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AN ASYMPTOTIC BEHAVIOR OF THE DILATATION

FOR A FAMILY OF PSEUDO-ANOSOV BRAIDS

Eiko Kin* and Mitsuhiko Takasawa

Abstract

The dilatation of a pseudo-Anosov braid is a conjugacy invariant. In this paper,

we study the dilatation of a special family of pseudo-Anosov braids. We prove an

inductive formula to compute their dilatation, a monotonicity and an asymptotic

behavior of the dilatation for this family of braids. We also give an example of a

family of pseudo-Anosov braids with arbitrarily small dilatation such that the mapping

torus obtained from such braid has 2 cusps and has an arbitrarily large volume.

1. Introduction

Let S ¼ Sg;p be an orientable surface of genus g with p punctures, and let
MðSÞ be the mapping class group of S. The elements of MðSÞ, called mapping
classes, are classified into 3 types: periodic, reducible and pseudo-Anosov [10].
For a pseudo-Anosov mapping class f, the dilatation lðfÞ is an algebraic integer
strictly greater than 1. The dilatation of a pseudo-Anosov mapping class is a
conjugacy invariant.

Let Dn be an n-punctured closed disk. The mapping class group MðDnÞ of
Dn is isomorphic to a subgroup of MðS0;nþ1Þ. There is a natural surjective
homomorphism

G : Bn ! MðDnÞ
from the n-braid group Bn to the mapping class group MðDnÞ [2]. We say that a
braid b A Bn is pseudo-Anosov if GðbÞ is pseudo-Anosov, and if this is the case the
dilatation lðbÞ of b is defined equal to lðGðbÞÞ. Henceforth, we shall abbreviate
‘pseudo-Anosov’ to ‘pA’.

We now introduce a family of braids. Let bðm1;m2;...;mkþ1Þ be the braid as

depicted in Figure 1, for each integer kb 1 and each integer mi b 1. These are
all pA (Proposition 4.1). We will prove a monotonicity, an inductive formula to
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compute their dilatation and an asymptotic behavior of the dilatation for this
family of braids.

Proposition 1.1 (Monotonicity). For each integer i with 1a ia k þ 1, we
have

lðbðm1;...;mi ;...;mkþ1ÞÞ > lðbðm1;...;miþ1;...;mkþ1ÞÞ:
Hence if mi am 0

i for each i, then lðbðm1;...;mkþ1ÞÞb lðbðm 0
1
;...;m 0

kþ1
ÞÞ.

For an integral polynomial f ðtÞ of degree d, the reciprocal of f ðtÞ, denoted
by f�ðtÞ, is td f ð1=tÞ.

Theorem 1.2 (Inductive formula). The dilatation of the pA braid bðm1;...;mkþ1Þ
is the largest root of the polynomial

tmkþ1Rðm1;...;mkÞðtÞ þ ð�1Þkþ1
Rðm1;...;mkÞ�ðtÞ;

where Rðm1;...;miÞðtÞ is given inductively as follows:

Rðm1ÞðtÞ ¼ tm1þ1ðt� 1Þ � 2t; and

Rðm1;...;miÞðtÞ ¼ tmiðt� 1ÞRðm1;...;mi�1ÞðtÞ þ ð�1Þ i2tRðm1;...;mi�1Þ�ðtÞ for 2a ia k:

Theorem 1.3 (Asymptotic behavior). We have
(1) limm1;...;mkþ1!y lðbðm1;...;mkþ1ÞÞ ¼ 1 and

(2) limmi ;miþ1;...;mkþ1!y lðbðm1; ...;mkþ1ÞÞ ¼ lðRðm1;...;mi�1ÞðtÞÞ > 1 for ib 2, where

lð f ðtÞÞ denotes the maximal absolute value of the roots of f ðtÞ.

