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SEIBERG-WITTEN-FLOER HOMOLOGY AND THE GEOMETRIC

STRUCTURE R�H 2

Takahisa Yamase

Abstract1

The Seiberg-Witten-Floer homology of an oriented closed 3-manifold M with the

geometric structure R�H 2 is computed.

1. Introduction

In [5], A. Floer constructed a remarkable invariant for an oriented closed 3-
manifold, so-called Floer homology, whose developments of this work are widely
discussed in [4]. Variants of Floer homology are described in [8], [17]. Floer’s
work is based on Yang-Mills gauge theory. So it is natural to attempt to define
a similar homology for Seiberg-Witten gauge theory.

By the e¤orts of several geometers, one can obtain a notion of Floer
homology in the framework of Seiberg-Witten gauge theory, so-called Seiberg-
Witten-Floer homology. In several geometric situations, Seiberg-Witten-Floer
homology is computed. See [3], [11], [15], for example.

In Seiberg-Witten gauge theory, the monopole class a ¼ c1ðLÞ plays an
essential role in computing the Seiberg-Witten invariant. Also the scalar cur-
vature of a 3-manifold crucially appears in Seiberg-Witten gauge theory as in [10].

In fact, we introduce in [6] a certain equality of the L2-norm between the
monopole class and the scalar curvature of an oriented closed 3-manifold M, an
equality which is closely related to the dual Thurston norm. Moreover in [7], we
show that this equality holds if and only if M admits the geometric structure
R�H 2 which is one of the eight model geometries introduced by Thurston.
Taking a suitable complex line bundle L associated with a Spinð3Þc structure, we
make clear the structure of the moduli space of the solutions to the 3-dimensional
Seiberg-Witten equations. These results are stated as follows.

Theorem 1.1 ([7]). Let M be an oriented closed 3-manifold with a monopole
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class a ¼ c1ðLÞ associated with the principal Spinð3Þc bundle induced by TM of
M. Suppose that M admits a smooth metric h which satisfies

kahkðL2;hÞ ¼
1

4p
kshkðL2;hÞ:

Then, ð1Þ M carries the geometric structure R�H 2 and furthermore ð2Þ L ¼
F nKG1

M . Here, F is a complex line bundle with a flat connection and KG1
M ! M

is a complex line bundle naturally induced from the (anti-)canonical line bundle KG1
H 2

over H 2 by the quotient map: R�H 2 ! M.

In the above theorem, kahkðL2;hÞ is the L2-norm of the harmonic represen-

tative of a, and kshkðL2;hÞ is the L2-norm of the scalar curvature for the given
metric h. The statement (1) is also proved in [6]. The statement (2) follows
from comparing the first Chern classe of L with the first Chern class of F nKG1

M .
We call a ¼ c1ðLÞ a monopole class, when corresponding 3-dimensional

Seiberg-Witten equations (or monopole equations)

cð�FAÞ ¼ FnF� � 1
2 jFj2 IdW

DAF ¼ 0

�
have a solution for all Riemannian metrics h on M. We denote by S the set
of the solutions to the monopole equations, which is invariant under the gauge
action

ðA;FÞ 7! ðAþ g�1 dg; g�1FÞ; g A G ¼ GðM;Uð1ÞÞ:

Therefore we can consider the moduli space M ¼ S=G. In our case, M is
described as follows.

Theorem 1.2 ([7]). Let M be an oriented closed 3-manifold carrying the
geometric structure R�H 2 with the (anti-)canonical line bundle KG1

M . Suppose
b1ðMÞ > 1. It follows then that ð1Þ the moduli space of the solutions to the
monopole equations associated with the class a ¼ c1ðKG1

M Þ and the metric h such
that p�h ¼ dt2 l a2gH consists of a single point and is transversal at this point and

that ð2Þ a ¼ c1ðKG1
M Þ is a monopole class.

