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AN EXPLICIT FORMULA FOR THE ZEROS

OF THE RANKIN-SELBERG L-FUNCTION VIA THE PROJECTION

OF Cy-MODULAR FORMS

Takumi Noda*

Abstract

We give an explicit formula for the zeros of the Rankin type zeta-function by using

the projection of the Cy-automorphic forms introduced by Sturm (1981). Our theorem

gives a correlation of the zeros of the L-functions and the Hecke eigenvalues.

1. Introduction

In this paper, we describe one explicit formula for the zeros of the Rankin-
Selberg L-function by using the projection of the Cy-automorphic forms. The
projection was introduced by Sturm [12] in the study of the special values of
automorphic L-functions. Combining the idea of Zagier [13] (Proposition 3) and
the integral transformation of the confluent hypergeometric function, we derive
an explicit formula which correlates the zeros of the zeta-function and the
Hecke eigenvalues. The main theorem contains the case of the symmetric square
L-function, that first appeared in author’s previous paper [5].

Let k and l ðka lÞ be positive even integers and Sk (resp. Sl) be the space of
cusp forms of weight k (resp. l) on SL2ðZÞ. Let f ðzÞ A Sk and gðzÞ A Sl be
normalized Hecke eigenforms with the Fourier expansions f ðzÞ ¼

Py
n¼1 aðnÞe2pinz

and gðzÞ ¼
Py

n¼1 bðnÞe2pinz. For each prime p, we take ap and bp such that
ap þ bp ¼ aðpÞ and apbp ¼ pk�1, and define

Mpð f Þ ¼
ap 0

0 bp

� �
:

The Rankin-Selberg L-function attached to f ðzÞ and gðzÞ is defined by

Lðs; f n gÞ ¼
Y

p:prime

detðI4 �Mpð f ÞnMpðgÞp�sÞ�1:ð1Þ
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Here the product is taken over all rational primes, and In is the unit matrix of
size n.

In this paper, we prove the following theorem:

Theorem 1. Let k and l be positive even integers such that k; l ¼ 12;
16; 18; 20; 22, and 26 respectively. Suppose ka l. Let DkðzÞ ¼

Py
n¼1 tkðnÞe2pinz

A Sk be the unique normalized Hecke eigenform. We write r as a zero of
Lðs� 1þ ðk þ lÞ=2;Dk nDlÞ in the critical strip 0 < ReðsÞ < 1. Assume that
zð2rÞ0 0. Then for each positive integer n,

�tkðnÞ
n1�2rð�1Þðl�kÞ=2zð2rÞ

ð2pÞ2rG �rþ k þ l

2

� �þ zð2r� 1ÞGð2r� 1Þ

G r� 1þ k þ l

2

� �
G rþ k � l

2

� �
G r� k � l

2

� �
8>>><
>>>:

9>>>=
>>>;

¼ 1

GðkÞG r� k � l

2

� �Xn�1

m¼1

tkðmÞs1�2rðn�mÞ

� F 1� rþ k � l

2
;�rþ k þ l

2
; k;

m

n

� �

þ 1

GðlÞG rþ k � l

2

� � Xy
m¼nþ1

n

m

� ��rþðkþlÞ=2
tkðmÞs1�2rðm� nÞ

� F 1� r� k � l

2
;�rþ k þ l

2
; l;

n

m

� �
;

where Fða; b; c; zÞ is the hypergeometric function and ssðmÞ is the sum of the s-th
powers of positive divisors of m.

Corollary 1. Let Tðn; r; k; lÞ be the right-hand side of the equality in
Theorem 1. Then, the following equivalence holds:

ReðrÞ ¼ 1

2
, Tðn; r; k; lÞ � tkðnÞ ðas n ! yÞ:

Remark 1. By Shimura [10, 11], it is known that the ‘‘periods’’ of the
modular form for Lðs; f n gÞ are dominated by the cusp form of large weight,
whereas our theorem is expressed by using the Fourier coe‰cients of the cusp
form of small weight.

Remark 2. The formula for the symmetric square L-function is given in
[5], where the factor ð�n=mÞk�r is not correct. It should be replaced by
ðn=mÞk�r.
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2. Eisenstein series

In this section we recall the fundamental properties of the Eisenstein series,
and introduce the Cy-modular forms.