For a pA braid b, let f be the pA mapping class GðbÞ. The dilatation lðfÞ
can be computed as follows. A smooth graph t, called a train track and a
smooth graph map f̂f : t ! t are associated with f. The edges of t are classified
into real edges and infinitesimal edges, and the transition matrix Mrealðf̂fÞ with
respect to real edges can be defined. Then the dilatation lðfÞ equals the spectral

radius of Mrealðf̂fÞ. For more details, see Section 2.2.
For the computation of the dilatation of the braid bðm1;...;mkþ1Þ, we introduce

combined trees and combined tree maps in Section 3. For a given ðm1; . . . ;mkþ1Þ,
one can obtain the combined tree Qðm1;...;mkþ1Þ and the combined tree map

Figure 1. (left) bðm1 ;m2 ;...;mkþ1Þ, (center) bð2; 2; 3Þ, (right) bð3; 2Þ.
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qðm1;...;mkþ1Þ inductively. For example, for ðm1;m2;m3Þ ¼ ð4; 2; 1Þ, the combined
tree Qðm1;m2;m3Þ, depicted in Figure 2, is obtained by gluing the combined tree
Qðm1;m2Þ and another tree which depends m3. The combined tree map qðm1;m2;m3Þ,
as shown in Figure 3, is defined by the composition of an extension of the
combined tree map qðm1;m2Þ and another tree map which depends on m3.

By the proof of Proposition 4.1, it turns out that the spectral radius of the
transition matrix Mðqðm1;...;mkþ1ÞÞ obtained from qðm1;...;mkþ1Þ equals that of Mrealðf̂fÞ,
where f ¼ Gðbðm1;...;mkþ1ÞÞ, that is the spectral radius of Mðqðm1;...;mkþ1ÞÞ equals the
dilatation lðbðm1;...;mkþ1ÞÞ. Proposition 1.1 and Theorems 1.2, 1.3 will be shown
by using the properties of combined tree maps.

In the final part, we will consider the two invariants of pA mapping classes,
the dilatation and the volume. Choosing any representative f : S ! S of a
mapping class f, we form the mapping torus

TðfÞ ¼ S� ½0; 1�=@;

where @ identifies ðx; 0Þ with ð f ðxÞ; 1Þ. A mapping class f is pA if and only if
TðfÞ admits a complete hyperbolic structure of finite volume [7]. Since such a

Figure 2. Qð4; 2; 1Þ (right) is obtained by gluing Qð4; 2Þ (left) and another tree (center).

Figure 3. (top) qð4; 2Þ, (bottom) qð4; 2; 1Þ.
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structure is unique up to isometry, it makes sense to speak of the volume volðfÞ of
f, the hyperbolic volume of TðfÞ. For a pA braid b, we define the volume
volðbÞ as equal to volðGðbÞÞ, the volume of the mapping torus TðGðbÞÞ.

Theorem 1.3(1) tells us that dilatation of braids can be arbitrarily small.
We consider what happen for the volume of a family of pseudo-Anosov mapping
classes whose dilatation is arbitrarily small. It is not hard to see the following.

Proposition 1.4. There exists a family of pA mapping classes fn of MðDnÞ
such that

lim
n!y

lðfnÞ ¼ 1 and lim
n!y

volðfnÞ ¼ y

and such that the number of the cusps of the mapping torus TðfnÞ goes to y as n
goes to y.

Proposition 1.4 is not so surprising, because the volume of each cusp is bounded
below uniformly. We show the following.

Proposition 1.5. There exists a family of pA mapping classes fn of MðDnÞ
such that

lim
n!y

lðfnÞ ¼ 1 and lim
n!y

volðfnÞ ¼ y

and such that the number of the cusps of the mapping torus TðfnÞ is 2 for each n.

Proposition 1.5 is a corollary of the following theorem.

Theorem 1.6. For any real number l > 1 and any real number v > 0, there
exist an integer kb 1 and an integer mb 1 such that for any integer mi bm with
1a ia k þ 1, we have

lðbðm1;...;mkþ1ÞÞ < l and volðbðm1;...;mkþ1ÞÞ > v.

Here we note that for a braid b, the mapping torus TðGðbÞÞ is homeomorphic to
the link complement S3nb in the 3 sphere S3, where b is a union of the closed
braid of b and the braid axis (Figure 4). When b is a braid bðm1;...;mkþ1Þ, the link

b has 2 components, and hence the number of cusps of TðGðbÞÞ is 2.

