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A NEWTON-LIKE METHOD IN BANACH SPACES
UNDER MILD DIFFERENTIABILITY CONDITIONS

DHARMENDRA K. GUPTA AND PrADIP K. PARIDA

Abstract

The aim of this paper is to discuss the convergence of a third order Newton-like
method for solving nonlinear equations F(x) =0 in Banach spaces by using recurrence
relations. The convergence of the method is established under the assumption that
the second Fréchet derivative of F being w-continuous given by ||[F”(x) — F"(y)| <
o(llx = y|), x,yeQ, where w be a nondecreasing function on R; and Q any open
set. This w-continuity condition is milder than the usual Lipschitz/Holder continuity
condition. To get a priori error bounds, a family of recurrence relations based on two
parameters depending on the operator F is also derived. Two numerical examples are
worked out to show that the method is successful even in cases where Lipschitz/Holder
continuity condition fails but w-continuity condition is satisfied. In comparison to the
work of Wu and Zhao [15], our method is more general and leads to better results.

1. Introduction

Let F: Q <X — Y be a nonlinear operator on an open convex subset Q of
a Banach space X with values in a Banach space Y. The most well known
second order iterative methods used to solve F(x) = 0 are Newton’s method and
it’s variants. The Kantorovich theorem [10, 14], provides sufficient conditions to
ensure convergence of these methods. A lot of research [4, 5, 8, 15] has been
carried out to provide improvements in these methods, their applications and
convergence. Third order one point iterative methods [2, 4, 5] are used in many
applications. They can also be used in stiff systems [11], where a quick
convergence is required. A very restrictive condition of one point iteration
of order N is that they depend explicitly on the first N — 1 derivatives of F. All
these higher order derivatives are very difficult to compute. Multi point third
order iterative methods [6, 7, 12, 15, 16] use information at a number of points
have also gained importance recently.
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Wu and Zhao [15] have studied the convergence of a third order Newton-like
iterative method for solving F(x) = 0. This method involves only the value of F
and it’s first derivative F’ is given by

Yn = Xp — F/(xn)ilF(xn)

(1) o (W>_1F(xn)

The convergence of this method is established by using majorizing functions.
They studied it’s semilocal convergence under the assumption that F” is Lipschitz
continuous. We shall consider iterative method (1) and establish it’s convergence
based on recurrence relations under weaker continuity conditions. Hernandez
and Salanova [9], Hernandez [7] studied the convergence of Chebyshev’s method
and second derivative free version Chebyshev’s method by using recurrence
relations under Hoélder continuity condition on F”. Ye and Li [16], studied the
convergence of Euler-Halley method under similar conditions. However, the
Lipschitz/Ho6lder continuity condition on the second derivative of F may be
violated in many problems.

Example. Consider the following nonlinear integral equation of mixed type

[3]:
m b
F(x)(s) = x(s) + ZJ ki(s,);(x(2)) dt — u(s), se€]a,b]
i=1 Ja
where —o0 < a < b < o0, u, l;, and k;, for i = 1,2,...,m are known functions and

x is a continuous function.
If I(x(¢)) is (L;, p;)-Ho6lder continuous in Q, L; >0, p;e(0,1] for
i=1,2,...,m, then we have

m

IE"(x) = F" () < D Lillx = y|™, xyeQ
i=1

Here, F” is not Holder continuous, when sup-norm is used.
Recently, Ezquerro and Hernandez [2] and Hernandez and Romero [§]
considered the more generalized condition

(2) I1F"(x) = F" )l < o(llx = ylD),  x,yeQ.

where w(x) is a nondecreasing continuous real function for x > 0, such that
®(0) =0, on F” to study the semilocal convergence of Halley’s method and a
family of third order iterative method respectively.

