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ON THE EXISTENCE OF T DIRECTION OF MEROMORPHIC

FUNCTION CONCERNING MULTIPLE VALUES*

Zhao-jun Wu and Dao-chun Sun

Abstract

In this paper, by using Ahlfors’ theory of covering surface, the existence of T

direction of meromorphic function concerning multiple values is obtained. Results are

obtained extending the previous results due to Guo, Zheng, Ng in Bull. Austral. Math.

Soc., 69 (2004), 277–287. Moreover, we give an a‰rmative answer to the question by

Wang and Gao in Bull. Austral. Math. Soc., 75 (2007), 459–468.

1. Introduction and main results

In this paper, meromorphic function always means a function meromorphic in
the whole complex plane. Assume that basic definitions, theorems and standard
notations of the Nevanlinna theory for meromorphic function (see [3] or [15]) are
known. The singular direction of meromorphic function f ðzÞ is one of main
objects of value distribution theory. Since Julia introduced the concept of Julia
direction and showed its existence for a meromorphic function in 1919, several
types of singular directions have been introduced and studied. In 1928, Valiron
[9] introduced the concept of Borel direction and established its existence for
meromorphic function. After that, Q. L. Hiong, A. Rauch, M. Tsuji, C. T.
Chuang, L. Yang and G. H. Zhang etc investigated the properties of Borel
direction, the details can be found in Chuang [1] and Yang [15]. Recently, J. H.
Zheng [18] introduced a new singular direction, namely the T direction and its
existence has been established by H. Guo, J. H. Zheng and T. W. Ng in [2].
However, it was not discussed whether there exists a T direction concerning
multiple values. In this paper, we investigate this problem.

Suppose that E is a measurable subset of C, let

SðE; f Þ ¼ 1

p

ð
E

j f 0ðzÞj
ð1þ j f ðzÞj2Þ

 !2

r dydr; z ¼ reiy:
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When E ¼ fz A C; jzj < rg, we denote SðE; f Þ ¼ Sðr; f Þ and

Tðr; f Þ ¼
ð r
0

Sðt; f Þ
t

dt;

where Tðr; f Þ is the Ahlfors-Shimizu characteristic function. Deonte the follow-
ing angular domain by

Wðy; eÞ ¼ fz A C; jarg z� yj < eg:
When E is a sector fz A C; jzj < rgVWðy; eÞ, we denote SðE; f Þ ¼ Sðr;Wðy; eÞ; f Þ
and

Tðr;Wðy; eÞ; f Þ ¼
ð r
0

Sðt;Wðy; eÞ; f Þ
t

dt:

For any a A Cy and a0y, let nðr; y; e; aÞ be the number of zeros, counted
according to their multiplicities, of f ðzÞ � a in the sector fz A C; jzj < rgVWðy; eÞ,
and nlÞðr; y; e; aÞ be the number of zeros with multiplicitiesa l, of f ðzÞ � a in the
sector fz A C; jzj < rgVWðy; eÞ, where l is any positive integer. Similarly, note
the number of poles of f by nðr; y; e;yÞ and nlÞðr; y; e;yÞ. Deonte

Nðr; y; e; aÞ ¼
ð r
0

nðt; y; e; aÞ � nð0; y; e; aÞ
t

dtþ nð0; y; e; aÞ log r;

N lÞðr; y; e; aÞ ¼
ð r
0

nlÞðt; y; e; aÞ � nlÞð0; y; e; aÞ
t

dtþ nlÞð0; y; e; aÞ log r:

In addition, we also need the notations (see [17])

Lðr;c1;c2Þ ¼
ðc2

c1

j f 0ðreicÞj
ð1þ j f ðreicÞj2Þ

r dc; Lðr;cÞ ¼
ð r
1

j f 0ðteicÞj
ð1þ j f ðteicÞj2Þ

dt:

Following J. H. Zheng’s definitions of T direction of f ðzÞ (see [18]), we give the
following definition.

Definition 1. We call J : arg z ¼ y the T direction of f ðzÞ, provided that
given any a A Cy, possibly with exception of at most two values of a, for any
positive number e < p, we have

lim sup
r!y

Nðr; y; e; aÞ
Tðr; f Þ > 0:

We call J : arg z ¼ y the T direction of f ðzÞ concerning multiple values, provided

that given any a A Cy, possibly with exception of at most
2l þ 2

l

� �
values of a,

for any positive number e < p, we have

lim sup
r!y

N lÞðr; y; e; aÞ
Tðr; f Þ > 0;

where ½x� implies the maximum integer number which does not exceed x.
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Note that the T direction of meromorphic function concerning multiple

values is a refinement of the ordinary T direction since
2l þ 2

l

� �
! 2 as l ! y.

