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AN EXPLICIT FORMULA FOR THE ZEROS
OF THE RANKIN-SELBERG L-FUNCTION VIA THE PROJECTION
OF C*-MODULAR FORMS

Takumi Nopa*

Abstract

We give an explicit formula for the zeros of the Rankin type zeta-function by using
the projection of the C*-automorphic forms introduced by Sturm (1981). Our theorem
gives a correlation of the zeros of the L-functions and the Hecke eigenvalues.

1. Introduction

In this paper, we describe one explicit formula for the zeros of the Rankin-
Selberg L-function by using the projection of the C*-automorphic forms. The
projection was introduced by Sturm [12] in the study of the special values of
automorphic L-functions. Combining the idea of Zagier [13] (Proposition 3) and
the integral transformation of the confluent hypergeometric function, we derive
an explicit formula which correlates the zeros of the zeta-function and the
Hecke eigenvalues. The main theorem contains the case of the symmetric square
L-function, that first appeared in author’s previous paper [5].

Let k and / (k <) be positive even integers and Si (resp. S;) be the space of
cusp forms of weight k (resp. /) on SLy(Z). Let f(z) € Sy and g(z) € S; be
normalized Hecke eigenforms with the Fourier expansions f(z) = Y..", a(n)e*™ "
and g(z) = Y7 | b(n)e>™"=, For each prime p, we take o, and f, such that

n=1

%p +ﬂp = Ll(p) and apﬂp = ( , and define
o 0
M,(f)=( " .
=% )
The Rankin-Selberg L-function attached to f(z) and g(z) is defined by

(1) (s.f @9 = [] detlts = M,(1) ® My(g)p™) "

p:prime
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AN EXPLICIT FORMULA FOR THE ZEROS OF THE RANKIN-SELBERG L-FUNCTION 121

Here the product is taken over all rational primes, and 7, is the unit matrix of
size n.
In this paper, we prove the following theorem:

THEOREM 1. Let k and | be positive even integers such that k,l =12,
16,18,20,22, and 26 respectively. Suppose k < 1. Let Ay(z) = Y12 ti(n)e*™ =
€ Sk be the unique normalized Hecke eigenform. We write p as a zero of
Lis—1+(k+1)/2,Ac ® A;) in the critical strip 0 <Re(s) < 1. Assume that
((2p) #0. Then for each positive integer n,

) ' (-1)TPL2p) {(2p—DI(2p 1)
—T
k+1 k+1 k—1 k—1
2p _ e o AL n=r A
(2n) F( P+ > F(p 1+ 3 )F(p—i— 3 )F(p 3 )
1 n—1
= k—] Tk(m)()'l,zp(l’l - m)
rar(p )
2
k—1 k+1  m
XF<1'D+T’p+T’k7;)

1 0 n —p+(k+1)/2
+ . Z (m> T (m)ai_zy(m — n)
1"(])1" (,0 + 2> m=n-+1

k—1 k+1 n
Fll—-p—— —p+——;1;—
X < p 2 ) p + 2 ’ e m) b
where F(a,b;c;z) is the hypergeometric function and os(m) is the sum of the s-th
powers of positive divisors of m.

COROLLARY 1. Let T(n,p;k;l) be the right-hand side of the equality in
Theorem 1. Then, the following equivalence holds:

Re(p) == & T(n,p;k;l) <1(n) (as n— o).

Remark 1. By Shimura [10, 11], it is known that the “periods” of the
modular form for L(s, f ® g) are dominated by the cusp form of large weight,
whereas our theorem is expressed by using the Fourier coefficients of the cusp
form of small weight.

Remark 2. The formula for the symmetric square L-function is given in
[5], where the factor (—n/m)*™” is not correct. It should be replaced by

(n/m)* "
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2. [Eisenstein series

In this section we recall the fundamental properties of the Eisenstein series,
and introduce the C*-modular forms.