In this paper, the convergence of a third order Newton-like method (1)
for solving nonlinear equations F(x) =0 is discussed. The convergence of the
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method is established by using recurrence relations under the assumption that the
second Fréchet derivative of F satisfy the w-continuity condition given by (2).
This w-continuity condition is milder than the usual Lipschitz/Ho6lder continuity
condition. A family of recurrence relations based on two constants depending
on the operator F is derived to establish a priori error bounds. Two numerical
examples are worked out to show that the method is successful even in cases
where Lipschitz/Holder continuity condition fails. In comparison to the work of
Wu and Zhao [15], our method is more general and leads to better results.

The paper is organized as follows. In section 2, three real sequences are
constructed and their properties are studied. The recurrence relations for our
third order Newton-like method are derived in section 3. The convergence
analysis based on these recurrence relations of the method is given in section 4.
In section 5, some numerical examples are worked out and the results obtained
are compared with the results of [15] for a particular case. Finally, conclusions
form the section 6.

2. Construction of real sequences {a,}, {b,} and {c,} and their
properties

In this section, we shall discuss the construction of three real sequences and
study their properties in order to study the convergence of the iterative method
(1) for solving the nonlinear operator equation

(3) F(x)=0.

Let F be twice Fréchet differentiable operator in Q and #.%(Y,X) be the set of
bounded linear operators from Y into X. It is assumed that Ty = F'(x,) ' €
27 (Y,X) exists at some point xp € Q and the following conditions hold on F.

CL. [|F(x )_lll <p
C2. ||F'(x0) " F(xo)ll <,
C3. |[F"(x)|| <M Vx e Q,
@) C4 |IF"(x) — F'(ll <ollx - yl), ¥x,yeQ, where w: R, — R,
is a contlnuous and non-decreasing function such that w(0) >0,

C5. There exists a continuous and non-decreasing function
h:[0,1] — R, such that, w(tx) < h(f)w(x), with z€[0,1] and
X € R+.

Note that the above condition C5 of (4) does not involve any restriction, since as
a consequence of w is non-decreasing function, there always exists a function %
such that h(r) = 1. We can consider A(f) =sup,., o(tx)/w(x) to sharpen the
error bounds for a particular case. The above condition C4 of (4) is milder than
the Lipschitz/Ho6lder continuity condition as this condition reduced to Lipschitz
and Holder condition, if we consider w(x) = Nx and w(x) = Nx?, pe (0,1],
respectively.
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Let ag = Mfn, by = fnw(y) be two parameters. For ne Z,, let us define
three real sequences

(5) cn = flan)g(an,by), ani1 = anf(an)cn, buy1 = buf(an)cah(cn)

where
(6) f(x) = (2-x)/(2=3x)
x(4-x)3—x
() g(x,y) = (é(z)JrKy , KeRy
2-x)
Let ro be the smallest positive zero of the polynomial r(x) = —x* + 16x?—

24x +4, then ry =0.1905960896.... We shall now establish a number of
properties of the sequences {a,}, {b,} and {c,}. This will require the following
lemma.

Lemma 1. Let f and g be functions defined by equations (6) and (7)
respectively, then for x € (0, rg]

(i) f is increasing and f(x) > 1,

(i) g is increasing in both arguments for y >0,

(iii) f(dx) < f(x) and g(ox,0y) <dg(x, y), for o € (0,1).

Proof. The proof is simple and hence omitted.

LemMMA 2. Let f and g be functions defined by equations (6) and (7)
respectively and h(t) <1, Vte[0,1). Let us define a function

(—x* +16x% — 24x + 4)

(8) (D(x) = K(2fx)2

If ap e (0,r] and 0 < by < ®(ay), then
(1) Cnf(an) S 1;

(1) {an}, {bu}, {cu} are decreasing and a, <1, ¢, <1 Vn.