Let kb 0 be an even integer, i ¼
ffiffiffiffiffiffiffi
�1

p
and H be the upper half plane. The

non-holomorphic Eisenstein series for SL2ðZÞ is defined by

Ekðz; sÞ ¼ ys
X
fc;dg

ðczþ dÞ�kjczþ dj�2s;ð2Þ

where z ¼ xþ iy A H, s A C and the summation is taken over
� �
c d

� �
,

a complete system of representation of
� �
0 �

� �
A SL2ðZÞ

� ��
SL2ðZÞ. The

right-hand side of (2) converges absolutely and locally uniformly on
fðz; sÞ j z A H;ReðsÞ > �k=2þ 1g. For z A H and ReðsÞ > �k=2þ 1, Ekðz; sÞ
has an expansion:

Ekðz; sÞ ¼ ys þ a0ðsÞy1�k�s þ ys

zðk þ 2sÞ
X
m00

s1�k�2sðmÞamðy; sÞ expð2pimxÞ;ð3Þ

where ssðmÞ is the s-th powers of positive divisors of m,

a0ðsÞ ¼ ð�1Þk=22p � 21�k�2s zðk þ 2s� 1Þ
zðk þ 2sÞ

Gðk þ 2s� 1Þ
GðsÞGðk þ sÞ ;ð4Þ

and

amðy; sÞ ¼
ðy
�y

expð�2pimuÞðuþ iyÞ�kjuþ iyj�2s
du:ð5Þ

The integral in (5) is the key ingredient in the study of the Eisenstein series, which
is known as an entire function in s and of exponential decay in yjmj. Therefore,
Ekðz; sÞ is meromorphically continued to the whole s-plane. And there exist
positive constants A1 and A2 depending only on k and s such that

jEkðz; sÞjaA1y
ReðsÞ þ A2y

1�ReðsÞ�k ðy ! yÞ;ð6Þ
except on the poles.

Let Cða; b;wÞ be the confluent hypergeometric function defined by

Cða; b;wÞ :¼ 1

GðaÞ

ðy
0

e�wtta�1ð1þ tÞb�a�1
dtð7Þ

for ReðwÞ > 0 and ReðaÞ > 0, which is continued holomorphically on
ða; b;wÞ A C� C� fw jReðwÞ > 0g. Then, the integral in (5) is expressed by

ð8Þ

amðy; sÞ ¼

ð�1Þk=2ð2pÞkþ2s
mkþ2s�1

Gðk þ sÞ e�2pymCðs; k þ 2s; 4pymÞ ðm > 0Þ;

ð�1Þk=2ð2pÞkþ2sjmjkþ2s�1

GðsÞ e�2pyjmjCðk þ s; k þ 2s; 4pyjmjÞ ðm < 0Þ:

8>>>><
>>>>:

(See for example [4] §7.2.)
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It is also well-known the functional equation:

p�sGðsÞzð2sÞEkðz; sÞ ¼ p�1þsþkGð1� s� kÞzð2� 2s� 2kÞEkðz; 1� s� kÞ:ð9Þ

Proposition 1. Assume Ekðz; sÞ is holomorphic at s A C. Then, there exist
positive constants A1 and A2 depending only on k and s such that

jEkðxþ iy; sÞja
A1ðy�ReðsÞ�k þ yReðsÞÞ ReðsÞ > 1� k

2

� �
;

A2ðy�1þReðsÞ þ y1�ReðsÞ�kÞ ReðsÞa 1� k

2

� �
;

8>>><
>>>:

ð10Þ

for every y > 0.

Proof. We use (6) and the modularity for yk=2Ekðz; sÞ, and obtain the
assertion of Proposition 1. For the detail of the proof, see [7] (Proposition 1).

r

Next, we introduce the Cy-modular form of bounded growth due to Sturm
[12]. The function F is called a Cy-modular form of weight k, if F satisfies the
following conditions:

(A.1) F is a Cy-function from H to C,
(A.2) Fððazþ bÞðczþ dÞ�1Þ ¼ ðczþ dÞkFðzÞ for all

a b

c d

� �
A SL2ðZÞ.