Let k > 0 be an even integer, i = v/—1 and H be the upper half plane. The
non-holomorphic Eisenstein series for SL,(Z) is defined by

2) Ei(z,8) = y* Y (ez+d) Mez+d| >,
{c,d} .
where z=x+iye H, seC and the summation is taken over q)
c

a complete system of representation of {(; :) eSLz(Z)}\SLz(Z). The

right-hand side of (2) converges absolutely and locally uniformly on
{(z,s)|ze H,Re(s) > —k/2+1}. For ze H and Re(s) > —k/2+1, Ei(zs)
has an expansion:

3 E — S 1-k—s yis —h2s - 27t

( ) k(Z,S) y +(10(S)y +C(k+2~9)mz¢oal k—2s (Wl)a (y,S) exp( mmx),
where o,(m) is the s-th powers of positive divisors of m,

((k+2s—1) T(k+2s—1)

— (_)K20 o1 k2s
4) aop(s) = (=1)"72 1=k=2 {(k+2s) T(sI'(k+s) )
and
(5) an(y,;s) = J, exp(—2imu) (u + i) M lu+ iy du.

The integral in (5) is the key ingredient in the study of the Eisenstein series, which
is known as an entire function in s and of exponential decay in y|m|. Therefore,
Ej(z,s) is meromorphically continued to the whole s-plane. And there exist
positive constants 4; and A, depending only on k and s such that

(6) |Ei(z,8)] < A1yR0) + dpp! RO (3 — o),

except on the poles.
Let W(a,f;w) be the confluent hypergeometric function defined by

o0

(7) Yo, f;w) := ﬁj{) efwttxfl(l + Z)[f—a_1 dr

for Re(w)>0 and Re(a) >0, which is continued holomorphically on
(o, f,w) € C x C x {w|Re(w) > 0}. Then, the integral in (5) is expressed by

®)

(_1)](/2 (27_[) k+2.vmk+2sfl

—27zym\P 2s: 4
(3,5) = Tk +5) & (s, ke + 25, dmym) (m>0),
am\),S) = (_1)k/2<2n)k+2.y|m|k+25—l
0 e VY (k + 5,k + 2s;4my|m|) - (m < 0).

(See for example [4] §7.2.)
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It is also well-known the functional equation:
(9) 7 ST(s)C(28)Ex(z,8) = n 7M1 — 5 — k)((2 — 25 — 2k) Ep (2,1 — s — k).

PROPOSITION 1.  Assume Ep(z,s) is holomorphic at s€ C. Then, there exist
positive constants Ay and A, depending only on k and s such that

Al(y—Re(S)fk + yRC(A')) <RC(S) > L= k)7
(10)  [Ex(x +ip,s)| < 1—k
Ay (y1HRe() 4 yl—Re(S)—k) (Re(s) < B >7

for every y > 0.

Proof. We use (6) and the modularity for y*/?Ej(z,s), and obtain the
assertion of Proposition 1. For the detail of the proof, see [7] (Proposition 1).

O

Next, we introduce the C*-modular form of bounded growth due to Sturm
[12]. The function F is called a C*-modular form of weight k, if F satisfies the
following conditions:

(A.1) F is a C™-function from H to C, a b

(A2) F((az+b)(cz+d)™") = (cz+d)*F(z) for all (C d) € SLy(Z).

We denote by M the set of all C*-modular forms of weight k. The function
F e My, is called of bounded growth if for every ¢ > 0

1 po0
J J |F(2)|y*2e ™ dydx < 0.
0Jo

For F e 9 and f € S;, we define the Petersson inner product

Fy = j £(2)F@)y*2 dxdy.

SLy(Z)\H

LemMa 1. Assume that f(z)e Sy and se€C in k/2—1+2 <Re(s) <
k/2—1. Then f(z)E;_(z,s) is a C*-modular form of weight | and of bounded
growth.

b
Proof. Let y = (a d> € SLy(Z), and y(z) = (az+ b)/(cz+d). Then, by
the definition, ¢

FOEE1((2),5) = (ez + d)'f(2) - (ez + d) T Er(z, ).