For the existence of T direction of meromorphic function f ðzÞ, H. Guo, J. H.
Zheng and T. W. Ng [2] proved the following Theorem

Theorem A. Let f ðzÞ be a meromorphic function and satisfy

lim sup
r!y

Tðr; f Þ
log2 r

¼ y:ð1Þ

Then f ðzÞ must have a T direction.

Theorem A was conjectured by J. H. Zheng [18]. In this paper, we shall
study the existence of T direction of f ðzÞ concerning multiple values and prove
the following Theorem.

Theorem 1. Let f ðzÞ be a meromorphic function and satisfy (1), then there
at least exists a T direction of f ðzÞ concerning multiple values.

The following example shows that any smaller number cannot replace
2l þ 2

l

� �
ð¼ 4; 3Þ when l ¼ 1; 2 in the definition of T directions concerning multiple

values.

Example. Consider the Weierstrass }-function }ðzÞ given by the di¤erential
equation

f} 0ðzÞg2 ¼ 4f}ðzÞ3 � 1g;
which has the three cube roots of unity e2kpi=3 ðk ¼ 0; 1; 2Þ and y as completely
ramified values, in fact, all these four values are double. Hence this is our desired
example for l ¼ 1:

A simple calculation gives its derivative } 0ðzÞ satisfies the equation

f} 00ðzÞg3 ¼ 27

2
½f} 0ðzÞ2 þ 4g�2 ¼ ½6f} 0ðzÞ2�3;

so that it assumes three values G2i and y with multiplicity three. This is an
example for l ¼ 2:

2. Some lemmas

Our proof requires Ahlfors’ theory of covering surface. We firstly introduce
the following notations (see Tsuji [8]).

In this paper, the Riemann sphere of diameter 1 is denoted by K . Let F be
a finite covering surface of F0, and consist of a finite number of sheets and be
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bounded by a finite number of analytic Jordan curves fLjg (some of which may
reduce to single points), and the spherical distance between any two circular
curves Li and Lj is dðLj;LjÞb d A 0; 12

� �
. The part of the boundary of F , which

does not lie above the boundary of F0, is called the relative boundary of F , and
denote its spherical length by L. Let D be a domain on F0, whose boundary
consists a finite number of points or analytic closed Jordan curves, and FðDÞ be
the part of F , which lies above D. We denote the spherical area of F , F ðDÞ and
F0 by jF j, jFðDÞj and jF0j, respectively. We put

S ¼ jF j
jF0j

; SðDÞ ¼ jF ðDÞj
jDj :

Under the above notation, we have the following Ahlfors covering Theorem.

Lemma 1 (see Tsuji [8]). For any finite covering surface F of F0, we have

jS � SðDÞj < h
L

jDj ;

where h > 0 is a constant which depends on F0 only.

Recently, D. C. Sun [6] has proved a precise version of Lemma 1 and proved

that h ¼ 2p

d
, where 0 < d < 1

2 is a constant.

Lemma 2 (see Sun [7]). Let F be a simply connected finite covering surface of
a the unite sphere K , and fDvg be qð>2Þ disjoint spherical disks on K , where the
spherical distance of any pair of fDvg is at least d. Let nv be the number of simply
connected islands (see Tsuji [8], P252) in F ðDvÞ, then

Xq
v¼1

nv b ðq� 2ÞS � C

d3
L;

where L is the length of the relative boundary of F and C is a constant.