We denote by Mk the set of all Cy-modular forms of weight k. The function
F A Mk is called of bounded growth if for every e > 0ð1

0

ðy
0

jFðzÞjyk�2e�ey dydx < y:

For F A Mk and f A Sk, we define the Petersson inner product

h f ;Fi ¼
ð
SL2ðZÞnH

f ðzÞFðzÞyk�2 dxdy:

Lemma 1. Assume that f ðzÞ A Sk and s A C in k=2� l þ 2 < ReðsÞ <
k=2� 1. Then f ðzÞEl�kðz; sÞ is a Cy-modular form of weight l and of bounded
growth.

Proof. Let g ¼ a b

c d

� �
A SL2ðZÞ, and gðzÞ ¼ ðazþ bÞ=ðczþ dÞ. Then, by

the definition,

f ðgðzÞÞEl�kðgðzÞ; sÞ ¼ ðczþ dÞkf ðzÞ � ðczþ dÞ l�k
El�kðz; sÞ:

Therefore, f ðzÞEl�kðz; sÞ is a Cy-modular form of weight l in the whole s-plane
except on the poles. For f ðzÞ A Sk, it is known that there is a positive constant
c0 such that

f ðzÞa c0y
�k=2
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for every z ¼ xþ iy A H. Therefore, by Proposition 1,

f ðzÞEl�kðz; sÞf
y�lþk=2�ReðsÞ ReðsÞ > 1� l þ k

2

� �
;

y�k=2�1þReðsÞ ReðsÞa 1� l þ k

2

� �
;

8>>><
>>>:

when y ! 0. The estimate above implies f ðzÞEl�kðz; sÞ is of bounded growth
when k=2� l þ 2 < ReðsÞ < k=2� 1. r

Remark. Lemma 1 gives immediately that f ðzÞE0ðz; sÞ is a Cy-modular
form of weight k, and of bounded growth in the region �k=2þ 2 < ReðsÞ <
k=2� 1, except on the poles. In [12] (Corollary 2), 1 < ReðsÞ < k=2� 1 is given
as a su‰cient condition of bounded growth. Our region �k=2þ 2 < ReðsÞ <
k=2� 1 includes the critical strip of the symmetric square L-function. This is of
advantage because it makes possible to evaluate the L-functions and Riemann’s
zeta-function at non-trivial zeros (see [5, 6]). The proof of [5], (Lemma 1) in fact
is insu‰cient to imply the assertion, however the insu‰ciency is corrected in the
author’s subsequent papers [6] and [7] (Proposition 1).

3. Rankin-Selberg L-function

In this section, we recall the Rankin-Selberg L-function, and quote the
projection of the Cy-modular form due to Sturm [12].

Let f ðzÞ A Sk and gðzÞ A Sl have the Fourier expansions f ðzÞ ¼Py
n¼1 aðnÞe2pinz and gðzÞ ¼

Py
n¼1 bðnÞe2pinz. We write

ĝgðzÞ ¼
Xy
n¼1

bðnÞ expð2pinzÞ:

Define the Dirichlet series

Dðs; f ; gÞ ¼
Xy
n¼1

aðnÞbðnÞn�s;

for su‰cient large ReðsÞ. Then, by the method of Rankin [8] and Selberg [9],

Dðs; f ; gÞ ¼ ð4pÞsG�1ðsÞ
ð
SL2ðZÞnH

f ðzÞĝgðzÞEl�kðz; s� l þ 1Þyl�2 dxdy:ð11Þ

Assume f ðzÞ and gðzÞ be normalized Hecke eigenforms. By Shimura [10]
Lemma 1, we have

Lðs; f n gÞ ¼ zð2sþ 2� k � lÞDðs; f ; gÞ:ð12Þ
Put

Rðs; f ; gÞ ¼ GðsÞGðs� k þ 1ÞLðs; f n gÞ:
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Then Rðs; f ; gÞ is an entire function in s for l > k, because
Gðsþ kÞzð2sþ kÞEkðz; sÞ is an entire function in s for kb 2. For f ¼ g, the
symmetric square case, it is holomorphic on the whole s-plane except for possible
simple poles at s ¼ k � 1 and s ¼ k.