Proof. Now from definitions of f and g, we have

enf (an) = f(an)*g(an,by) < 1
2
or iff, (2 — ) (4~ an)(3 — a) +Kb, | <1
2 — 3a, (2- an)Z
(—a’ + 16a2 — 24a, + 4)
K22 —a,)’

or iff, b, < = ®(ay)
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Induction will be used to prove the Ilemma. Now for 0 < ag <ry,
0 < by < ®(ap), from above one can easily conclude that c¢of(ag) < 1. Thus
from equation (5), we obtain

ar = aof(ag)co < agp <1,
and as f(x) > 1 in (0,r] and h(¢) <1, Vee[0,1], we have
b1 = bof(ag)coh(co) < bof(ao)co < by
Hence
ar = flar)g(ar,br) < f(ao)g(ao, bo) = co < cof(ao) < 1.

Let the statements hold for » = k. Then since f and g are increasing functions,
we get
i1 = arf(ar)cx < ar < 1.

Also as f(x) > 1 in (0,r] and h(f) <1, Ve [0,1], we have
biy1 = bif (ar)cxh(cr) < bif(ar)cx < by

and
i1 = flaki)g(arir, bevr) < fan)g(ar, br) = ¢ < 1.

Also

cerif (@) = flarn)’g(arn, br) < fa)*gla, b) = e f (ar) < 1
Hence, by induction it holds for all n. This proves the Lemma 2. O

LemmA 3. Let us suppose agpe (0,ry) and 0 < by < ®(ag). Define y=
ai/ag, then for n > 1 we have,

(i) ap, < yzHan,l < y*"“lay, where inequality strictly hold for n > 2,

(i) by <72 byoy < y¥ by,

(iil) ¢n < Vzn/f(ao)

Proof. We will prove (i) and (ii) by induction. Since a; = yay and a; < ay
from lemma 2(i), we get y < 1. By lemma 1(i) and lemma 2(i),

by = bo f(ao)coh(co) = bof(a)’g(ao, bo)h(co) < f(an)*g(ag, bo)bo = ybo
Suppose (i) and (ii) hold for n =k, then

a1 = af(ap)ex = ar f(ar)>g(ar. by

zk—l zk—l
a-1,y" bi-1)

< a i fO* @) gy
<P a i f @) 9@, b)) = 7 a
Also as f(x) > 1 in (0,r),

it = bif (@)ech(en) < bif (@)ex = b=t <77y



A NEWTON-LIKE METHOD IN BANACH SPACES 419

So
2 2k 1 20 2k+]71
ak+1<V ak<V Y YT ao =Yy aop.

and
(1

k k k 0 k+1_
bt < p2 b <y*p* oyt by =y by

Hence by induction the statements (i) and (ii) hold true.

Again
en = flan)g(an,by) < fF(r* ao)g(y* 'ao,y*" 'bo) < y*"'f(a0)g(ao, bo)
=y*"/f(ao)

as y = a;/ag = f(a0)*g(ao,by). Hence (iii) holds. ]

3. Recurrence relations

In this section, we shall derive the recurrence relations for the iterative
method given by (1) under the assumptions given in previous section.
Now

M|[Toll l|yo = xoll < Mpin = ao

By our assumption, yq exists as T'g = F’ (xo)f1 exists. Thus

F'(yo) + F'(x0) F'(x0) — F'(y0)

1 a
=T =T < M| ol < 0o
o |0 P20 < Sl - sl < G <
F/ Fl -1
Hence by Banach’s theorem [10], (M) F'(xo) exists and
/ / —1
1 2
(PP g )
2 — I M||To o — yoll ~ 2= ao
Thus
[lx1 — xo|| < 7
and
1 = yoll < [lx1 = xoll + [lxo — yoll < 2_—||J/0 — Xo|
Also

IToll [[v0 = xollex(llyo — xoll) < freo(n) = bo

We shall now establish the following inequalities for n > 1:
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M Tl = 1F o)™ < f (@) T

(D) [yn = xull = [ITF ()| < €n-tllyn-1 — xa,
(D) M [ yn = xull < an,

(V) {21 = 2xull < 2/(2 = an)l| yn = xall,

(V) xnpr = all < (4 = an) /(2 = an)l| yn — Xl
(VD) ATl [ yn = Xallo(ll v = all) < ba,

The following lemma will be used for this purpose.