Lemma 3. Let F be a simply connected finite covering surface of a sphere

surface K , Dv be q >
2l þ 2

l

� �� �
disjoint spherical disks with radius

d

3
on K and

without a pair of fDvg such that their spherical distance is less than d, n
lÞ
v be the

number of simply connected islands in F ðDvÞ, which are consisted of not more than
l sheets, then

Xq
v¼1

nlÞ
v b q� 2� 2

l

� �
S � C þ 9qh

ld3
L;

L is the length of the relative boundary of F .
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Proof. It is easy to verify that

nv ¼ nlÞ
v þ nðlv ; SðDvÞb nlÞ

v þ ðl þ 1Þnðlv ;

where n
ðl
v be the number of simply connected islands in FðDvÞ, which are consisted

of not less than l þ 1 sheets. Hence,

SðDvÞb ðl þ 1ÞðnlÞ
v þ nðlv Þ � lnlÞ

v ¼ ðl þ 1Þnv � lnlÞ
v :

Since the spherical area of Dv is jDvjb
d2

9
. It follows from Lemma 1 that,

S þ 9h

d2
L > SðDvÞb ðl þ 1Þnv � lnlÞ

v :

Adding two sides of the above expression from 1 to q, we have

qS þ 9qh

d2
Lþ l

Xq
v¼1

nlÞ
v > ðl þ 1Þ

Xq
v¼1

nv:

Combining Lemma 2 and the above expression, Lemma 3 follows. r

Lemma 4. Suppose that f ðzÞ is a meromorphic function and favg are

q >
2l þ 2

l

� �� �
distinct points on K and without a pair of favg such that their

spherical distance is less than dþ 2d

3
. Let n

lÞ
v be the number of zeros of f ðzÞ � av,

which are consisted of not more than l multiplicities, then

Xq
v¼1

nlÞ
v b q� 2� 2

l

� �
S � C þ 9qh

ld3
L:

Proof. Let Dv be a spherical disk with the center av with radius
d

3
on K .

By Lemma 1, we have

Xq
v¼1

nlÞ
v b q� 2� 2

l

� �
S � C þ 9qh

ld3
L:

Note that n
lÞ
v ðDvÞa n

lÞ
v ðavÞ, whenever av in the island of Dv or in the peninsula of

Dv. Therefore, Lemma 4 follows. r

We are now in the position to establish our key Lemma by using Lemma 4.

Lemma 5. Let f ðzÞ be meromorphic in the complex plane. If favg are

q >
2l þ 2

l

� �� �
distinct points on K, then we have

137on the existence of t direction



q� 2� 2

l

� �
Sðr;Wðy; jÞ; f Þa

Xq
v¼1

nlÞðr; y; d; avÞ þ
2pH 2

q� 2� 2

l

� �
ðd� jÞ

log rð2Þ

þ q� 2� 2

l

� �
Sð1;Wðy; jÞ; f Þ

þHLð1; y� d; yþ dÞ þHLðr; y� d; yþ dÞ

and

q� 2� 2

l

� �
Tðr;Wðy; jÞ; f Þa

Xq
v¼1

N lÞðr; y; d; avÞ þ
2pH 2

q� 2� 2

l

� �
ðd� jÞ

log2 rð3Þ

þ q� 2� 2

l

� �
Tð1;Wðy; jÞ; f Þ

þ q� 2� 2

l

� �
Sð1;Wðy; jÞ; f Þ log r

þHLð1; y� d; yþ dÞ log rþ wðr; y� d; yþ dÞ

for any j, 0 < j < d, where H is a constant depending only on av, v ¼ 1; 2; . . . q and

wðr; y� d; yþ dÞ ¼ H
Ð r
1

Lðt; y� d; yþ dÞ
t

dt.

Proof. Put Dr ¼ fz A C; 1 < jzj < rgVWðy; jÞ and F0 ¼ K � favg. Using
Lemma 4, we have

q� 2� 2

l

� �
½Sðr;Wðy; jÞ; f Þ � Sð1;Wðy; jÞ; f Þ�a

Xq
v¼1

nlÞðr; y; d; avÞ þHLðrÞ

where H ¼ C þ 9qh

ld3
, which depends only on F0, i.e. only on av, v ¼ 1; 2; . . . q, and

LðrÞ ¼ Lðr; y� j; yþ jÞ þ Lð1; y� j; yþ jÞ þ Lðr; y� jÞ þ Lðr; yþ jÞ
aLðr; y� d; yþ dÞ þ Lð1; y� d; yþ dÞ þ Lðr; y� jÞ þ Lðr; yþ jÞ

Hence

q� 2� 2

l

� �
½Sðr;Wðy; jÞ; f Þ � Sð1;Wðy; jÞ; f Þ� �

Xq
v¼1

nlÞðr; y; d; avÞð4Þ

�HLðr; y� d; yþ dÞ �HLð1; y� d; yþ dÞaH½Lðr; y� jÞ þ Lðr; yþ jÞ�

Denote the left expression of (4) by Aðr; jÞ, thus
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dðAðr; jÞÞ
dj