Using (9), we obtain the functional equation,

Rðk þ l � 1� s; f ; gÞ ¼ Rðs; f ; gÞ:
The inequalities due to Deligne [1]:

jaðpÞja 2pðk�1Þ=2 and jbðpÞja 2pðl�1Þ=2;

show that the infinite product (1) converges absolutely for ReðsÞ > ðk þ lÞ=2.
Hence Lðs; f n gÞ0 0 for ReðsÞ > ðk þ lÞ=2, and Rðs; f ; gÞ0 0 for ReðsÞ <
ðk þ l � 2Þ=2. In this paper, we consider the zeros of Lðs� 1þ ðk þ lÞ=2; f n gÞ
in the critical strip 0 < ReðsÞ < 1.

Lemma 2. Let f ðzÞ A Sk and gðzÞ A Sl be normalized Hecke eigenforms. Let
r be a zero of Lðs� 1þ ðk þ lÞ=2; f n gÞ in the critical strip 0 < ReðsÞ < 1.
Assume zðzrÞ0 0. Then

f ðzÞEl�k z; rþ k � l

2

� �
; gðzÞ

� �
¼ 0:ð13Þ

Proof. By the integral representation (11) and (12), we have

Lðs; f n gÞ ¼ ð4pÞsG�1ðsÞzð2s� k � l þ 2Þh f ðzÞEl�kðz; s� l þ 1Þ; ĝgðzÞi:ð14Þ
Here we assumed that gðzÞ is a normalized Hecke eigenform. Since the Hecke
operator is Hermitian, we see all the Fourier coe‰cients of gðzÞ are real. This
proves Lemma 2. r

Next, we introduce the projection of the Cy-automorphic forms due to
Sturm. In [12], Sturm constructed a certain kernel function by using Poincaré
series, and showed the following theorem:

Theorem 2 (Sturm [12]). Let F A Mk be of bounded growth with the Fourier
expansion FðzÞ ¼

Py
n¼�y aðn; yÞe2pinx. Assume that k > 2. Let

cðnÞ ¼ ð2pnÞk�1Gðk � 1Þ�1

ðy
0

aðn; yÞe�2pnyyk�2 dy:

Then hðzÞ ¼
Py

n¼1 cðnÞe2pinz A Sk and hg;Fi ¼ hg; hi for all g A Sk.

4. Proof of Theorem 1

Theorem 2 and Lemma 2 in the previous section are the key ingredients in
the proof of Theorem 1. In the following, we evaluate the Fourier coe‰cients of
the projection of f ðzÞEl�kðz; s� l þ 1Þ to the space of the holomorphic cusp form.
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To begin with, we shall inspect the Laplace-Mellin transform of the confluent
hypergeometric function in [2] (6.10.(7)). On this account, we give the analytic
continuation and y-estimate of the confluent hypergeometric function (cf. [4]
Theorem 7.2.7.):

Lemma 3. For any compact subset T of C� C and y > 0, there exist a
positive number C0 and non-negative integers M and N such that

jCða; b; yÞjaC0 � y�ReðaÞð1þ y�ðMþNÞÞ ðða; bÞ A TÞ:
Here the constants C0, M and N depend only on T. For every ða; bÞ A T , M is
chosen so as ReðaþMÞ > 0, and N is chosen so as Reðb � aÞaN þ 1 respec-
tively.

Proof. We put H 0 ¼ fz A C jReðzÞ > 0g. First, we prove the assertion
when T is contained in H 0 � C. Let ða; bÞ A T and choose a non-negative
integer N such that Reðb � aÞaN þ 1. By (7), we have

jCða; b; yÞja jGðaÞj�1

ðy
0

e�yttReðaÞ�1ð1þ tÞReðb�aÞ�1
dt

a jGðaÞj�1
XN
k¼0

n

k

� �
Gðk þReðaÞÞy�ReðaÞ�k:

Since jGðaÞj�1 and Gðk þReðaÞÞ are continuous function of a, there exist a
positive constant C1 such that

jCða; b; yÞjaC1

XN
k¼0

y�ReðaÞ�k
aC1Nðy�ReðaÞ þ y�ReðaÞ�NÞ ðða; bÞ A TÞ:

Thus we obtain the assertion of Lemma 3 when T HH 0 � C.
In order to remove the assumption on T , we take the integration by parts of

the right-hand side in (7). Replacing the variables a and b by aþ 1 and b þ 1
respectively, we have