LemMa 4. Let the sequences {x,} and {y,} are generated by (1). Then
VneZ,, we have
1

(10) F(xu41) = JO FU(J’n + t(Xnp1 — yu)) (1 — 1) dt(xp1 — yﬂ)z
1 1
+ EL F" (o + t(yn — X)) dt(yn = Xu) (Xns1 — V)
1, 2
— EJO F (xn + [(yn - xn)) dt(yn — xn)

* J | F" (% + (30 — xa))(1 = 1) dt(yn — xn)°

Using Taylor’s method one can easily prove the above lemma.

The conditions (I)—(VI) can be proved by induction. Assume that x; € Q,
then
2a0

2
— T, F' < — x| € MB=—"—|yo — xo| <
11 = ToF (x1)]] < MI|Tolf lxo — x| < MﬁZ—ao [[yo = xoll < 7 ag 1
Hence, by Banach’s theorem, I'; = F/(x;)~" exists and
[ Toll [[Toll
11 I < < = f(ap)||T"
Also
1
J F"(xo + (0 — x0))(1 = 1) di(yo — x0)°
0
1 1
- EJ F"(xo + t(yo — Xo)) dt(yo — XO)ZH
0
: 2 1 2
<], #7000 =501 = 0 0 =30 = 3 F ) — 0|
0
1! 1
5[ F i = o) it =) = 3 F o) —xo>2H
0
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1
< || 1770+ 10 = x00) = P = ) | o = ol
1
+ %J (" (30 + 10 = 30)) — F (o)) | 130 — ol

1 1
ot = ol (1 = 1) dilso = x>+ 5 [ (el = ol del o -l

1

J )1 = 1) dielvo — xol)l30 ~ ol
ea]| 10 i sl -l

= Ko(||yo — xol|)||yo — X0||2

where K = [ h(r)(1 — 1) dt +1 [ h(
Hence equatlon (10) leads us,

M , M s
1E el < - llx1 = woll” + = lvo = xoll llxt = yoll + Keo([| yo = xo[[) ][ yo — ol

4 —ap)(3—a
< B @B o)yl Keolllyo — xoll) 30 — xol?
(2 —Cl())
From this, we get
(12) 1TV ) < T G

(4 —a0)(3 — ao)
(2 - ao)’

1o = xo|*

< f(ao)|[Toll lM

+ Ka([[yo = xol)llyo — x0||2]

ap(4—ap)(3—a
(2 — a0)2

) 4 Kbo | [0 — xol

Sf(aO)l

= f(ao)g(ao, bo)|| yo — xol| = coll yo — Xol|
Now
(13) M|y |yr = xill < M[To|| f(@o)col| yo — xol| < aof(ao)co = ar
As T :F’(xl)f1 exists, so y; exists. Hence,

‘ F'(y) + F'(x1)
2

I-T

1 aj
< =-M|I' - < =<1
< 3MIn -0l < 5 <
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F'(y) + F'(x1)

-1
So by Banach’s theorem, ( ) F'(x1) exists and

2
F’ F'(x)\ ' 1 2
( (y) + (X1)> Fioa)| < : <
2 — M|l {x1 = nll — 2—a
Thus,
14 — < -
(14) ez = xill < 5=~ llyr =l
and
—a
(15) Ix2 = yall < ez = x4l = il < 5— a [y1 =Xl
Again

(16)  |ITt[ [|y1 = xtlleo(lly1 = x1ll) < [[Toll.f (ao)eollyo — Xollex(coll yo — Xol|)
< f(ao)coh(co)|IToll | yo — Xol|(|lyo — xol|)
< bof(ao)coh(co) = by

For n =1 the conditions (I)—(VI) follows from equations (11)—(16) respectively.
Now considering these conditions hold for n = k and x; € Q, proceeding similarly
one can easily prove that these conditions also hold for n =k + 1. Hence, by
induction they hold for all n.