Therefore, f(z)E;_x(z,s) is a C*-modular form of weight / in the whole s-plane
except on the poles. For f(z) € S, it is known that there is a positive constant

co such that
f(2) < coy™?
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for every z=x+iye H. Therefore, by Proposition 1,

1-1+k
ylth/2Res) <Re(s)> 2+ >7

1 —
yk/2-14Re(s) (Re(s) < é+ k)’

S(2)Er-k(z,5) <

when y — 0. The estimate above implies f(z)E;_(z,s) is of bounded growth
when k/2 —[+2 < Re(s) <k/2-1. O

Remark. Lemma 1 gives immediately that f(z)Ey(z,s) is a C*-modular
form of weight k, and of bounded growth in the region —k/2+2 < Re(s) <
k/2 — 1, except on the poles. In [12] (Corollary 2), 1 < Re(s) < k/2 — 1 is given
as a sufficient condition of bounded growth. Our region —k/2+2 < Re(s) <
k/2 — 1 includes the critical strip of the symmetric square L-function. This is of
advantage because it makes possible to evaluate the L-functions and Riemann’s
zeta-function at non-trivial zeros (see [5, 6]). The proof of [5], (Lemma 1) in fact
is insufficient to imply the assertion, however the insufficiency is corrected in the
author’s subsequent papers [6] and [7] (Proposition 1).

3. Rankin-Selberg L-function

In this section, we recall the Rankin-Selberg L-function, and quote the
projection of the C*-modular form due to Sturm [12].

Let f(z)eSxk and g¢g(z)e S, have the Fourier expansions f(z)=
S a(n)e®™™ and g(z) = 3,2, b(n)e™™.  We write

g(z) = ZITH) exp(2zinz).
n=1

Define the Dirichlet series

D(s, f,g9) = f:a(n)b(n)n_s,
n=1

for sufficient large Re(s). Then, by the method of Rankin [8] and Selberg [9],

(11)  D(s, f,g) = (4n)°’T"1(s) LL o F(2)§(2)E1(z,s — 1+ 1)p'=2 dxdy.

Assume f(z) and ¢(z) be normalized Hecke eigenforms. By Shimura [10]
Lemma 1, we have

(12) L(s,f®g)=(2s+2—-k—=1)D(s, f,9g).

Put
R(s, f,9) =T(s)I'(s =k +1)L(s, f @ g).
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Then R(s,f,g) is an entire function in s for [/>k, because
['(s+ k){(2s+ k)Ey(z,s) is an entire function in s for k >2. For f =g, the
symmetric square case, it is holomorphic on the whole s-plane except for possible
simple poles at s=k—1 and s=k.

Using (9), we obtain the functional equation,

Rk+1—-1-5,f,9)=R(s,f,9).
The inequalities due to Deligne [1]:
la(p)| < 2p* D2 and  |b(p)| < 2"V,

show that the infinite product (1) converges absolutely for Re(s) > (k +1)/2.
Hence L(s,f®g¢g)#0 for Re(s) > (k+1)/2, and R(s,f,g) #0 for Re(s) <
(k+1—2)/2. 1In this paper, we consider the zeros of L(s — 1 + (k+1)/2, f ® g)
in the critical strip 0 < Re(s) < 1.

LemMaA 2. Let f(z) € Sk and g(z) € S; be normalized Hecke eigenforms. Let
p be a zero of Lis— 1+ (k+1)/2,f ®g) in the critical strip 0 < Re(s) < 1.
Assume ((zp) #0. Then

(13) (r@E (2 +550) 00) =0

Proof. By the integral representation (11) and (12), we have
(14) L(s.f ®¢) = (4n)' T (5)C(25 — k — 1+ 2){f () Er-r(z,5 — [+ 1),4(2)>.