¼ q� 2� 2

l

� �
d½Sðr;Wðy; jÞ; f Þ � Sð1;Wðy; jÞ; f Þ�

dj
:

We claim the fact

½Lðr; y� jÞ þ Lðr; yþ jÞ�2 a 2p

q� 2� 2

l

� � dðAðr; jÞÞ
dj

log r:ð5Þ

In fact, it follows from the definition of Lðr;cÞ and Schwarz’s inequality that

½Lðr; y� jÞ þ Lðr; yþ jÞ�2

a 2

ð r
1

j f 0ðteiðy�jÞÞj
ð1þ j f ðteiðy�jÞÞj2Þ

dt

 !2

þ
ð r
1

j f 0ðteiðyþjÞÞj
ð1þ j f ðteiðyþjÞÞj2Þ

dt

 !2
2
4

3
5

a 2p
d½Sðr;Wðy; jÞ; f Þ � Sð1;Wðy; jÞ; f Þ�

dj
log r

¼ 2p

q� 2� 2

l

� � dðAðr; jÞÞ
dj

log r:

Noting Aðr; jÞ is an increasing function of j, we see that then there exists a
d0 > 0, such that Aðr; jÞ > 0, when j > d0; and Aðr; jÞa 0, when ja d0. For
j > d0, by (4) and (5),

½Aðr; jÞ�2 aH 2½Lðr; y� jÞ þ Lðr; yþ jÞ�2 a 2pH 2

q� 2� 2

l

� � log r
dðAðr; jÞÞ

dj
;

i.e.

dja
2pH 2

q� 2� 2

l

� � log r
dðAðr; jÞÞ
½Aðr; jÞ�2

:

Integrating each side of the inequality leads to

d� j ¼
ð d
j

dja
2pH 2

q� 2� 2

l

� �
Aðr; jÞ

log r

Thus

Aðr; jÞa 2pH 2

q� 2� 2

l

� �
ðd� tÞ

log r:
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On the case of ja d0, then the above inequality is obvious valid because of
Aðr; jÞa 0. Replacing Aðr; jÞ in the above inequality by its explicit expression,
we see that (2) is established. Therefore

q� 2� 2

l

� �
Tðr;Wðy; jÞ; f Þa

Xq
v¼1

N lÞðr; y; d; avÞ þ
pH 2

q� 2� 2

l

� �
ðd� jÞ

log2 r

þ q� 2� 2

l

� �
Tð1;Wðy; jÞ; f Þ

þ q� 2� 2

l

� �
Sð1;Wðy; jÞ; f Þ log r

þHLð1; y� d; yþ dÞ log rþ wðr; y� d; yþ dÞ

where wðr; y� d; yþ dÞ ¼ H
Ð r
1

Lðt; y� d; yþ dÞ
t

dt: r

Lemma 6 (Zhang [17]). Under the condition of Lemma 5, we have

wðr; y� d; yþ dÞ ¼ H

ð r
1

Lðt; y� d; yþ dÞ
t

dt

aH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dpSðr;Wðy; dÞ; f Þ log r

p
or

wðr; y� d; yþ dÞaH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dpTðr;Wðy; dÞ; f Þ

p
log Tðr;Wðy; dÞ; f Þð6Þ

with at most one exceptional set Ed of r, where Ed consists of a series of intervals
and satisfies ð

Ed

1

r log r
dra

1

log Tðr;Wðy; dÞ; f Þ < y:

Lemma 7 (Li and Gu [5]). Suppose that CðrÞ is a nonnegative increasing
function in ð1;yÞ and satisfies

lim sup
r!y

CðrÞ
log2 r

¼ y:

Then for any set EH ð1;yÞ such that
Ð
E

1

r log r
dr <

1

3
, we have

lim sup
r!y; r A ð1;yÞ�E

CðrÞ
log2 r

¼ y:

140 zhao-jun wu and dao-chun sun



3. Proof of Theorem 1

Proof. Firstly, we prove the following statement. Let m ðmb 4Þ be a

fixed positive integer, y0 ¼ 0; y1 ¼
2p

m
; . . . ; ym�1 ¼

ðm� 1Þ2p
m

; ym ¼ y0. We put

4ðyiÞ ¼ z j jarg z� yij <
2p

m

� 	
, 4oðyiÞ ¼ z j jarg z� yij <

p

m

� 	
, i ¼ 0; 1; . . . ;

m� 1; 4ðymÞ ¼ 4ðy0Þ, 4oðymÞ ¼ 4oðy0Þ. Then among these m angular
domains f4ðyiÞg, there is at least an angular domain 4ðyiÞ such that the
relative expression

lim sup
r!y

N lÞðr;4ðyiÞ; aÞ
Tðr;wÞ > 0;ð7Þ

holds for all a A Cy with at most
2l þ 2

l

� �
exceptions. Otherwise, for any

angular domain 4ðyiÞ ð1a iamÞ, we have q ¼ 2l þ 2

l

� �
þ 1 distinct points

a
j
i ð j ¼ 1; 2; . . . ; qÞ in Cy such that

Xm�1

i¼0

Xq
j¼1

N lÞðr;4ðyiþ1Þ; a j
iþ1Þ ¼ oðTðr;wÞÞ:ð8Þ

Applying Lemma 5 to 4oðyiþ1Þ, 4ðyiþ1Þ, we have

q� 2� 2

l

� �
Tðr;4oðyiþ1Þ; f Þ

a
Xq
j¼1

N lÞðr;4ðyiþ1Þ; a j
iþ1Þ þOðlog2 rÞ þ wðr;4ðyiþ1ÞÞ;

Noting Tðr; f Þ ¼
Pm�1

i¼0 Tðr;4oðyiþ1Þ; f Þ and adding two sides of the above
expression from i ¼ 0 to m� 1, we can obtain

q� 2� 2

l

� �
Tðr; f Þð9Þ

a
Xm�1

i¼0

Xq
j¼1

N lÞðr;4ðyiþ1Þ; a j
iþ1Þ þOðlog2 rÞ þ

Xm�1

i¼0

wðr;4ðyiþ1ÞÞ:

For any i, there exists a ri, the inequality Tðr;4oðyiþ1Þ; f Þ > e3m would bold for
r > ri, while the inequality (3) does not look appropriate here. Put E4oðyiþ1Þ is
the set of r which consists of a series of intervals and satisfiesð

E4oðyiþ1Þ

1

r log r
dra

1

log Tðr;4oðyiþ1Þ; f Þ
<

1

3m
:

Let r0 ¼ maxfri; 1 ¼ 1; 2; . . . ;mg, we have for any i, Tðr0;4oðyiþ1Þ; f Þ > e3m,
then
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ð
6m�1

i¼0 E4oðyiþ1Þ

1

r log r
dra

Xm�1

i¼0

1

log Tðr;4oðyiþ1Þ; f Þ
<

1

3
:

Applying Lemma 7, we have

lim sup
r!y; r A ð1;yÞ�E

Tðr; f Þ
log2 r

¼ y;

where E ¼ 6m�1

i¼0
E4oðyiþ1Þ. Therefore, there exists a sequence r 0n A ð1;yÞ � E,

such that

lim
n!y

Tðr 0n; f Þ
log2 r 0n

¼ y:ð10Þ

It follows from (6), (9) and (10) that q� 2� 2

l

� �
a 0. Hence

2l þ 2

l

� �
þ 1a

2l þ 2

l
. This is a contradiction. Hence for an arbitrary positive integer m, there

exists an angular domain 4ðymÞ ¼ z j jarg z� ymj <
2p

m

� 	
such that for any a, we

have

lim sup
r!y

N lÞðr;4ðymÞ; aÞ
Tðr; f Þ > 0;ð11Þ

except for
2l þ 2

l

� �
exceptions at most. Choosing subsequence of fymg, still

denote it fymg, we assume that ym ! y0. Put L : arg z ¼ y0, then L is a T
direction that is stated in Theorem 1.

In fact, for any e ð0 < e < p=2Þ, when m is su‰ciently large, we have
4ðymÞHWðy0; eÞ. By (11), we have

lim sup
r!y

N lÞðr; y0; e; aÞ
Tðr; f Þ b lim sup

r!y

N lÞðr;4ðymÞ; aÞ
Tðr; f Þ > 0

hold for any a A Cy with at most
2l þ 2

l

� �
possible exceptional values of a.