2. Preliminaries

A homeomorphism F : S ! S is pseudo-Anosov ( pA) if there exists a
constant l ¼ lðFÞ > 1, called the dilatation of F, and there exists a pair of
transverse measured foliations F s and Fu such that

FðF sÞ ¼ 1

l
Fs and FðFuÞ ¼ lFu:
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A mapping class f A MðSÞ is said to be pseudo-Anosov ( pA) if f contains a pA
homeomorphism. We define the dilatation of a pA mapping class f, denoted by
lðfÞ, to be the dilatation of a pA homeomorphism of f.

Let G be a graph. We denote the set of vertices by VðGÞ and denote the set
of edges by EðGÞ. A continuous map g : G ! G 0 from G into another graph G 0

is said to be a graph map. When G and G 0 are trees, a graph map g : G ! G 0 is
said to be a tree map. A graph map g is called Markov if gðVðGÞÞHVðG 0Þ and
for each point x A G such that gðxÞ B VðG 0Þ, g is locally injective at x (that is g
has no ‘back track’ at x). In the rest of the paper we assume that all graph
maps are Markov.

For a graph map g, we define the transition matrix MðgÞ ¼ ðmi; jÞ such that
the i th edge e 0i or the same edge with opposite orientation ðe 0i Þ

�1 of G 0 appears
mi; j-times in the edge path gðejÞ for the j th edge ej of G. If G ¼ G 0, then
MðgÞ is a square matrix, and it makes sense to consider the spectral radius,
lðgÞ ¼ lðMðgÞÞ, called the growth rate for g. The topological entropy of g is
known to be equal to log lðgÞ.

In Section 2.1 we recall results regarding Perron-Frobenius matrices. In
Section 2.2 we quickly review a result from the train track theory which tells us
that if a given mapping class f induces a certain graph map, called train track
map, whose transition matrix is Perron-Frobenius, then f is pA and lðfÞ equals
the growth rate of the train track map. In Section 2.3 we consider roots of a
family of polynomials to study the dilatation of pA mapping classes and give
some results regarding the asymptotic behavior of roots of this family.

2.1. Perron-Frobenius theorem
Let M ¼ ðmi; jÞ and N ¼ ðni; jÞ be matrices with the same size. We shall

write MbN (resp. M > N) whenever mi; j b ni; j (resp. mi; j > ni; j) for each i,
j. We say that M is positive (resp. non-negative) if M > 0 (resp. Mb 0), where
0 is the zero matrix.

For a square and non-negative matrix T , let lðTÞ be its spectral radius, that
is the maximal absolute value of eigenvalues of T . We say that T is irreducible
if for every pair of indices i and j, there exists an integer k ¼ ki; j > 0 such that
the ði; jÞ entry of T k is strictly positive. The matrix T is primitive if there exists
an integer k > 0 such that the matrix T k is positive. By definition, a primitive

Figure 4. link b.
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matrix is irreducible. A primitive matrix T is Perron-Frobenius, abbreviated to
PF, if T is an integral matrix. For MbT , if T is irreducible then M is also
irreducible. The following theorem is commonly referred to as the Perron-
Frobenius theorem.

Theorem 2.1 [8]. Let T be a primitive matrix. Then, there exists an
eigenvalue l > 0 of T such that

(1) l has strictly positive left and right eigenvectors x̂x and y respectively, and
(2) l > jl 0j for any eigenvalue l 0 0 l of T.

If T is a PF matrix, the largest eigenvalue l in the sense of Theorem 2.1 is strictly
greater than 1, and it is called the PF eigenvalue. The corresponding positive
eigenvector is called the PF eigenvector.

The following will be useful.

Lemma 2.2 [8, Theorem 1.6, Exercise 1.17]. Let T be a primitive matrix, and
let s be a positive number. Suppose that a non-zero vector yb 0 satisfies Tyb sy.
Then,

(1) lb s, where l is the largest eigenvalue of T in the sense of Theorem 2.1,
and

(2) s ¼ l if and only if Ty ¼ sy.

Proof. (1) Let x̂x be a positive left eigenvector of T . Then,

x̂xTy ¼ lx̂xyb sx̂xy:
Hence we have lb s.