4. Convergence analysis

The following theorem will establish the convergence of the sequence {x,}
and give a priori error bounds for it. Let us denote y = a;/ag, A =1/f(ao),
2 _
= o B0, Rip) = X:|x - R d %(xo,Ry) =
2 —a0)(1—7A)’ (x0, Rn) = {xeX:[x — x| <Ry} an (x0, Ry)
{xeX:|x— x| < Ry}

THEOREM 1. Let F satisfy the conditions given in (4). Suppose 0 < ag < ry
and 0 < by < ®(ay) hold, where ry be the smallest positive zero of the polynomial
r(x) = —x3 +16x* — 24x + 4 and ®(x) is the function defined by equation (8). If
HB(xo0, Ry) € Q, then starting from xo, the sequence {x,} defined by method
(1) converges to a solution x* of the equation (3) with R-order at least 2
and x,, y, and x* belonging %(xo,Ry) where x* is the unique solution in
B(x0,2/(MP) — Ry) Q.

Furthermore, the error bounds on x* is given by

2y2"‘1 A"
2= Tag) (1— A"

(17) [l = Xl <
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Proof. Tt is sufficient to show that {x,} is a Cauchy sequence in order to
prove {x,} is convergent.

We have by = ®P(ap) =0 and cof(ap) =1 for ap =ry. Hence from (5),
ay =dp—1 =+ =4dy, Ch=C-1=""=0 and bn:bnfl ::b():O

Now from (9), we have

[vn = Xull < ol yn-1 = Xnall = coll yu—1 — Xuall < -+ < cgllyo — X0l = A"y
and
2 2
X011 — Xl < 2~ a |70 = Xall < 7 a A"y
Thus
(18) Hxn1+11 - xm” < ||xm+n — Xm+n—1 H + -+ ||xm+1 - XmH

2 m+n—1 my,, 20" 1—A"
e SRR U el (s py el L

Hence if we take m =0, x,e %(xo,Ry). Similarly one can prove that
Vn € B(x0,Ryy). Also as A=1/f(ap) <1, from (18) one can conclude that
{x,} is a Cauchy sequence.

Let 0 < ag < rp and by < ®(ap). Now from (9) and lemma 3(iii), for n > 1,
we have

n—1 n—1 »
| vn = Xull < cntl|Yno1 — X1 ]| < -+ < |lyo — xo| ch < H(yZ/A)n
=0 =0

— y2"71An’77
where y =a;/ap <1 and A =1/f(ag) < 1. Hence

||xm+n - me < ||xm+n - xlﬂ“rﬂ*l” + -+ HXerl - xm”

2
s P — [ ymen—t = Xmanall + - + 2—a, 1 ym = X
2 e 2 m
< y2 + I71Am+nfl;7 4ot y2 71Am’7
2 — Aip+n—1 2- am
2A m 2 m+n—1 1 1 2m_1
A —1pn -
3 a [y +oty
2))2”171Am zm[zn—l 1] 1 m
<A SAPT 4 2 A
Py [y +ty + 1l

By Bernoulli’s inequality, for every real number x > —1 and every integer k > 0,
we have (1+x)"—1>kx. Thus
2y2/77_lAm 1 _ y2”‘lnAn

(19) ||xm+n - xm“ < (2 _ yzm,lao) (1 _ yzmA) n
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For m =0, we obtain

21— y"A”
20 " — —_— R
(20) o =0l < 3o g0 < R
Hence x, € #(xo, Ry). Also y, € B(xo, Ry), is evident from the following result.

[ Vns1 = Xoll < [ynr1 = X || + [ X041 — Xl + - + [[x1 = X0

< [ Yur1 — Xpg1l| +

g =l o =l
S 4 50— ol
—_————— 7x ... —_— *X
2 —any Y+l n+1 2~ a, Jo 0

2 1_n+1An+l
< < ’ n< Ry

2 —ag 1 —9yA

Taking limit n — co as in (18) and (20), we get x* € #(x9, Ry). Now we have to
show that x* is a solution of F(x) =0. We have ||[F(x,)|| < [|F'(x0)|| 1T F ()]l
and the sequence {||F’(x,)||} is bounded as

IF (el < [F"(x0) | + Ml|xw = Xol| < |F' (o) || + MRy.