In this theorem, p is the quotient map p : R�H 2 ! M, a is a positive
constant and gH is a hyperbolic metric. The transversality of the moduli space is
equivalent to the surjectivity of the map

TðA;FÞða; jÞ

¼ cði � daÞ � jnF� �Fn j� þ 1

2
ðhj;Fiþ hF; jiÞ IdW ;DAjþ icðaÞF

� �
which is the linearization of the 3-dimensional Seiberg-Witten equations. This
surjectivity follows from direct computation ([7]).
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It is known that M is a 0-dimensional compact oriented manifold. So the
Seiberg-Witten invariant is defined by counting the points of the moduli space
with sign ([2]). Therefore Theorem 1.2 implies that

SW ðM;KG1
M Þ ¼G1:

Notice that the metric independence of the invariant follows from well-known
cobordism argument. In the case that b1ðMÞ ¼ 0 or 1, we need a so-called wall
crossing formula ([12]). Since this argument strays from our purpose, we omit it
in this article.

As is well known, Seiberg-Witten-Floer homology and Seiberg-Witten invari-
ant are closely related to each other. For example, by Proposition 3.3.12 in [12],
we can compute the Seiberg-Witten invariant SWðM;LÞ as the Euler charac-
teristic of the Zl-graded Seiberg-Witten-Floer homology wðHF�ðM;L;ZlÞÞ for an
oriented closed 3-manifold with a fixed complex line bundle L associated with a
Spinð3Þc structure.

Our aim of this article is to compute the Seiberg-Witten-Floer homology of
an oriented closed 3-manifold which carries the geometric structure R�H 2.

We are going to introduce the solutions to the 3-dimensional Seiberg-Witten
equations as the critical points of the Chern-Simons-Dirac functional

CðA;FÞ ¼ 1

2

ð
M

ðA� A0Þ5ðFA þ FA0
Þ þ 1

2

ð
M

hF;DAFi dv:

Since this functional is not invariant under the gauge action, we add a suitable
condition. This condition induces ~MM which is a Z-covering of the moduli space
M of the solutions to the 3-dimensional Seiberg-Witten equations. By the
observation of the structure of ~MM, we define Seiberg-Witten-Floer homology
and compute it for our case as follows.

Main theorem. Let M be an oriented closed 3-manifold carrying the
geometric structure R�H 2 with the (anti-)canonical line bundle L ¼ KG1

M . Sup-
pose b1ðMÞ > 1. Then, the Seiberg-Witten-Floer homology of M is computed as
follows.

HFkðM;LÞG Z ðk ¼ dmÞ
f0g ðk0 dmÞ;

�
where d ¼ mingjhc1ðLÞU ½g�; ½M�ijð0 0Þ, ½g� is the cohomology class of the form
1

2pi
g�1 dg for g A G ¼ GðM;Uð1ÞÞ and m A Z.

Remark. (1) In Theorem 1.2 and Main Theorem, M has the structure of a
Seifert bundle h over a base orbifold B with eðhÞ ¼ 0 and wðBÞ < 0, where eðhÞ is
the orbifold Euler class and wðBÞ is the Euler characteristic ([18]). Notice that B
can be not only orientable but also non-orientable although M is oriented ([16]).

(2) Seiberg-Witten-Floer homology for the Seifert fibered homology spheres
are computed in [14].
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In general, the computation of d is not easy. However, in the case that the
structure of M is simple, we can compute d as follows.

Proposition 1.3. Under the assumption of Main Theorem, let M ¼ S1 � S,
where S is a closed Riemann surface whose genus gS b 2. Then, d ¼ 2ðgS � 1Þ.

Corollary 1.4.

HFkðS1 � S;KG1
S 1�S

ÞG Z ðk ¼ 2ðgS � 1ÞmÞ
f0g ðk0 2ðgS � 1ÞmÞ.

�

Remark. Seiberg-Witten-Floer homology of S1 � S for other Spinð3Þc
structures is described with its algebraic aspects in [15].

2. Chern-Simons-Dirac functional

This section is mainly due to [12]. We are going to review the basic
properties of the Chern-Simons-Dirac functional.

Let M be an oriented closed 3-manifold. Then there exists a Spinð3Þc
structure on M defining the principal Spinð3Þc-bundle P associated with the
tangent bundle TM. Let W be the spinor bundle associated with P and
L ¼ detðWÞ be the determinant line bundle of W . For a unitary connection
A on L and a section F of W , we define the Chern-Simons-Dirac functional as
follows.