Hence Theorem 1 holds in this case. r

4. Concluding remarks

Let w ¼ wðzÞ be a n-valued algebroid function defined by the irreducible
equation

AnðzÞwn þ An�1ðzÞwn�1 þ � � � þ A0ðzÞw ¼ 0;ð12Þ
where AjðzÞ ð j ¼ 0; 1; 2; . . . ; nÞ are entire functions without any common zero
point. The single valued domain of definition of wðzÞ is a n-sheeted covering of
the z-plane, a Riemann surface, denoted by ~RRz. It is denoted by ~zz that the point
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in ~RRz whose projection in the z-plane is z. The part of ~RRz, which covers a disk
jzj < r, is denoted by j~zzj < r. For any a A Cy, put

Nðr; aÞ ¼ 1

n

ð r
0

nðt; aÞ � nð0; aÞ
t

dtþ nð0; aÞ
n

log r;

mðr;wÞ ¼ 1

2pn

ð
j~zzj¼r

logþjwðreiyÞj dy; z ¼ reiy;

where nðr; aÞ is the number of zeros, counted according to their multiplicities, of

wðzÞ � a in j~zzja r. When a ¼ y, we consider
1

wðzÞ instead of wðzÞ � a. Let

Tðr;wÞ ¼ mðr;wÞ þNðr;wÞ:
The Ahlfors-Shimizu characteristic may be written as

1

n

ð r
0

Sðt;wÞ
t

dt :¼ T0ðr;wÞ ¼ Tðr;wÞ þOð1Þ;

where

Sðr;wÞ ¼ 1

p

ð ð
j~zzjar

jw 0ðzÞj
1þ jwðzÞj2

 !2

dw:

In this paper, the Ahlfors-Shimizu characteristic is the same as the Tðr;wÞ
without di¤erence. In general, suppose that ~EE is a subset of ~RRz, we denote

Sðr;E;wÞ ¼ 1

p

ð ð
~EE

jw 0ðzÞj
1þ jwðzÞj2

 !2

dw;

and

Tðr;E;wÞ ¼ 1

n

ð r
0

Sðt;E;wÞ
t

dt:

The order and lower order of the algebroid function wðzÞ are denoted by

l ¼ lim sup
r!y

log Tðr;wÞ
log r

; m ¼ lim inf
r!y

log Tðr;wÞ
log r

:

We define an angular domain 4ðy0; dÞ ¼ fzjarg z� y0j < dg, 0a y0 < 2p,

0 < d <
p

2
. The part of ~RRz which lies over 4ðy0; dÞ is denoted by ~44ðy0; dÞ. Let

nðr; y0; d; aÞ (or nðr; y0; d; aÞ) be the number of distinct zeros wðzÞ � a in
~44ðy0; dÞV fj~zzja rg, counting multiplicities (or ignoring multiplicities). Put

Nðr; y0; d; aÞ ¼
1

n

ð r
0

nðt; y0; d; aÞ � nð0; y0; d; aÞ
t

dtþ nð0; y0; d; aÞ log r:

Let nlÞðr; y0; d; aÞ be the number distinct zeros with multiplicitya l of wðzÞ � a in
~44ðy0; dÞV fj~zzja rg. Similarly, we can define Nðr; y0; d; aÞ and N lÞðr; y0; d; aÞ.
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Denote nwðr;wÞ, ðnwðr;4ðy0; dÞ;wÞÞ by the number of the branch points of ~RRz on
jzj < r (on the region 4ðy0; dÞ), counting the order of branch points. Denote

Nwðr;wÞ ¼
1

n

ð r
0

nwðt;wÞ � nwð0;wÞ
t

dtþ nwð0;wÞ
n

log r:

Similarly, we can define Nwðr;4ðy0; dÞ;wÞ:
For a n-valued algebroid function, its ordinary T direction is defined in the

same way as above with the corresponding characteristic and counting functions
introduced by H. Selberg for algebroid function, provided the maximum number
of exceptional values permitted here is 2n instead 2. The existence of ordinary T
direction for algebroid function has been established by one of the authors in [11]
under the condition

lim sup
r!y

Tðr;wÞ
log2 r

¼ y:ð13Þ

Most recently, Wang and Gao [10] confirms the existence of T direction
dealing with multiple values for an algebroid function wðzÞ under the condition
(13) and an additional condition of the lower order to be finite. Then they ask
whether it is also the case without this additional condition. Here, we shall
confirm this problem by proving the following Theorem 2.