(2) (‘Only if ’ part) Suppose that s ¼ l, and suppose that Tyb ly and
Ty0 ly. Premultiplying this inequality by a positive left eigenvector x̂x of T , we
have

x̂xTyð¼ lx̂xyÞ > lx̂xy:

Hence l > l, which is a contradiction.
(‘If ’ part) Suppose that Ty ¼ sy. Premultiplying this equality by a positive

left eigenvector x̂x of T , we obtain l ¼ s. r

For a non-negative k � k matrix T , one can associate a directed graph GT

as follows. The graph GT has vertices numbered 1; 2; . . . ; k and an edge from
the j th vertex to the i th vertex if and only if the ði; jÞ entry Ti; j 0 0. By the
definition of GT , one easily verifies the following.

Lemma 2.3. Let T be a non-negative square matrix.
(1) T is irreducible if and only if for each i, j, there exists an integer ni; j > 0

such that the directed graph GT has an edge path of length ni; j from the j th vertex
to the i th vertex.

(2) T is primitive if and only if there exists an integer n > 0 such that for each
i, j, the directed graph GT has an edge path of length n from the j th vertex to the
i th vertex.
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2.2. Train track maps
A smooth branched 1-manifold t embedded in Dn is a train track if each

component of Dnnt is either a non-punctured k-gon (kb 3), a once punctured
k-gon (kb 1) or an annulus such that a boundary component of the annulus
coincides with the boundary of Dn and the other component has at least 1
prong. A smooth map from a train track into itself is called a train track map.

Let f : Dn ! Dn be a homeomorphism. A train track t is invariant under f
if f ðtÞ can be collapsed smoothly onto t in Dn. In this case f induces a train
track map f̂f : t ! t. An edge of t is called infinitesimal if there exists an integer
N > 0 such that f̂f NðtÞ is a periodic edge under f̂f . An edge of t is called real if
it is not infinitesimal. The transition matrix of f̂f is of the form:

Mð f̂f Þ ¼ Mrealð f̂f Þ 0

A Minf ð f̂f Þ

 !
;

where Mrealð f̂f Þ (resp. Minf ð f̂f Þ) is the transition matrix with respect to real (resp.
infinitesimal) edges. The following is a consequence of [1].

Proposition 2.4. A mapping class f A MðDnÞ is pA if and only if there exists
a homeomorphism f : Dn ! Dn of f and there exists a train track t such that t is
invariant under f , and for the induced train track map f̂f : t ! t, the matrix
Mrealð f̂f Þ is PF. When f is a pA mapping class, we have lðfÞ ¼ lðMrealð f̂f ÞÞ.

2.3. Roots of polynomials
For an integral polynomial SðtÞ, let lðSðtÞÞ be the maximal absolute value of

roots of SðtÞ. For a monic integral polynomial RðtÞ, we set

Qn;GðtÞ ¼ tnRðtÞGSðtÞ
for each integer nb 1. The polynomial RðtÞ (resp. SðtÞ) is called dominant (resp.
recessive) for a family of polynomials fQn;GðtÞgnb1. In case where SðtÞ ¼ R�ðtÞ,
we call tnRðtÞGR�ðtÞ the Salem-Boyd polynomial associated to RðtÞ. E. Hir-
onaka shows that such polynomials have several nice properties [3, Section 3].
The following lemma shows that roots of Qn;GðtÞ lying outside the unit circle are
determined by those of RðtÞ asymptotically.

Lemma 2.5. Suppose that RðtÞ has a root outside the unit circle. Then,
the roots of Qn;GðtÞ outside the unit circle converge to those of RðtÞ counting
multiplicity as n goes to y. In particular, lðRðtÞÞ ¼ limn!y lðQn;GðtÞÞ.

The proof can be found in [3]. We recall a proof here for completeness.

Proof. Consider the rational function

Qn;GðtÞ
tn

¼ RðtÞG SðtÞ
tn

:

Let y be a root of RðtÞ with multiplicity m outside the unit circle. Let Dy be any
small disk centered at y that is strictly outside of the unit circle and that contains
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no roots of RðtÞ other than y. Then, jRðtÞj has a lower bound on the boundary
qDy by compactness. Hence there exists a number ny > 0 depending on y such

that jRðtÞj > SðtÞ
tn

����
���� on qDy for any n > ny. By the Rouché’s theorem, it follows

that RðtÞ and RðtÞG SðtÞ
tn

(hence RðtÞ and Qn;GðtÞ) have the same m roots in

Dy. Since Dy can be made arbitrarily small and there exist only finitely many
roots of RðtÞ, the proof of Lemma 2.5 is complete. r

Lemma 2.6. Suppose that RðtÞ has no roots outside the unit circle, and
suppose that Qn;GðtÞ has a real root mn greater than 1 for su‰ciently large
n. Then, limn!y mn ¼ 1.