Definition 2.1. The Chern-Simons-Dirac functional on the space A ¼
C� GðWÞ, where C is the space of unitary connections on L and GðWÞ is the
space of smooth sections of W , is defined as

CðA;FÞ ¼ 1

2

ð
M

ðA� A0Þ5ðFA þ FA0
Þ þ 1

2

ð
M

hF;DAFi dv:

Here, A0 is a fixed smooth connection, FA is the curvature form of A and DA is
the Dirac operator twisted with A, namely,

DA : GðWÞ !‘A
GðT �MnWÞ !c GðWÞ;

where ‘A is the spin connection on W and c : T �M ! EndðWÞ denotes the
Cli¤ord multiplication.

We can deduce the 3-dimensional Seiberg-Witten equations from the gradient
of the functional C.
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Proposition 2.2.

‘CðA;FÞ ¼ � � FA þ c�1 FnF� � 1

2
jFj2 IdW

� �
;DAF

� �
;

where � is the Hodge star operator.

Proof. Set A ¼ A0 þ ia, a A W1ðMÞ. Computing directly, we obtain

d

dt

����
t¼0

CðAþ t _AA;Fþ t _FFÞ

¼ 1

2

ð
M

i _aa5ðFA þ FA0
Þ þ 1

2

ð
M

ia5i d _aa

þ 1

2

ð
M

hF; icð _aaÞFi dvþ
ð
M

Reh _FF;DAFi dv

¼ 1

2

ð
M

i _aa5ðFA þ FA0
Þ þ 1

2

ð
M

i _aa5i da

þ 1

2

ð
M

hF; icð _aaÞFi dvþ
ð
M

Reh _FF;DAFi dv

¼
ð
M

i _aa5FA þ 1

2

ð
M

hF; icð _aaÞFi dvþ
ð
M

Reh _FF;DAFi dv

¼ �
ð
M

hi _aa; �FAi dvþ
ð
M

i _aa; c�1 FnF� � 1

2
jFj2 IdW

� �� �
dv

þ
ð
M

Reh _FF;DAFi dv:

¼
ð
M

_AA;� � FA þ c�1 FnF� � 1

2
jFj2 IdW

� �� �
dv

þ
ð
M

Reh _FF;DAFi dv: r

It is clear that the critical points of C are exactly the solutions to the 3-
dimensional Seiberg-Witten equations. Moreover we can show that the irre-
ducible solution studied in [7] is a non-degenerate critical point. We call a
solution ðA;FÞ irreducible, when F is not identically zero.

Proposition 2.3. Let ðA;FÞ be the irreducible solution to the 3-dimensional
Seiberg-Witten equations with ‘AF ¼ 0, namely, a critical point of C, with the
(anti-)canonical line bundle L ¼ KG1

M . Then, ðA;FÞ is a non-degenerate critical
point of C.
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Proof. Let HðA;FÞ be the Hessian operator of C at a critical point ðA;FÞ.
Set ðAs;FsÞ ¼ ðA;FÞ þ sðia; jÞ. For

CðAs;FsÞ ¼
1

2

ð
M

ðAs � A0Þ5ðFAs
þ FA0

Þ þ 1

2

ð
M

hFs;DAs
Fsi dv;

we may collect the second order terms of s to compute the Hessian operator.

The first term includes the term
s2

2

Ð
M
ia5ida. The second term includes the

terms

s2

2

ð
M

hj; icðaÞFi dvþ
ð
M

hF; icðaÞji dvþ
ð
M

hj;DAji dv

� �
:

Therefore C includes the terms

s2

2

�ð
M

ia5 i da� �c�1 jnF� þFn j� � 1

2
ðhj;Fiþ hF; jiÞ IdW

� �� �

þ
ð
M

hj;DAjþ icðaÞFi dv

�
:

Hence we obtain

hHðA;FÞða; jÞ; ða; jÞi

¼ ia; i da� �c�1 jnF� þFn j� � 1

2
ðhj;Fiþ hF; jiÞ IdW

� �� �
þ hj;DAjþ icðaÞFi:

In [7], we have already shown that the linearization of the 3-dimensional Seiberg-
Witten equations at the solution ðA;FÞ with ‘AF ¼ 0, namely,

TðA;FÞða; jÞ

¼ cði � daÞ � jnF� �Fn j� þ 1

2
ðhj;Fiþ hF; jiÞ IdW ;DAjþ icðaÞF

� �
is surjective. It is obvious that HðA;FÞða; jÞ is equivalent to TðA;FÞða; jÞ. Hence
the critical point ðA;FÞ is non-degenerate. r

Next we observe how C changes under the gauge action.

