberg-Witten-Floer
homology as follows.

DerINITION  3.3. For (FC,,0,) and the fixed complex line bundle L
associated with a Spin(3)‘-structure on M, we define Seiberg-Witten-Floer
homology of M as follows:

HFk(M, L) = Ker ak/Im ak+1.
Now we are in a position to prove Main Theorem.

Proof of Main Theorem. Let a=[A;, ®;] be any point different from
ap = [Aa,,®a,] in . Since # consists of a single point by Theorem 1.2,
we obtain (A4, ®;) = (Az +9 ' dg,g'®s), g€ Y, g¢ %.. By the same argu-
ment of Proposition 2.5 and Proposition 2.6, we can compute the relative Morse
index as follows.

B N .
(@) — p(ao) = SF(Hia(e), () efo,1) = Index (m + H(A(r»cb(z)))
= —(a(L)U[g], [M]) = dm,

where (A(O),(I)(O)) = (Aqu)do)a (A(l)aq)(l)) = (Ad7q)&): d= ming|<cl(L) U [0]7
[M]>|, m e Z\{0}. Hence the Floer complex is given by
Ziay (k=dm)
FCp =4 Z<Layy (k=0)
{0} (k #0,dm).
By the remark of Proposition 2.5, d is an even number, hence we obtain the

sequence

0 2 ey, g —s
so that
HFy,(M, L) = Ker 0gp/ITm Ogpy1 = Z, HF(M,L) =~ {0} (k # dm).
Notice that this result also holds for the case m = 0. O

Remark. As stated in the remark of Proposition 2.6, we can define relative
Morse index by mod 7 in 4. Consequently, we can define the Z,-graded Seiberg-
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Witten-Floer homology HF, (M, L;Z;). In our case, it is easily computed because
the moduli space .# consists of a single point qy. Hence we obtain

Z,<{a k=0
{5 o
so that
HFy(M,L;Z,) =Ker 0y/Im 0, =~ Z,, HF.(M,L;Z,;) = {0} (k #0).
This implies

Z(HF.(M,L;Z,)) = > (—1)" dim HF, = (-1)° dim HFy = 1.
k

On the other hand, we have already shown that SW (M, L) = +1 in [7]. Taking
the suitable orientation of the moduli space, we get SW(M,L) = 1. These values
give the special case that the formula

y(HF.(M,L;Z,)) = SW(M,L)
stated in [12] holds.

4. The computation of d
Suppose that M = (R x H?)/T. To compute

1
d =min|{c;(L)U[g],[M]>| = min J (L) A —g'dyl, g% g¢ 9,
g 9 M

2ni

we consider § € 4 = I'(R x H%; U(1)) such that § = g o #, where 7 is the quotient
map 7 : R x H?> — M. Therefore we get g(n(y(p))) = g(n(p)), namely, g(y(p)) =
g(p), for any p = (t,z) e R x H*> and y e I'. This implies that g is [-invariant.
Conversely, the I'-invariant § induces g € 4 = I'(M; U(1)).

On the other hand, from the exact sequence

¢i0)
0—21Z — R — U(l) — 0,
we obtain the cohomology exact sequence
¢l
- — H'Rx H:R) = H'R x H* U(1)) — H'(R x H*;27Z) — ---.
Since R x H? is contractible, H'(R x H?;27Z) = {0} so that ') is surjective.
Therefore for any ge % = I'(R x H? U(1)), there exists # e I'(R x H?;R) such
that § = ™. Since § is I'-invariant, we get e™7(n2) = ¢(:2) namely, a(y(t,z)) =

u(t,z) + 2nk; , for some k; , € Z.
Now we are ready to prove Proposition 1.3 and Corollary 1.4.

Proof of Proposition 1.3 and Corollary 1.4. For M = S' x ¥ with the geo-
metric structure R x H?, let S = R/T'gr where I'r = ()] |y, : t— ¢+ 1) = Z and
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Y = H?/Ty> where Ty2 = PSL(2,R) acts properly discontinuously and without
fixed points on H? and X is compact. From the compactness of X, as for H?-
component, it is sufficient to consider # on a fundamental domain. Therefore for
ypel'r and p, e Ty, we assume that a(y(7,z)) = u(pj (1), y.(z)) = u(t +n,z).
Hence we obtain that @(s+n,z) — i(t,z) = 2nnk;, namely, #(n,z) —a(0,z) =
2nrk; which is independent of z. Here, for simplicity, we denote by k; the

. . 1 1 . 1
integer k;,. As a result, by using —§ ' dg =— di instead of — g~ dg, we
obtain 27i 2n 27i

1
d = mi +c1(Ks) A = dit
mﬁlexz e ( z)/\2 u

= min L ! daLm(Kz) ZLJI dﬁ'l(z)‘

u 1% :Inﬁln T Jo
1
= min|>— (#(1,2) — 4(0,2))(2 ~ 2gx)| = min 2(gx — 1)lka.

If k; =0, then d =0 which contradicts that g ¢ %;,. Hence min;|k;| # 0.
Moreover we can take minglk;| =1 as follows. Define #(t,z) =2nz. It is
obvious that

a(t+1,z) =2n(t+1) =2nt+2n=u(t,z) + 2n - 1,

namely, k; = 1. Therefore we obtain that d = ming 2(gs — 1)|kz| = 2(gs — 1)
and the following representation:

1 g (k =2(gs — )m)
HF(S xZ,KSle)z{{O} (k # 2(gs — 1)m). O
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