Now taking limit n» — oo we get F(x*) =0 as F is continuous.
To show the uniqueness of the zero x*, let us consider y* be another root of
(3) in AB(x0,2/(Mp) — Ry)NQ. Then

1
0= F(") = F(x') = | FI( 41007 = ) dily’ =)
0

We have y* = x*, if the operator P = j(} F'(x* 4+ t(y* —x*)) dt is invertible.
From

1
Lo [ [F'(x" +1(y" = x")) = F'(x0)] dt

0
1

<MP| |Ix" 4+ t(y* —x") — xol| dt
0

I = ToP|| = ||To(F'(x0) — P)|| =

1
<Mp| (1 =0lx" = xol[ + 2]l y* — xol| dt

0
MP 2
“L(Rp+-——Ryp)=1
<2<77+Mﬁ 77) ;

and by Banach’s theorem [10], P is invertible. O

5. Numerical examples

In this section, two numerical examples are worked out for demonstrating
the efficacy of the existence and uniqueness theorem given in the previous section.
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Example 1. Let X = Cla,b] be the space of continuous functions on [a, b)
and consider the problem of finding the solutions of nonlinear integral equations
F(x) =0 of mixed type [3], given by

b
20 F)(s) = x(s) = f(s) = iJ Gls, O)[x(1)* " + x(1)’] dt, pe(0,1], eR

a
where f, x are continuous functions such that f(s) > 0, s € [a, b], and the Kernel
G is continuous and nonnegative in [a,b] X [a, b].

SoLuTioN. For the solution of the problem, we have taken the norm as sup-
norm and G(s, ) as the Green’s function

_Jb=s)t=a)/(b—-a), t<s5,
G(s’t){(sa)(bf)/(ba), s<1,

Now in order to apply the existence and uniqueness theorem of the previous
section to this problem, we compute the scalars M, 5, # and the function w(x).
The first and second derivatives of F can easily be obtained and given by

F'(x)u(s) = u(s) — sz G(s,)[2+ p)x(O)"7 + 3x(0)Fu(t) dt, ueQ
b

F"(x)(uv)(s) = —/IJ G(s,D)[(1+ p)2+ p)x()” + 6x(0)](uv)(2) dt, u,veQ

a

For p e (0,1), we must note here that the second derivative F” does not satisfy
the Lipschitz/Hoélder continuity condition, as

IF”(x) = F"(p)|

b
_ sz Gls DI(1 + )2+ P) (1) — y(1)") + 6(x(1) — y(0)] dit
b

< |4 max [T+ )2+ p)Ix(0)" = (O] + 6llx(2) = y(D)]]

G(s, 1) dt
s€la,b] Ja ( )

<A+ )2+ p)llx = yI” +6llx =yl Vx,yeQ,

where

Jb G(s,t) dt

a

I = max
s€(a,b]

Thus convergence of methods depending upon lipschitz/Holder continuity con-
dition on F” can not be applied. However, it satisfies the w-continuity condition
given by

IF"(x) = F" ()l < o(llx = yl),  Vx,yeQ,



426 DHARMENDRA K. GUPTA AND PRADIP K. PARIDA
where, w(x) = || ||/||[(14 p)(2+ p)x” + 6x]. This leads to w(tx) < w(x),
for pe(0,1) and ¢e(0,1]. Hence, h(r)=¢, and K = J’Ol h(6)(1 — ) dt +

Ul di= 2T
2o MO A= )
It is easy to compute
1 Geo)ll < (1o = £11 -+ AL 121 [x0l* + flxoll]
and ,
IF" (Nl < AT+ p)(2+ p)lIx]l” + 6]|x]]
This gives M = [A] |||[(1 + p)(2 + p)lIxI|” + 6]|x[]]. Also
17 = F'(xo) | < 212 + p)l1xoll ™ + 3]Ixo]|]