Proposition 2.4.

CðAþ g�1 dg; g�1FÞ ¼ CðA;FÞ þ 4p2hc1ðLÞU ½g�; ½M�i;

where ½g� is the cohomology class of the form
1

2pi
g�1 dg.
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Proof. By definition, we get

CðAþ g�1 dg; g�1FÞ

¼ 1

2

ð
M

ðAþ g�1 dg� A0Þ5ðFAþg�1 dg þ FA0
Þþ 1

2

ð
M

hg�1F;DAþg�1 dgðg�1FÞi dv

¼ 1

2

ð
M

ðA� A0Þ5ðFA þ FA0
Þ þ 1

2

ð
M

g�1 dg5ð2FA0
þ i daÞ þ 1

2

ð
M

hF;DAFi dv

¼ CðA;FÞ þ
ð
M

g�1 dg5FA0
¼ CðA;FÞ þ 4p2

ð
M

i

2p
FA0

5
1

2pi
g�1 dg

¼ CðA;FÞ þ 4p2hc1ðLÞU ½g�; ½M�i: r

To make C invariant under the gauge action, we consider the space BL ¼
A=GL, where

GL ¼ fg A G j hc1ðLÞU ½g�; ½M�i ¼ 0g

is a subgroup of G. The next proposition implies that the space BL is a covering
space of B ¼ A=G with fiber Z.

Proposition 2.5. Let GL be a subgroup of G given by

GL ¼ fg A G j hc1ðLÞU ½g�; ½M�i ¼ 0g:

Then, G=GL G f0g or dZ, where d ¼ mingjhc1ðLÞU ½g�; ½M�ij, g A G, g B GL.

Proof. It is obvious that if G ¼ GL, then G=GL ¼ f0g. So we suppose
GL WG and consider the following sequence:

G !l H 1ðM;ZÞ !j Z; lðgÞ ¼ 1

2pi
g�1 dg; jðhÞ ¼ hc1ðLÞU h; ½M�i:

Composing l and j, we obtain a homomorphism c ¼ j � l : G ! Z whose kernel
is

Ker c ¼ fg A G j hc1ðLÞU lðgÞ; ½M�i ¼ 0g ¼ GL:

Therefore we get G=GL G Im cHZ. Since Im c is a nontrivial subgroup of
Z, we easily see that Im c ¼ fdm jm A Zg, where d ¼ mingjhc1ðLÞU lðgÞ; ½M�ij,
g A G, g B GL. r

Remark. Since L ¼ detðWÞ, W ¼ W0 nL1, W0 ¼ M � C2, we obtain
L ¼ L2

1 so that c1ðLÞ ¼ c1ðL2
1Þ ¼ 2c1ðL1Þ. Therefore hc1ðLÞU h; ½M�i ¼

2hc1ðL1ÞU h; ½M�i, h A H 1ðM;ZÞ, which implies that d is an even number. We
are going to examine this number in Section 4.
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By the above proposition, we can consider a Z-covering space ~MM ¼ S=GL of
M ¼ S=G. In the infinite dimensional Morse theory, we cannot always define
Morse index. So we define relative Morse index

mð~aaÞ � mð~bbÞ ~aa; ~bb A ~MM

as the spectral flow of H along a path which connects two critical points
~aa ¼ ½A~aa;F~aa� and ~bb ¼ ½A~bb;F~bb�. This is well defined as follows.

Proposition 2.6. The spectral flow of the Hessian operator H of C around a
loop in BL is zero.

Proof. For the proof of the statement, it is su‰cient to consider a loop in
BL, but we consider a loop in B for the later use.