Cðaþ 1; b þ 1; yÞ ¼ y�1Cða; b; yÞ þ ðb � a� 1Þy�1Cðaþ 1; b; yÞ:
Namely,

Cða; b; yÞ ¼ yCðaþ 1; b þ 1; yÞ þ ð1� b þ aÞCðaþ 1; b; yÞ;
that is equivalent to the equation in [4] (7.2.39). The repeated use of the equality
above, we have

Cða; b; yÞ ¼
Xm
j¼0

m

j

� �
Gða� b þ 1þm� jÞ

Gða� b þ 1Þ y j �Cðaþm; b þ j; yÞ:

For any compact subset T of C� C, we take a non-negative integer M such that

fðaþM; bÞ j ða; bÞ A TgHH 0 � C:
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Then, there exist positive constants C2 and C3 depending only on T such that

jCða; b; yÞja
XM
j¼0

M

j

� �
jGða� b þ 1þM � jÞj

jGða� b þ 1Þj y j � jCðaþM; b þ j; yÞj

aC2

XM
j¼0

y j �
ðy
0

e�yttReðaþMÞ�1ð1þ tÞReðbþj�a�MÞ�1
dt

aC2

ðy
0

e�yttReðaþMÞ�1ð1þ tÞReðb�aÞ�1
dt �

XM
j¼0

y j

aC2

XN
k¼0

N

k

� �
Gðk þReðaþMÞÞy�ReðaþMÞ�k �

XM
j¼0

y j

aC3 �N �M � ðy�ReðaÞ þ y�ReðaþMÞ�NÞ:

This completes the proof of Lemma 3. r

Proposition 2. Let Fða; b; c; zÞ be the hypergeometric function. Thenðy
0

Cða; c; yÞyb�1e�uy dy ¼ GðbÞGðb� cþ 1Þ
Gðaþ b� cþ 1Þ u

�bF a; b; aþ b� cþ 1; 1� 1

u

� �

is valid when ReðaÞ > 0, ReðbÞ > 0, Reðb� cþ 1Þ > 0, and ReðuÞ > 0.

Proof. By (7), we haveðy
0

Cða; c; yÞyb�1e�uy dy ¼ 1

GðaÞ

ðy
0

ðy
0

ta�1ð1þ tÞc�a�1
yb�1e�ðtþuÞy dtdy:ð15Þ

Here we observeðy
0

ðy
0

jta�1ð1þ tÞc�a�1
yb�1e�ðtþuÞyj dydtð16Þ

¼ GðReðbÞÞ
ðy
0

jta�1ð1þ tÞc�a�1jðReðuÞ þ tÞ�ReðbÞ
dt:

The y-integral in (16) converges absolutely when ReðbÞ > 0 and ReðuÞ þ t > 0,
and the t-integral converges absolutely when ReðaÞ > 0 and Reðb� cþ 1Þ > 0.
Thus the interchange of the order of integration (15) is justified by Fubini’s
theorem when ReðaÞ > 0, ReðbÞ > 0, Reðb� cþ 1Þ > 0, and ReðuÞ > 0. In this
region, we haveðy

0

Cða; c; yÞyb�1e�uy dy ¼ GðbÞ
GðaÞ � u

�b

ðy
0

ta�1ð1þ tÞc�a�1 1þ t

u

� ��b

dt:ð17Þ

Here we employ the integral representation of the hypergeometric function
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Fða; b; g; 1� zÞ ¼ GðgÞ
GðbÞGðg� bÞ

ðy
0

tb�1ð1þ tÞa�gð1þ ztÞ�a
dtð18Þ

valid for ReðgÞ > ReðbÞ > 0 and jargðzÞj < p, (see [2] 2.12.(5)). Combining (17)
and (18), we obtain the assertion of Proposition 2. r

We are able to find the Laplace-Mellin transform of the confluent hyper-
geometric function in [2] (6.10.(7)) and [3] (7.621.6). In [2], it is mentioned that
Proposition 2 holds for ReðuÞ > 0 without assumptions for a, b, and c. In this
paper, in order to remove the assumptions for a, b, and c in Proposition 2, we
apply Lemma 3. As a consequence, we have following:

Proposition 3. The integral transformðy
0

Cða; c; yÞyb�1e�uy dy ¼ GðbÞGðb� cþ 1Þ
Gðaþ b� cþ 1Þ u

�bF a; b; aþ b� cþ 1; 1� 1

u

� �

is valid when ReðuÞ > 0 and Reðb� aÞ �M �N > 0. Here M and N are non-
negative integers so as ReðaþMÞ > 0 and Reðc� aÞaN þ 1 respectively.