Now if || |||[(2+ p)llxol"™” + 3||x0]|*] < 1, then by Banach’s theorem [10], we
obtain
IToll = IF"(x0) ™[ < : — 5
L= LI + p)lixoll 7 + 31x0]7]

and

1o — /1 + AL 1>l + flxo 1
IToF (x0) || < | Fw z]

L= AT + p)lIxoll ™" + 3lIxoll7]
For a =0 and b =1, we get

R
A

I/l = max

=1/8
s€l0,1] /

Jl G(s,t) dt

0

For 2=1/3, p=1/2, f(s) =1, and initial point xy = xo(s) =1 in [0,1], we
get ||[Tol| < p=1.2973, ||[ToF(x0)|| <#n=0.108108, w()=0.0784017 and by =
Pno(n) = 0.0109957. Now we look for a domain in the form of Q = %(xy,S)
such that

Q= 2B(x,5) = C[0,1] =X

Thus, we get M = M(S) =0.156255? 4+ 0.25S and ag = ao(S) = M(S)pn =
0.0219138S” 4 0.03506208S. To calculate S, from the condition of theorem 1
it is necessary that #(xo,Rn) <Q. For this it is sufficient to check
S—(R(S)n+1)>0 and P(ap(S)) —bp >0. Hence it is necessary that
S €(1.1425,4.13138) as is evident from fig. 1.

Also ao(S) < ro = 0.1905960896, if and only if S < 4.16104. Hence if we
choose S =3, then we have Q = %(1,3), M = 1.3125, ap = 0.184076 and by =
0.0109957 < 0.0596816 = ®(0.184076). Thus the conditions of the theorem 1 is
satisfied. Hence a solution of equation (21) exists in the ball #(1,0.49741) < Q
and unique in the ball %(1,0.6771907) N Q.

We must also note that if we take p =1, in the equation (21), we get

b
(22) F)(s) = x(s) — £(s) — uJ Gls,0x()} dr, JeR

a
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25 1 21

15 - 11 D(ag(S)) - by

S=(R(S)n+1)

FiGUrRe 1. Conditions on the parameter S

Similarly proceeding as above one can easily find

IF"(x) = F"(0)]l < o(llx = yl),
with w(x) = Nx and N = 12|/|||/||. That is,
IF"(x) = F"(D)] < Nllx = yll,

Hence it satisfies the Lipschitz continuity condition. This implies that -
continuity condition is a generalization of Lipschitz continuity condition. Now,
for A=1/3, f(s)=1, and initial point xo = xo(s) =1 in [0,1], proceeding
similarly we obtain f = 1.33333, » =0.111111, M =0.5S, N =0.5. This gives
aop = 0.07407408S, by = 0.00823045. Similarly to calculate S, from the condition
of theorem 1 it is necessary that #(xo, Ry) < Q. For this it is sufficient to check
S—(R(S)n+1)>0 and ®(a¢(S)) —bo >0. Hence it is necessary that Se
(1.15493,2.5544) as evident from the figure 2.

Also ao(S) < ro =0.1905960896, if and only if S < 2.573047. Thus for
S =15 we get Q=2(1,1.5), M =0.75, ap =0.111111 and by = 0.00823045 <
1.02883045 = ®(0.111111). Hence the conditions of the theorem 1 are satisfied.
Thus a solution of equation (22) exists in #(1,0.196209) < Q and unique in
%(1,1.803791) N Q.

7 1 3 A
3 A S—(R(S)n+1)
- ' P (ag(5)) - by
A 2 4 17
-5 - T T |
2 4
9 1

FIGURE 2. Conditions on the parameter S
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On comparison with results of Wu and Zhao [15], we find K =

M[l +%} = 0.83333334 and /7 = Kfin = 0.123456358025. This gives ¢* =
1—-v1-2h 1+v1-2h
1= 0.11897488 and ¢~ = JrTn = 1.6810296183. Hence

the solution of equation (22) exists in B(1,0.11897488) < Q, and unique in
B(1,1.6810296183) N Q, both of these are inferior to our results. .