Theorem 2. Let wðzÞ be a n-valued algebroid function defined on the whole
complex plane and satisfy (13). Then there at least exists a ray L : arg z ¼ y such

that, for any given b A Cy, possibly with the exception of at most
2l þ 2

l
n

� �
values

of b, for an arbitrary small e > 0 we have

lim sup
r!y

N lÞðr; y; e; bÞ
Tðr;wÞ > 0;

for any positive integer lb 3.

In order to prove Theorem 2, we also need the following Lemma by Xuan
and Gao [13].

Lemma 8 (Xuan and Gao [13]). Let wðzÞ be a n valued algebroid function
defined by (12). If ai, i ¼ 1; 2; . . . ; q ðqb 3Þ are distinct complex numbers in Cy,
then we have

q� 2� 2

l

� �
Tðr;Dðj0; jÞ;wÞ

a
Xq
i¼1

N lÞðr; j0; j; aiÞ þ
l þ 1

l
Nwðr;Dðj0; dÞ;wÞ þOðlog2 rÞ þ Xðr;Dðj0; dÞ;wÞ;

for any positive integer lb 3 and any j, 0 < j < d, where
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Xðr;Dðj0; dÞ;wÞa h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dpTðr;Dðj0; dÞ;wÞ log r

p
log Tðr;Dðj0; dÞ;wÞ;

outside a set Ed of r at most, where h is a constant depending only on the aj and Ed

consists of a series of intervals and satisfiesð
Ed

1

r log r
dra

1

log Tðr;Dðj0; dÞ;wÞ
< y:

We are now in the position to prove the Theorem 2.

Proof. Firstly, we prove the following statement. Let wðzÞ be a n-valued
algebroid function defined by (12) on the whole complex plane and satisfies (13).

Let m ðmb 4Þ be the positive integer, y0 ¼ 0; y1 ¼
2p

m
; . . . ; ym�1 ¼

ðm� 1Þ2p
m

;

ym ¼ y0: and 4ðyiÞ ¼ z j jarg z� yij <
2p

m

� 	
, i ¼ 0; 1; . . . ;m� 1; 4ðymÞ ¼ 4ðy0Þ,

then among these m angular domains f4ðyiÞg, there is at least an angular
domain 4ðyiÞ such that the relative expression

lim sup
r!y

N lÞðr;4ðyiÞ; aÞ
Tðr;wÞ > 0;ð14Þ

holds for all a A Cy with at most
2l þ 2

l
n

� �
exceptions. If on the contrary, then

for any angular domain 4ðyiÞ ð1a iamÞ, we have q ¼ 2l þ 2

l
n

� �
þ 1 distinct

points a
j
i ð j ¼ 1; 2; . . . ; qÞ in Cy such that

Xm�1

i¼0

Xq
j¼1

N lÞðr;4ðyiþ1Þ; a j
iþ1Þ ¼ oðTðr;wÞÞ:ð15Þ

Let a be arbitrary positive integer. Put

yi;k ¼ 2pi

m
þ 2pk

am
; 0a iam� 1; 0a ka a� 1; yi;0 ¼ yi:

For su‰cient large r, let

4i;k ¼ fz j jzj < r; yi;k a arg z < yi;kþ1g:
Then

fjzj < rg ¼
Xa�1

k¼0

Xm�1

i¼0

4i;k;

Hence there must be one k0 ð0a k0 a a� 1Þ, such that

Xm�1

i¼0

nð4i;k0 ;
~RRzÞa

1

a
nðr; ~RRzÞ:
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Define the angular domains

4i ¼ z





 yi;k0 þ yi;k0þ1

2
a arg za

yiþ1;k0 þ yiþ1;k0þ1

2

� 	
;

40
i ¼ fz j yi;k0 < arg z < yiþ1;k0þ1gH4ðyiþ1Þ:

Since 40
i only covers 4i;k0 twice, we have

Xm�1

i¼0

nwðr;40
i ;wÞa 1þ 1

a

� �
nwðr;wÞ:ð16Þ

Hence, Xm�1

i¼0

Nwðr;40
i ;wÞa 1þ 1

a

� �
Nwðr;wÞ:ð17Þ

Applying Lemma 8 to 40
i , 4i, we have

q� 2� 2

l

� �
Tðr;4i;wÞ

a
Xq
j¼1

N lÞðr;40
i ; a

j
iþ1Þ þ

l þ 1

l
Nwðr;40

i ;wÞ þOðlog2 rÞ þ Xðr;40
i ;wÞ;