Proof. By Lemma 3, the integral on the left-hand side in (15) converges
absolutely in the region ReðuÞ > 0 and Reðb� aÞ �M �N > 0. By the identity
theorem, the integral has the same expression as in Proposition 2. r

Now, we prove Theorem 1.

Proof of Theorem 1. Let DkðzÞ be the unique normalized Hecke eigenform
for k ¼ 12; 16; 18; 20; 22, and 26. We write the Fourier expansion as follows:

DkðzÞ � El�kðz; sÞ ¼
Xy
n¼�y

bðn; y; sÞe2pinx:

Using the notation a0ðsÞ and anðy; sÞ defined by (4) and (5), we have

bðn; y; sÞ ¼ fys þ a0ðsÞy1�lþk�sgtkðnÞe�2pnyð19Þ

þ ys

zð2sþ l � kÞ
Xy
m¼1;
m0n

tkðmÞs1�lþk�2sðn�mÞan�mðy; sÞe�2pmy:

Here we regard tkðmÞ as 0 if ma 0.
By Lemma 1 and Theorem 2, there exists hðz; sÞ ¼

Py
n¼1 cðn; sÞe2pinz A Sl

such that h f ðzÞ � El�kðz; sÞ; gðzÞi ¼ hhðz; sÞ; gðzÞi for all gðzÞ A Sl in the region
k=2� l þ 2 < ReðsÞ < k=2� 1. The Fourier coe‰cients of hðz; sÞ are given by

cðn; sÞ ¼ ð2pnÞ l�1Gðl � 1Þ�1

ðy
0

bðn; y; sÞe�2pnyyl�2 dy;ð20Þ
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for n > 0. In the following we put

gðn; lÞ ¼ ð2pnÞ l�1Gðl � 1Þ�1:

Substituting (19) into (20), we have

cðn; sÞ ¼ gðn; lÞ
zð2sþ l � kÞ

Xy
m¼1
m0n

tkðmÞs1�lþk�2sðn�mÞð21Þ

�
ðy
0

an�mðy; sÞysþl�2e�2pðmþnÞy dy

þ gðn; lÞtkðnÞ
(
Gðsþ l � 1Þ
ð4pnÞsþl�1

þ ð�1Þðl�kÞ=221�lþk�2s � 2p

� Gð2sþ l � k � 1Þ
GðsÞGðsþ l � kÞ � zð2sþ l � k � 1Þ

zð2sþ l � kÞ � Gðk � sÞ
ð4pnÞk�s

)
:

The interchange of summation and integration will be justified later.
We treat the integral in (21), the Laplace-Mellin transform of the Fourier

coe‰cients of the Eisenstein series. By (8), we observe

an�mðy; sÞ ¼

ð�1Þðl�kÞ=2ð2pÞ l�kþ2sðn�mÞ l�kþ2s�1

Gðl � k þ sÞ e�2pyðn�mÞ

�Cðs; l � k þ 2s; 4pyðn�mÞÞ ðn > mÞ;
ð�1Þðl�kÞ=2ð2pÞ l�kþ2sjn�mj l�kþ2s�1

GðsÞ e�2pyjn�mj

�Cðl � k þ s; l � k þ 2s; 4pyjn�mjÞ ðn < mÞ:

8>>>>>>>><
>>>>>>>>:

ð22Þ

For n < m, by Proposition 2,ðy
0

Cðl � k þ s; l � k þ 2s; 4pðm� nÞyÞe�4pmyysþl�2 dyð23Þ

¼ ð4pmÞ1�l�s Gðsþ l � 1ÞGðk � sÞ
GðlÞ F l � k þ s; sþ l � 1; l;

n

m

� �

¼ ð4pmÞ1�l�s m� n

m

� �k�2s�lþ1
Gðsþ l � 1ÞGðk � sÞ

GðlÞ F 1� s; k � s; l;
n

m

� �

holds for Re
m

m� n

� �
> 0 and �l þ k < ReðsÞ < k. Here we have used the

relations of the hypergeometric function,

F ða; b; c; zÞ ¼ ð1� zÞc�a�b
Fðc� a; c� b; c; zÞ

and F ða; b; c; zÞ ¼ Fðb; a; c; zÞ, (see for example [2] 2.9.(2) and 2.8.(18)).
For n > m, by Proposition 3,
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ðy
0