Example 2. Let X = C[0,1] be the space of continuous functions on [0, 1]
and let us consider the integral equations F(x) =0 on X, where
s

1
(23) F(x)(s) = x(s) — f(s) — AJO mx([)zw dr,

with s € [0,1], x, f € X, pe(0,1) and 4 is a real number. These types of integral
equations are known as Fredholm type (cf. Davis [1]).

SoLuTioN. To find the solutions of these integral equations, we compute the
first and the second derivatives of F as

1

F'(x)u(s) = u(s) — A2 + p) L ﬁx(t)lﬂ’u(t) dt, ueQ

1
F"(x)(uv)(s) = —A(1 + p)(2 + p)J ﬁx(t)l’(uv)(t) dt, u,veQ
0~
We must note that for sup-norm,
IF"(x) = F"(»)| < Nllx = ylI”, Vx,yeQ,
where N = |A|(1+ p)(2+ p) log2. This implies
1F"(x) = F"(D)l < o([lx = yl), Vx,yeQ,

where w(x) = Nx”. As p is a real number in (0,1], F” is (N,p)-Holder
continuous. Thus the used w-continuity condition is the generalization of
(N, p)-Hoélder continuity condition. Now it is easy to compute

1F (o)l < llxo = £1I + 2] log 2||xo]| >

and
IF"(x)]| < [2I(1 + p)(2 + p) log 2[|x[|”

Hence, M = |}|(1 + p)(2 + p) log 2||x||” = N||x||”. Also it is easy to compute
I = F'()ll < A2 + p) log 21|
If [2)(2+ p) log 2||xo||"*” < 1, then by Banach’s theorem [10], we obtain
1
L= |42+ p) log 2lxo] 7

IToll = I1F"(x0) ™| < B
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FiGURE 3. Conditions on the parameter S

and

IFoF (e < =S 1+ 1A log 2w
L= PR+ p) Tog 2%

Now, for 1=1/10, p=1/2, f(s) =1, and initial point xy = xo(s) =1 in the
interval [0,1], we get ||To|l <f=1.20961, ||[[oF(xo)| <#n=0.0838437, N =
0.25993. Now we look for a domain in the form of Q = %(xy,S) such that

Q=%(x,S) = C0,1] =X

Thus M = M(S) = 0.25993S?, ay = ao(S) = M(S)fn = 0.0263616S? and by =
Pno(n) = 0.00763322. Now to calculate S, from the condition of theorem 1, it is
necessary that %(xp, Ry) < Q. For this it is sufficient to check S — (R(S)y+ 1)
> 0 and ®(ao(S)) — b > 0. Hence it is necessary that S € (1.0935,51.8179) as is
evident from the figure 3.

Also ay(S) < ro = 0.1905960896, if and only if S < 52.2738444. Hence if
we choose S = 51, then we have Q = %(1,51), M = 1.85627, ap = 0.18826 and
by = 0.00763322 < 0.02140762 = ®(0.18826). Thus, the conditions of the theo-
rem | are satisfied. Hence, a solution of equation (23) exists in #(1,0.4241) < Q
and unique in the ball %(1,0.466624671) N Q. °

6. Conclusions

In this paper, the convergence of a third order Newton-like method (1)
for solving nonlinear equation (3) is discussed by using recurrence relations under
the assumption that the second Fréchet derivative of F is w-continuous. This
w-continuous condition is milder than the usual Lipschitz/Hélder continuity
condition used to establish the convergence of third order Newton-like methods.
A family of recurrence relations based on two constants depending on the
operator F is derived to establish a priori error bounds. This approach is simple
and efficient in comparison with the work of Wu and Zhao [15]. Numerical
examples are worked out to demonstrate the efficacy of our method and our
results are improvement over the results of Wu and Zhao [15].
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