By Tðr;wÞ ¼
Pm�1

i¼0 Tðr;4i;wÞ with the above inequality and (17), we obtain

q� 2� 2

l

� �
Tðr;wÞð18Þ

a
Xm�1

i¼0

Xq
j¼1

N lÞðr;40
i ; a

j
iþ1Þ þ 1þ 1

a

� �
l þ 1

l
Nwðr;wÞ þOðlog2 rÞ

þ
Xm�1

i¼0

X ðr;40
i ;wÞ:

Applying Lemma 7, as we did in the proof of Theorem 1, we can see that there
exists a sequence rn A ð1;yÞ � E, such that

lim
n!y

Tðrn;wÞ
log2 rn

¼ y;ð19Þ

here E is a set of finite measure. Noting that

Nwðr;wÞa 2ðn� 1ÞTðr;wÞ:ð20Þ
From (18)–(20), we have

q� 2� 2

l

� �
a 2 1þ 1

a

� �
l þ 1

l
ðn� 1Þ
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Letting a ! y, we get q ¼ 2l þ 2

l
n

� �
þ 1a

2l þ 2

l
n. This contradiction results

in that for arbitrary positive integer m, there exists an angular domain

4ðymÞ ¼ z j jarg z� ymj <
2p

m

� 	
such that for any a, we have

lim sup
r!y

N lÞðr;4ðymÞ; aÞ
Tðr;wÞ > 0;ð21Þ

except for
2l þ 2

l
n

� �
exceptions at most. Choosing subsequence of fymg, still

denote it fymg, we assume that ym ! y0. Put L : arg z ¼ y0, then L is a T
direction as stated in Theorem 2.

In fact, for any e ð0 < e < p=2Þ, when m is su‰ciently large, we have
4ðymÞH4ðy0; eÞ. By (21), we have

lim sup
r!y

N lÞðr; y0; e; aÞ
Tðr;wÞ b lim sup

r!y

N lÞðr;4ðymÞ; aÞ
Tðr;wÞ > 0

holds for any a A Cy with at most
2l þ 2

l
n

� �
possible exceptional values of a.

Hence Theorem 2 holds in this case. r

When wðzÞ is an algebroid function of finite and positive order growth,
Theorem 2 was obtained by Xuan and Gao [14] for lb 2nþ 1. Combining
Theorems 1 and 2, we pose the following question.

Question 1. Let wðzÞ be a n-valued algebroid function defined on the whole
complex plane and satisfies (13). Does there exist a ray L : arg z ¼ y? Such
that, for arbitrary small e > 0 we have

lim sup
r!y

N lÞðr; y; e; aÞ
Tðr;wÞ > 0;

holds for any given a A Cy, provided the maximum number q of exceptional
values satisfying the following relation

q ¼

4n if l ¼ 1;

3n if l ¼ 2:

3n� 1 if l ¼ 3:

3n� 2 if l ¼ 4:

� � � � � � � � � � � �
2nþ 2 if l ¼ 2n� 1:

2nþ 1 if l ¼ 2n:

2n if lb 2nþ 1:

8>>>>>>>>>>>><
>>>>>>>>>>>>:
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Applying the inequality was obtained by Zhang and Sun [16], Wu and Sun [12]
confirms that Question 1 is true in the case of l ¼ 1. Theorem 2 means that
Question 1 is true in the case of lbmaxf3; 2ng. Theorem 1 means that
Question 1 is true for meromorphic function. And above all, with the }ðzÞ

in example, the irreducible equation wn ¼ 1þ 1

}ðzÞ or wn ¼ 1þ 1

} 0ðzÞ gives us

an algebroid function taking such 4n values as the n-th roots of 1þ e2kpi=3

ðk ¼ 0; 1; 2Þ and 1 with multiplicity 2, or 3n values as the n-th roots of 1H 2i and
1 with multiplicity 3, respectively. Hence, any smaller number cannot replace
2l þ 2

l
n

� �
ð¼ 4n; 3nÞ when l ¼ 1; 2 in the Question 1.
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