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MINIMAL SUBMANIFOLDS WITH SMALL TOTAL SCALAR

CURVATURE IN EUCLIDEAN SPACE

Keomkyo Seo

Abstract

Let M be an n-dimensional complete minimal submanifold in Rnþp. Lei Ni proved

that if M has su‰ciently small total scalar curvature, then M has only one end. We

improve the upper bound of total scalar curvature. We also prove that if M has the

same upper bound of total scalar curvature, there is no nontrivial L2 harmonic 1-form

on M.

1. Introduction and theorems

Let Mn ðnb 3Þ be an n-dimensional complete immersed minimal hypersur-
face in Rnþ1. Cao, Shen and Zhu [2] proved that if M is stable, then M has only
one end. Recall that a minimal submanifold is stable if the second variation of
its volume is always nonnegative for any normal variation with compact support.
Later Shen and Zhu [8] showed that if M is stable and has finite total scalar
curvature, then M is totally geodesic. On the other hand, there are some gap
theorems for minimal submanifolds with finite total scalar curvature in Rnþp.
Recently Lei Ni [6] proved that if M has su‰ciently small total scalar curvature
then M has only one end. More precisely, he proved the following.

Theorem ([6]). Let Mn be an n-dimensional complete immersed minimal
hypersurface in Rnþp, nb 3. If

ð
M

jAjn dv
� �1=n

< C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

n� 1
C�1

s

r
;

then M has only one end. (Here Cs is a Sobolev constant in [4].)

In Section 2 we improve the upper bound C1 of the total scalar curvature as
follows.
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Theorem 1.1. Let Mn be a complete immersed minimal submanifold in Rnþp,
nb 3. If ð

M

jAjn dv
� �1=n

<
n

n� 1

ffiffiffiffiffiffiffiffiffi
C�1

s

q
;

then M has only one end.

It is well-known that a minimal submanifold with finite total scalar curvature
and one end must be an a‰ne n-plane ([1]). Combining this fact, we have

Corollary 1.2. Let Mn be a complete immersed minimal submanifold in
Rnþp, nb 3. If ð

M

jAjn dv
� �1=n

<
n

n� 1

ffiffiffiffiffiffiffiffiffi
C�1

s

q
;

then M is an a‰ne n-plane.

Moreover, we study L2 harmonic 1-forms on minimal submanifolds in Rnþp.
In [7], Palmer proved that if there exists a codimension one cycle C in a complete
minimal hypersurface in Rnþ1, then M is unstable, by using the existence of
a nontrivial L2 harmonic 1-form on such M. Miyaoka [5] showed that if M is
a complete stable minimal hypersurface in Rnþ1, then there are no nontrivial
L2 harmonic 1-forms on M. Recently Yun [10] proved that if M is a complete

minimal hypersurface with ð
Ð
M
jAjn dvÞ1=n < C2 ¼

ffiffiffiffiffiffiffiffiffi
C�1

s

q
, then there are no

nontrivial L2 harmonic 1-forms on M. We extend Yun’s theorem to higher
codimensional cases as follows.

Theorem 1.3. Let Mn be a complete immersed minimal submanifold in Rnþp,
nb 3. If ð

M

jAjn dv
� �1=n

<
n

n� 1

ffiffiffiffiffiffiffiffiffi
C�1

s

q
;

then there are no nontrivial L2 harmonic 1-forms on M.

2. Proofs of the theorems

Before proving Theorem 1.1, we need some useful facts.

Lemma 2.1 ([4]). Let Mn be a complete immersed minimal submanifold in
Rnþp, nb 3. Then for any f A W 1;2

0 ðMÞ we haveð
M

jfj2n=ðn�2Þ
dv

� �ðn�2Þ=n
aCs

ð
M

j‘fj2 dv;

where Cs depends only on n.
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Lemma 2.2 ([3]). Let Mn be a complete immersed minimal submanifold in
Rnþp. Then the Ricci curvature of M satisfies

RicðMÞb� n� 1

n
jAj2:

Now let u be a harmonic function on M. Using normal coordinate system
fxig at p A M, we have Bochner formula

1

2
Dðj‘uj2Þ ¼

X
u2ij þRicð‘u;‘uÞ:

Then Lemma 2.2 gives

1

2
Dðj‘uj2Þb

X
u2ij �

n� 1

n
jAj2j‘uj2:

We may choose the normal coordinates at p such that u1ðpÞ ¼ j‘ujðpÞ, uiðpÞ ¼ 0
for ib 2. Then we have

‘jj‘uj ¼ ‘j

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
u2i

q� �
¼
P

uiuij

j‘uj ¼ u1j:

Therefore we obtain j‘j‘uj j2 ¼
P

u21j. On the other hand, we know

1

2
Dðj‘uj2Þ ¼ j‘ujDj‘uj þ j‘j‘uj j2:

Then we have X
u2ij �

n� 1

n
jAj2j‘uj2 a j‘ujDj‘uj þ

X
u21j:

Hence we get

j‘ujDj‘uj þ n� 1

n
jAj2j‘uj2 b

X
u2ij �

X
u21j

b
X
i01

u2i1 þ
X
i01

u2ii

b
X
i01

u2i1 þ
1

n� 1

X
i01

uii

 !2

b
1

n� 1

X
i01

u2i1 ¼
1

n� 1
j‘j‘uj j2;

where we used Du ¼
P

uii ¼ 0 in the last inequality. Therefore we get

j‘ujDj‘uj þ n� 1

n
jAj2j‘uj2 � 1

n� 1
j‘j‘uj j2 b 0:ð2:1Þ

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. Suppose that M has at least two ends. First we
note that if M has more than one end then there exists a nontrivial bounded
harmonic function uðxÞ on M which has finite total energy ([2] and [6]). Let
f ¼ j‘uj. From (2.1) we have

fD f þ n� 1

n
jAj2f 2

b
1

n� 1
j‘f j2:

Fix a point p A M and for R > 0 choose a cut-o¤ function satisfying 0a ja 1,

j1 1 on BpðRÞ, j ¼ 0 on MnBpð2RÞ, and j‘jja 1

R
. Multiplying both sides by

j2 and integrating over M, we haveð
M

j2fD f dvþ n� 1

n

ð
M

j2jAj2f 2 dvb 1

n� 1

ð
M

j2j‘f j2 dv:

Using integration by parts, we get

�
ð
M

j‘f j2j2 dv� 2

ð
M

f jh‘f ;‘ji dvþ n� 1

n

ð
M

j2jAj2f 2 dv

b
1

n� 1

ð
M

j2j‘f j2 dv:

Applying Schwarz inequality, for any positive number a > 0, we obtain

n� 1

n

ð
M

j2jAj2f 2 dvþ 1

a

ð
M

f 2j‘jj2 dvb n

n� 1
� a

� �ð
M

j2j‘f j2 dv:ð2:2Þ

On the other hand, applying Sobolev inequality (Lemma 2.1), we haveð
M

j‘ð f jÞj2 dvbC�1
s

ð
M

ð f jÞ2n=ðn�2Þ
dv

� �ðn�2Þ=n
:

Thus applying Schwarz inequality again, we have for any positive number b > 0,

ð1þ bÞ
ð
M

j2j‘f j2 dvbC�1
s

ð
M

ð f jÞ2n=ðn�2Þ
dv

� �ðn�2Þ=n
ð2:3Þ

� 1þ 1

b

� �ð
M

f 2j‘jj2 dv:

Combining (2.2) and (2.3), we get

n� 1

n

ð
M

j2jAj2 f 2 dvb

n

n� 1
� a

� �
bþ 1

C�1
s

ð
M

ð f jÞ2n=ðn�2Þ
dv

� �ðn�2Þ=n
( )

� 1

a
þ

n

n� 1
� a

b

0
B@

1
CAð

M

f 2j‘jj2 dv:
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Using Hölder inequality, we haveð
M

j2jAj2f 2 dva
ð
M

jAjn
� �2=n ð

M

ð f jÞ2n=ðn�2Þ
dv

� �ðn�2Þ=n
:

Hence we have

1

a
þ

n

n� 1
� a

b

0
B@

1
CAð

M

f 2j‘jj2 dv

b

n

n� 1
� a

� �
C�1

s

bþ 1
� n� 1

n

ð
M

jAjn dv
� �2=n

8>>><
>>>:

9>>>=
>>>;

ð
M

ð f jÞ2n=ðn�2Þ
dv

� �ðn�2Þ=n
:

By assumption, we choose a and b small enough such that

n

n� 1
� a

� �
C�1

s

bþ 1
� n� 1

n

ð
M

jAjn dv
� �2=n

8>>><
>>>:

9>>>=
>>>;b e > 0:

Then letting R ! y, we have f 1 0, i.e., j‘uj1 0. Therefore u is constant.
This contradicts the assumption that u is a nontrivial harmonic function. r

Proof of Theorem 1.3. Let o be an L2 harmonic 1-form on minimal
submanifold M in Rnþp. We recall that such o means

Do ¼ 0 and

ð
M

joj2 dv < y:

We will use confused notation for a harmonic 1-form o and its dual harmonic
vector field oa. From Bochner formula we have

Djoj2 ¼ 2ðj‘oj2 þRicðo;oÞÞ:
We also have

Djoj2 ¼ 2ðjojDjoj þ j‘joj j2Þ:

Since j‘oj2 b n

n� 1
j‘joj j2 by [9], it follows that

jojDjoj �Ricðo;oÞ ¼ j‘oj2 � j‘joj j2 b 1

n� 1
j‘joj j2:

By Lemma 2.2, we have
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jojDjoj � 1

n� 1
j‘joj j2 bRicðo;oÞb� n� 1

n
jAj2joj2:

Therefore we get

jojDjoj þ n� 1

n
jAj2joj2 � 1

n� 1
j‘joj j2 b 0:

Multiplying both sides by j2 as in the proof of Theorem 1.1 and integrating over
M, we have from integration by parts that

0a

ð
M

j2jojDjoj þ n� 1

n
j2jAj2joj2 � 1

n� 1
j2j‘joj j2 dvð2:4Þ

¼ �2

ð
M

jjojh‘j;‘joji dv� n

n� 1

ð
M

j2j‘joj j2 dv

þ n� 1

n

ð
M

jAj2joj2j2 dv:

On the other hand, we get the following from Hölder inequality and Sobolev
inequality (Lemma 2.1)

ð
M

jAj2joj2j2 dva

ð
M

jAjn dv
� �2=n ð

M

ðjjojÞ2n=ðn�2Þ
dv

� �ðn�2Þ=n

aCs

ð
M

jAjn dv
� �2=nð

M

j‘ðjjojÞj2 dv

¼ Cs

ð
M

jAjn dv
� �2=n

�
ð
M

joj2j‘jj2 þ jjj2j‘joj j2 þ 2jjojh‘j;‘joji dv

� �
:

Then (2.4) becomes

0a�2

ð
M

jjojh‘j;‘joji dv� n

n� 1

ð
M

j2j‘joj j2 dvð2:5Þ

þ n� 1

n
Cs

ð
M

jAjn dv
� �2=n

�
ð
M

joj2j‘jj2 þ j2j‘joj j2 þ 2jjojh‘j;‘joji dv

� �
:

Using the following inequality for e > 0,

2

ð
M

jjojh‘j;‘joji dv

����
����a e

2

ð
M

j2j‘joj j2 dvþ 2

e

ð
M

joj2j‘jj2 dv;
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we have from (2.5)

n

n� 1
� n� 1

n
Cs

ð
M

jAjn dv
� �2=n

� e

2
1þ n� 1

n
Cs

ð
M

jAjn dv
� �2=n !( )

�
ð
M

j2j‘joj j2 dv

a
2

e
1þ n� 1

n

ð
M

jAjn dv
� �2=n !

þ n� 1

n
Cs

ð
M

jAjn dv
� �2=n( )

�
ð
M

joj2j‘jj2 dv:

Since ð
Ð
M
jAjn dvÞ1=n < n

n� 1

ffiffiffiffiffiffiffiffiffi
C�1

s

q
by assumption, choosing e > 0 su‰ciently

small and letting R ! y, we obtain ‘joj1 0, i.e., joj is constant. However,
since

Ð
M
joj2 dv < y and the volume of M is infinite, we get o1 0. r
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