Cðs; l � k þ 2s; 4pðn�mÞyÞe�4pnyysþl�2 dyð24Þ

¼ ð4pnÞ1�l�s Gðsþ l � 1ÞGðk � sÞ
GðkÞ F s; sþ l � 1; k;

m

n

� �

¼ ð4pnÞ1�l�s n�m

n

� �k�2s�lþ1
Gðsþ l � 1ÞGðk � sÞ

GðkÞ

� F 1� sþ k � l; k � s; k;
m

n

� �

valid for Re
n

n�m

� �
> 0 and l � 1�M �N > 0. Here M and N are non-

negative integers so as ReðsþMÞ > 0 and Reðsþ l � kÞaN þ 1 respectively.
By Lemma 2,

h z; rþ k � l

2

� �
; gðzÞ

� �
¼ 0:ð25Þ

Because 0 < ReðrÞ < 1 in (13) and (25), we take s in (19)–(24) so as

k � l

2
< ReðsÞ < k � l

2
þ 1:ð26Þ

Then we may choose M ¼ 1þ ðl � kÞ=2 and N ¼ ðl � kÞ=2. Therefore, the
condition (26) meets the requirements �l þ k < ReðsÞ < k in (23) and
l � 1�M �N > 0 in (24) respectively. The region (26) is also included in
k=2� l þ 2 < ReðsÞ < k=2� 1 that was required in Lemma 1 for the bounded
growth condition.

By (22) and (23), the infinite sum in (21) is estimated as

Xy
m¼nþ1

tkðmÞs1�lþk�2sðn�mÞ
ðy
0

an�mðy; sÞysþl�2e�2pðmþnÞy dy

				
				ð27Þ

a
Gðsþ l � 1ÞGðk � sÞ

2sþl�1ð2pÞk�1�sGðsÞGðlÞ

					
					

�
Xy

m¼nþ1

ms�ktkðmÞs1�lþk�2sðn�mÞF 1� s; k � s; l;
n

m

� �				
				:

By the result of Deligne [1]:

jtkðmÞjfmðk�1Þ=2 þ eð28Þ

for every e > 0. And when s ¼ rþ ðk � lÞ=2 with 0 < ReðrÞ < 1, we have

jms�kjamReðrÞ�ð1=2ÞðkþlÞ; js1�lþk�2sðn�mÞj ¼ js1�2rðm� nÞjf ðm� nÞ1þe:ð29Þ
Using the hypergeometric series
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Fða; b; c; zÞ ¼
Xy
u¼0

ðaÞuðbÞu
ðcÞuu!

zu ¼ GðcÞ
GðaÞGðbÞ

Xy
u¼0

uaþb�c�1f1þOðu�1Þgzu;

(see [2] 2.1.1.(2) and 2.1.1.(5)), we have

F 1� r� k � l

2
;�rþ k þ l

2
; l;

n

m

� �				
				ð30Þ

f GðlÞG�1 1� r� k � l

2

� �
G�1 �rþ k þ l

2

� �				
				Xy
u¼0

ju�2rj n

m

� �u

f
m

m� n
;

where the implied constant in the last inequality depends only on k, l and r. By
using (28), (29) and (30), we observe that the infinite sum (27) converges
absolutely in the region (26). Hence the interchange of summation and inte-
gration in (21) is justified.

We assumed dim Sl ¼ 1, namely, gðzÞ in (25) is the unique cusp form of Sl .

Therefore, h z; rþ k � l

2

� �
is identically zero, namely, c n; rþ k � l

2

� �
¼ 0 for

every positive integer n. Substituting rþ ðk � lÞ=2 for s in (21), (22), (23) and
(24), we complete the proof of Theorem 1. r

Proof of Corollary 1. In the left-hand side of the equation in Theorem 1, we
observe

n2r�1 � 1;

as n ! y, if and only if ReðrÞ ¼ 1=2. This proves Corollary 1. r
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