Here we assumed that g(z) is a normalized Hecke eigenform. Since the Hecke
operator is Hermitian, we see all the Fourier coefficients of g(z) are real. This
proves Lemma 2. O]

Next, we introduce the projection of the C®-automorphic forms due to
Sturm. In [12], Sturm constructed a certain kernel function by using Poincaré
series, and showed the following theorem:

THEOREM 2 (Sturm [12]). Let F € My be of bounded growth with the Fourier
)

expansion F(z) =" _ a(n,y)e*™~.  Assume that k >2. Let

¢(n) = Qmn)* Tk — 1) J a(n, y)e ™ yk=2 dy.
0

Then h(z) = .7 c(n)e*™ ¢ S and {g,F) = <g,h) for all ge Sk.

n=1

4. Proof of Theorem 1

Theorem 2 and Lemma 2 in the previous section are the key ingredients in
the proof of Theorem 1. In the following, we evaluate the Fourier coefficients of
the projection of f(z)E;_x(z,s — [+ 1) to the space of the holomorphic cusp form.
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To begin with, we shall inspect the Laplace-Mellin transform of the confluent
hypergeometric function in [2] (6.10.(7)). On this account, we give the analytic
continuation and y-estimate of the confluent hypergeometric function (cf. [4]
Theorem 7.2.7.):

Lemma 3. For any compact subset T of Cx C and y > 0, there exist a
positive number Cy and non-negative integers M and N such that
(o, 85 9) < Co - y R (L 4y M) (0, B) € T).

Here the constants Cy, M and N depend only on T. For every (a,f) e T, M is
chosen so as Re(a+ M) >0, and N is chosen so as Re(ff—a) < N+ 1 respec-
tively.

Proof. We put H' = {zeC|Re(z) >0}. First, we prove the assertion
when T is contained in H' x C. Let (o,f) e T and choose a non-negative
integer N such that Re(f—a) < N+ 1. By (7), we have

o0
R O e R

<P EN: (Z)F(k + Re(a)) y Re@*,
k=0

Since |[(x)|”' and T'(k + Re(x)) are continuous function of «, there exist a
positive constant C; such that

N
(W (e, ;)] < C1 Yy REIHE < ON(y R 4 p RN (o, B) € T).
k=0

Thus we obtain the assertion of Lemma 3 when T < H' x C.

In order to remove the assumption on 7', we take the integration by parts of
the right-hand side in (7). Replacing the variables « and f by a+ 1 and f+1
respectively, we have

P+ 1,0+ 1) =y " Pla.fy)+(B—oa— 1)y "W+ 1,py).
Namely,
W, fiy) =¥+ 1,0+ 1)+ (1 =+ a)P(a+ 1,8 y),

that is equivalent to the equation in [4] (7.2.39). The repeated use of the equality
above, we have

W, pry) = ;(7) L ;(litlﬂ:?)_ J) v W+ m, B+ jiy).

For any compact subset 7' of C x C, we take a non-negative integer M such that

{(o+M,B)|(2,) e T} =« H' x C.
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Then, there exist positive constants C, and C; depending only on 7T such that

M B Al
v g < Yo () LI g o)

=0

0
0

M
= szyj J e*ythe(HM)fl(l + l)Re(/H.i—%—M)—l di
=0

M
-c Joo e,y,tRe(aJrM)fl(l + Z)Re(/)’—oc)—l dt - Zyj
0 =0
N N Re( \k M
—Re(a+M)— J
sczkz_;<k>r(k+Re(a+M))y -j;y’

<Ci-N-M- (yfRe(ot) + yfRe(OPFM)fN).
This completes the proof of Lemma 3. O

PROPOSITION 2. Let F(a,b;c;z) be the hypergeometric function. Then
J"C rero-—c+1)

Y(a,c; b=lemwr gy =
, Ty YT Tlatb—ct+1)

is valid when Re(a) >0, Re(b) >0, Re(b—c+1) >0, and Re(u) > 0.