Let ½AðtÞ;FðtÞ�t A ½0;1� be a loop in B such that ðAð1Þ;Fð1ÞÞ ¼ ðAð0Þ þ g�1 dg;
g�1Fð0ÞÞ, g A G. Therefore we identify ðAð0Þ;Fð0ÞÞ with ðAð1Þ;Fð1ÞÞ and glue
M � f0g to M � f1g so that we regard M � ½0; 1� as M � S1. Let L̂L be a
complex line bundle over M � S1 such that L̂LjM�ftg ¼ L and ÂA be a unitary
connection on L̂L such that ÂAjM�ftg ¼ AðtÞ. We assume that ÂA satisfies so-called

temporal gauge condition, namely, it has no dt component.
To compute the spectral flow of H½AðtÞ;FðtÞ� on the space B ¼ A=G, we

consider the following G-equivariant extention ~HHðAðtÞ;FðtÞÞ on the space A:

~HHðA;FÞ ¼
HðA;FÞ GðA;FÞ
G �

ðA;FÞ 0

 !
;

where G and G � are the infinitesimal gauge transformation and its adjoint with
respect to the L2-inner product:

GðA;FÞðuÞ ¼ ðdu;�iuFÞ; G �
ðA;FÞða; jÞ ¼ da� i ImhF; ji:

Therefore we get

SFðH½AðtÞ;FðtÞ�Þt A ½0;1� ¼ SFð ~HHðAðtÞ;FðtÞÞÞt A ½0;1�:

According to Theorem 7.4 in [1], the spectral flow along ðAðtÞ;FðtÞÞt A ½0;1� is
computed as follows:

SFð ~HHðAðtÞ;FðtÞÞÞt A ½0;1� ¼ Index
q

qt
þ ~HHðAðtÞ;FðtÞÞ

� �
:

Taking notice the forms of H and G �, we obtain

Index
q

qt
þ ~HHðAðtÞ;FðtÞÞ

� �
¼ Index

q

qt
þ �d

� �
þ q

qt
þDA

� �
þ d

� �
¼ Indexðdþ þDÂA þ dÞ;
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where dþ : W1ðM � S1Þ ! W2þðM � S1Þ and DÂA is the twisted Dirac operator
for GðM � S1; p�WÞ. Notice that the natural projection p : M � S1 ! M in-
duces p�W GWþ GW�, where WG are positive and negative spinor bundles
over M � S1. For the 4-dimensional Seiberg-Witten theory, see [9], [13].

Since the Euler number wðMÞ ¼ 0 and the first Pontrjagin class
p1ðM � S1Þ ¼ 0, the Euler number and the signature of M � S1 are

wðM � S1Þ ¼ wðMÞ � wðS1Þ ¼ 0; sðM � S1Þ ¼ 1

3

ð
M�S 1

p1ðM � S1Þ ¼ 0

so that Indexðdþ þ dÞ ¼ 1
2 ðwþ sÞ ¼ 0. Finally, we compute

IndexðDÂAÞ ¼
ð
M�S 1

ÂAðM � S1Þ � chðp�WÞ
����
Vol

¼ 1

2

ð
M�S 1

c1ðL̂LÞ5c1ðL̂LÞ:

The first equality is due to Atiyah-Singer index theorem. Here, ÂA is the ÂA-class

and ch is the Chern character. Since FÂA ¼ dA

dt
5dtþ FAðtÞ, we obtain FÂA5FÂA ¼

2FAðtÞ5
dA

dt
5dt. Therefore we get

1

2

ð
M�S 1

c1ðL̂LÞ5c1ðL̂LÞ ¼
�1

8p2

ð
M�S 1

FÂA5FÂA ¼ �1

4p2

ð
M�S 1

FAðtÞ5
dA

dt
5dt

¼ �1

4p2

ð
M

FAðtÞ5

ð
S 1

dAðtÞ
� �

¼ �1

2pi

ð
M

c1ðLÞ5g�1 dg

¼ �
ð
M

c1ðLÞ5
1

2pi
g�1 dg ¼ �hc1ðLÞU ½g�; ½M�i:

If g A GL, then hc1ðLÞU ½g�; ½M�i ¼ 0, namely, SF ðH½AðtÞ;FðtÞ�Þt A ½0;1� ¼ 0. This
implies that relative Morse index mð~aaÞ � mð~bbÞ is independent of the choice of
paths connectiong ~aa and ~bb. Hence the spectral flow is well defined in BL. r

Remark. In case g A G and g B GL, we consider

�hc1ðLÞU ½g�; ½M�i1 0 ðmod lÞ; where l ¼ g:c:d:jhc1ðLÞU ½g�; ½M�ij:

Hence we can define relative Morse index by mod l in B.

3. Seiberg-Witten-Floer homology

By Proposition 2.6, for ~aa; ~bb A ~MM, we can define relative Morse index
mð~aaÞ � mð~bbÞ so that Floer complex is defined as follows.

Definition 3.1. For a fixed ~aa0 A ~MM, we define Floer complex FC� as follows:

FCk ¼ f~aa A ~MM j mð~aaÞ � mð~aa0Þ ¼ kg:
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Definition 3.2. The boundary operator qk is defined as follows:

qk : FCk ! FCk�1; qk~aa ¼
X

mð~bbÞ¼mð~aaÞ�1

n~aa~bb
~bb; ~bb A ~MM;

where n~aa~bb is given by counting the number of paths connecting ~aa and ~bb with sign.

It is shown that qk � qkþ1 ¼ 0 in [3]. So we can define Seiberg-Witten-Floer
homology as follows.

Definition 3.3. For ðFC�; q�Þ and the fixed complex line bundle L
associated with a Spinð3Þc-structure on M, we define Seiberg-Witten-Floer
homology of M as follows:

HFkðM;LÞ ¼ Ker qk=Im qkþ1:

Now we are in a position to prove Main Theorem.

Proof of Main Theorem. Let ~aa ¼ ½A~aa;F~aa� be any point di¤erent from
~aa0 ¼ ½A~aa0 ;F~aa0 � in ~MM. Since M consists of a single point by Theorem 1.2,
we obtain ðA~aa;F~aaÞ ¼ ðA~aa0 þ g�1 dg; g�1F~aa0Þ, g A G, g B GL. By the same argu-
ment of Proposition 2.5 and Proposition 2.6, we can compute the relative Morse
index as follows.

mð~aaÞ � mð~aa0Þ ¼ SFðH½AðtÞ;FðtÞ�Þt A ½0;1� ¼ Index
q

qt
þ ~HHðAðtÞ;FðtÞÞ

� �
¼ �hc1ðLÞU ½g�; ½M�i ¼ dm;

where ðAð0Þ;Fð0ÞÞ ¼ ðA~aa0 ;F~aa0Þ, ðAð1Þ;Fð1ÞÞ ¼ ðA~aa;F~aaÞ, d ¼ mingjhc1ðLÞU ½g�;
½M�ij, m A Znf0g. Hence the Floer complex is given by

FCk ¼
Zh~aai ðk ¼ dmÞ
Zh~aa0i ðk ¼ 0Þ
f0g ðk0 0; dmÞ:

8><
>:

By the remark of Proposition 2.5, d is an even number, hence we obtain the
sequence

� � � ��! 0 ��!qdmþ1
FCdm ��!qdm 0 ��! � � �

so that

HFdmðM;LÞ ¼ Ker qdm=Im qdmþ1 GZ; HFkðM;LÞG f0g ðk0 dmÞ:
Notice that this result also holds for the case m ¼ 0. r

Remark. As stated in the remark of Proposition 2.6, we can define relative
Morse index by mod l in B. Consequently, we can define the Zl-graded Seiberg-
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Witten-Floer homology HFkðM;L;ZlÞ. In our case, it is easily computed because
the moduli space M consists of a single point a0. Hence we obtain

FCk ¼ Zlha0i ðk ¼ 0Þ
f0g ðk0 0Þ

�
so that

HF0ðM;L;ZlÞ ¼ Ker q0=Im q1 GZl; HFkðM;L;ZlÞ ¼ f0g ðk0 0Þ:
This implies

wðHF�ðM;L;ZlÞÞ ¼
X
k

ð�1Þk dim HFk ¼ ð�1Þ0 dim HF0 ¼ 1:

On the other hand, we have already shown that SWðM;LÞ ¼G1 in [7]. Taking
the suitable orientation of the moduli space, we get SW ðM;LÞ ¼ 1. These values
give the special case that the formula

wðHF�ðM;L;ZlÞÞ ¼ SW ðM;LÞ
stated in [12] holds.