1
u"’F(a,b;a—#b—c—i—l;l—;)

Proof. By (7), we have

(15) J W(a,c; )y’ le™ dy = —J J 11 4 )Ty ey gy,
0 I(a) Jo Jo

Here we observe

(16) J’VJ |[¢171(1 + t)cfuflybflef(ﬂru)y‘ a’ydl
0Jo
_ r(Re(b))J 114 ) (Re() + 1)R) i,
0
The y-integral in (16) converges absolutely when Re(b) > 0 and Re(u) + ¢ > 0,
and the r-integral converges absolutely when Re(a) >0 and Re(b—c+1) > 0.
Thus the interchange of the order of integration (15) is justified by Fubini’s
theorem when Re(a) > 0, Re(b) >0, Re(b—c¢+1) >0, and Re(u) > 0. In this
region, we have

B 1, Lé) " e - N’
- b=1 —uy _ . b a—1 c—a—1 ~
(17) Jo W(a,c; p)y" e dy Fa) " J N1+ <1+u> dt.

Here we employ the integral representation of the hypergeometric function
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r(y) Jw —1 o=y —a
18 Flo,fip;1 —2)=——2 | 1A+ "0 4+z0) " dt
valid for Re(y) > Re(f) > 0 and |arg(z)| < =, (see [2] 2.12.(5)). Combining (17)
and (18), we obtain the assertion of Proposition 2. O

We are able to find the Laplace-Mellin transform of the confluent hyper-
geometric function in [2] (6.10.(7)) and [3] (7.621.6). In [2], it is mentioned that
Proposition 2 holds for Re(u) > 0 without assumptions for a, b, and ¢. In this
paper, in order to remove the assumptions for a, b, and ¢ in Proposition 2, we
apply Lemma 3. As a consequence, we have following:

ProPOSITION 3. The integral transform

Jm N C(OT(b—c+ 1) 1

ubF<a,b;a+b—c+l;1—;>

\Pv; blfu}fd:
, Hlaarn)y e dy = Fom

is valid when Re(u) >0 and Re(b—a)— M — N >0. Here M and N are non-
negative integers so as Re(a+ M) >0 and Re(c —a) < N + 1 respectively.

Proof. By Lemma 3, the integral on the left-hand side in (15) converges
absolutely in the region Re(u) > 0 and Re(b—a) — M — N > 0. By the identity
theorem, the integral has the same expression as in Proposition 2. O

Now, we prove Theorem 1.

Proof of Theorem 1. Let A(z) be the unique normalized Hecke eigenform
for k=12,16,18,20,22, and 26. We write the Fourier expansion as follows:

Ar(z) - Ep_x(z,5) = an% )e? i,
n=—0o0

Using the notation ay(s) and a,(y,s) defined by (4) and (5), we have

(19) b(m ¥, S) — {ys +ao(S)ylflJrkfs}Tk(n)eonny

ys - _ —2nmy
+ C(Zs +—Z — k) mz:; Tk(m)alfukfzs(n m)an,m(y, s)e .
m#n

Here we regard t;(m) as 0 if m <0.

By Lemma 1 and Theorem 2, there exists /(z,s) =), c(n,s)ezm’” €S
such that {f(z)- Eji_x(z,s),9(z)) = <{h(z,s),9(z)) for all g(z) € S; in the region
k/2 —1+4+2 <Re(s) < k/2—1. The Fourier coefficients of A(z,s) are given by

0
n:
€

(20) c(n.9) = (2r)" "1~ 1) | bl )2 ay,
0
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for n > 0. In the following we put
y(n, 1) = 2an) ' - 1)
Substituting (19) into (20), we have

(21) c(n,s) = 2S+1_ Z:: T (m)o1—k—25(n — m)
m#n

% JOO anim(y’ S)ys+1728727z(m+n)y dy
0
I'(s+1-1)

T (=12 g

+y(n, l)fk(n){

T(2s+1—k—=1) {2s+1—k—1) T(k—5s)
X CC(s+1—k)  (Q2s+1-k)  (4an)* |

The interchange of summation and integration will be justified later.

129

We treat the integral in (21), the Laplace-Mellin transform of the Fourier

coefficients of the Eisenstein series. By (8), we observe

(_1)(171()/2(27[) l*k+23(n o m)l—k+25—1 eizny(nim)
I'(l—k+s)
x W(s, | — k + 2s;4ny(n —m)) (n>m),
(22)  awm(y:s) = YU=RI/2 9 1=k25 I—k+25-1
(7 ) ( 7[) |I’l — I’)’l| e727zy|nfm\
I'(s)
x W(l —k+s,]—k+2s;4ny|ln — m|) (n < m).