4. The computation of d

Suppose that M ¼ ðR�H 2Þ=G. To compute

d ¼ min
g
jhc1ðLÞU ½g�; ½M�ij ¼ min

g

ð
M

c1ðLÞ5
1

2pi
g�1 dg

����
����; g A G; g B GL;

we consider ~gg A ~GG ¼ GðR�H 2;Uð1ÞÞ such that ~gg ¼ g � p, where p is the quotient
map p : R�H 2 ! M. Therefore we get gðpðgðpÞÞÞ ¼ gðpðpÞÞ, namely, ~ggðgðpÞÞ ¼
~ggðpÞ, for any p ¼ ðt; zÞ A R�H 2 and g A G. This implies that ~gg is G-invariant.
Conversely, the G-invariant ~gg induces g A G ¼ GðM;Uð1ÞÞ.

On the other hand, from the exact sequence

0 �! 2pZ �! R �!e
ið�Þ

Uð1Þ �! 0;

we obtain the cohomology exact sequence

� � � �! H 0ðR�H 2;RÞ �!e
ið�Þ

H 0ðR�H 2;Uð1ÞÞ �! H 1ðR�H 2; 2pZÞ �! � � � :
Since R�H 2 is contractible, H 1ðR�H 2; 2pZÞ ¼ f0g so that eið�Þ is surjective.
Therefore for any ~gg A ~GG ¼ GðR�H 2;Uð1ÞÞ, there exists ~uu A GðR�H 2;RÞ such
that ~gg ¼ ei~uu. Since ~gg is G-invariant, we get ei~uuðgðt; zÞÞ ¼ ei~uuðt; zÞ, namely, ~uuðgðt; zÞÞ ¼
~uuðt; zÞ þ 2pk~uu; g for some k~uu; g A Z.

Now we are ready to prove Proposition 1.3 and Corollary 1.4.

Proof of Proposition 1.3 and Corollary 1.4. For M ¼ S1 � S with the geo-
metric structure R�H 2, let S1 ¼ R=GR where GR ¼ hgn1 j g1 : t 7! tþ 1iGZ and
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S ¼ H 2=GH 2 where GH 2 HPSLð2;RÞ acts properly discontinuously and without
fixed points on H 2 and S is compact. From the compactness of S, as for H 2-
component, it is su‰cient to consider ~uu on a fundamental domain. Therefore for
g1 A GR and g2 A GH 2 , we assume that ~uuðgðt; zÞÞ ¼ ~uuðgn1 ðtÞ; g2ðzÞÞ ¼ ~uuðtþ n; zÞ.
Hence we obtain that ~uuðtþ n; zÞ � ~uuðt; zÞ ¼ 2npk~uu, namely, ~uuðn; zÞ � ~uuð0; zÞ ¼
2npk~uu which is independent of z. Here, for simplicity, we denote by k~uu the

integer k~uu; g. As a result, by using
1

2pi
~gg�1 d~gg ¼ 1

2p
d~uu instead of

1

2pi
g�1 dg, we

obtain

d ¼ min
~uu

ð
S1�S

Gc1ðKSÞ5
1

2p
d~uu

����
����

¼ min
~uu

ð
S1

1

2p
d~uu

ð
S

c1ðKSÞ
����

���� ¼ min
~uu

1

2p

ð1
0

d~uu � wðSÞ
����

����
¼ min

~uu

1

2p
ð~uuð1; zÞ � ~uuð0; zÞÞð2� 2gSÞ

����
���� ¼ min

~uu
2ðgS � 1Þjk~uuj:

If k~uu ¼ 0, then d ¼ 0 which contradicts that g B GL. Hence min~uujk~uuj0 0.
Moreover we can take min~uujk~uuj ¼ 1 as follows. Define ~uuðt; zÞ ¼ 2pt. It is
obvious that

~uuðtþ 1; zÞ ¼ 2pðtþ 1Þ ¼ 2ptþ 2p ¼ ~uuðt; zÞ þ 2p � 1;

namely, k~uu ¼ 1. Therefore we obtain that d ¼ min~uu 2ðgS � 1Þjk~uuj ¼ 2ðgS � 1Þ
and the following representation:

HFkðS1 � S;KG1
S 1�S

ÞG Z ðk ¼ 2ðgS � 1ÞmÞ
f0g ðk0 2ðgS � 1ÞmÞ.

�
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