For n < m, by Proposition 2,

(23) Jo Y —k+s1—k+2s;4n(m — n)y)e*‘*nmyywlfz dy

B s T(s+ 1= 1T (k —) 3 _an
= (4zm) ) Fll—k+s,s+1 l,l,m

m

N\ k25141 _ _
:(4nm)‘—’—5(m—”> [ls+1= DIk S)F<1—s,k—s;l-

n
i—
m

r()

holds for Re( ) >0 and —/+k < Re(s) <k. Here we have used

relations of the hypergeometric function,
F(a,b,c;z) = (1 — Z)C_”_bF(c —a,c—b;c;z)

and F(a,b,c;z) = F(b,a,c;z), (see for example [2] 2.9.(2) and 2.8.(18)).
For n > m, by Proposition 3,

the
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(24) JO \P(& -k + 257 47'[(1’1 — m)y)e747m}’yb‘+172 dy
_ 1r—s D(s+ 1= 1T (k — ) om
= (4nn) k) Flss+1-Lk—
k—=2s—I+1
= e I'(s+/—1D(k—y)
= (47nn) ( p ) T

xF<1—s+k—1,k—s;k;%>

valid for Re( )>0 and /—1—-—M — N >0. Here M and N are non-

n—m
negative integers so as Re(s+ M) >0 and Re(s+/—k) < N+ 1 respectively.
By Lemma 2,

(25) <h <z,p+%),g(z)> =0.

Because 0 < Re(p) < 1 in (13) and (25), we take s in (19)-(24) so as

k—1 k—1

(26) 5 < Re(s) < 5 +1.

Then we may choose M =1+ (/—k)/2 and N = (I —k)/2. Therefore, the
condition (26) meets the requirements —/+k < Re(s) <k in (23) and
I—1—M—N >0 in (24) respectively. The region (26) is also included in
k/2 —1+4+2 < Re(s) < k/2 —1 that was required in Lemma 1 for the bounded
growth condition.

By (22) and (23), the infinite sum in (21) is estimated as

o0 o0
(27) D ot —m)J (9, 8) y*H 22ty dy‘
m=n+1 0
I'(s+/—1)T(k—ys)
T 21 27) T () T(])
o0
s—k n
ks —m)F (1 —s,k—s;1;—|.
xm:zn:H m* e (m)o—jrk—os(n — m) ( s, s; ’m>‘
By the result of Deligne [1]:
(28) lte(m)| « m* D2 ¢
for every ¢ > 0. And when s=p+ (k—1)/2 with 0 < Re(p) < 1, we have
(29) |m* K| < mReW=W2AEED =Gy o (n—m)| = o1y (m — n)| < (m —n) T

Using the hypergeometric series
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F(a7b; ; Z) _ 0 (a) (b?uzu _ F(Z)(li)(b) Zuu+b7c71{l + 0(1/[71)}21[,

u
u=0 (C)uu‘ u=0

(see [2] 2.1.1.(2) and 2.1.1.(5)), we have

k—1 k+1 n
(30) \F(Ipz,wz,z,m)\

(i ) ()

m

<

S (z)

u=0

< ,
m—n

where the implied constant in the last inequality depends only on &, / and p. By
using (28), (29) and (30), we observe that the infinite sum (27) converges
absolutely in the region (26). Hence the interchange of summation and inte-
gration in (21) is justified.

We assumed dim S; = 1, namely, g(z) in (25) is the unique cusp form of S;.

k—=1\ . . . k—1

Therefore, h(z, p+T> is identically zero, namely, c(n, p—i—T) =0 for
every positive integer n. Substituting p + (kK —[)/2 for s in (21), (22), (23) and
(24), we complete the proof of Theorem 1. O

Proof of Corollary 1. In the left-hand side of the equation in Theorem 1, we
observe
n? =1,

as n — oo, if and only if Re(p) =1/2. This proves Corollary 1. ]
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