Proof. For any e > 0, let De be the disk of radius 1þ e around the origin in

the complex plane. Then, for any su‰ciently large n, we have jRðtÞj > SðtÞ
tn

����
���� for

all t on qDe. Moreover, RðtÞ and G
SðtÞ
tn

are holomorphic on the complement

of De in the Riemann sphere. By Rouché’s theorem, RðtÞ and RðtÞG SðtÞ
tn

(hence RðtÞ and Qn;GðtÞ) have no roots outside De. Hence mn converges to 1 as n
goes to y. r

3. Combined tree maps

For an n� n matrix M, let MðtÞ be the characteristic polynomial jtI �Mj of
M, where I ¼ In is the n� n identity matrix. Let M�ðtÞ be the reciprocal
polynomial of MðtÞ. Then,

M�ðtÞ ¼ tn
1

t
I �M

����
���� ¼ jI � tMj;

that is M�ðtÞ equals the determinant of the matrix I � tM.
This section introduces combined tree maps. Given two trees we combine

these trees with another tree of star type having the valence nþ 1 vertex and
define a new tree, say Qn. When two tree maps on Qn satisfy certain conditions
(L1, L2, L3 and R1, R2, R3), we can define the combined tree map qn on Qn

and obtain a family of tree maps fqn : Qn ! Qngnb1. In Section 3.1 we give a
su‰cient condition that guarantees MðqnÞ is PF. In Section 3.2 we consider
combined tree maps in a particular setting. Then, we give a formula for MðqnÞðtÞ
and MðqnÞ�ðtÞ and analyze the asymptotic behavior of the growth rate for qn.
This analysis will be applied to train track maps in Section 4.

3.1. Transition matrices and growth rate
We assume that all trees are embedded in the disk D. By the trivial tree T0,

we mean the tree with only one vertex. Let Gn;þ and Gn;� be trees of star type
as in Figure 5, having one vertex of valence nþ 1.

99the dilatation for a family of pseudo-anosov braids



Let GL (resp. GR) be a tree (possibly a trivial tree) with a valence 1 vertex,
say vL (resp. vR). Let wL and wR be vertices of Gn;þ as in Figure 5, and glue GL,
Gn;þ and GR together so that for S A fL;Rg, vS and wS become one vertex
(Figure 6). The resulting tree Qn;þ is called the combined tree, obtained from the
triple (GL;Gn;þ;GR). We define the combined tree Qn;�, obtained from the triple
(GL;Gn;�;GR) in the same manner.

Before we define combined tree maps on Qn;þ=�, we label the edges of
Qn;þ=�. Let l be the number of edges of GL, and let r be the number of edges of
GR plus 1. Note that the number of edges of Qn;þ=� is lþ nþ r.

� The edges of Gn;þ=� are numbered lþ 1 to lþ nþ 1 in the clockwise/
counterclockwise direction as in Figure 7.

� The edge of GL sharing a vertex with the ðlþ 1Þst edge is numbered l and
the remaining edges of GL are numbered 1 to l� 1 arbitrarily.

� The edge of GR sharing a vertex with the ðlþ nþ 1Þst edge is numbered
lþ nþ 2 and the remaining edges of GR are numbered lþ nþ 3 to lþ nþ r
arbitrarily.
The edge numbered i is denoted by ei.

Now we take a tree map gL : Qn;þ=� ! Qn;þ=� satisfying the following
conditions.

L1 The map gL restricted to the set of vertices of EðQn;þ=�ÞnðEðGLÞU felþ1gÞ
is the identity.

L2 gLðGLÞHGL.
L3 The edge path gLðelþ1Þ passes through elþ1 only once and passes

through el.
Next, we take a tree map gR : Qn;þ=� ! Qn;þ=� satisfying the following

conditions.
R1 The map gR restricted to the set of vertices of EðQn;þ=�Þn

ðEðGRÞU felþnþ1gÞ is the identity.

Figure 5. trees (left) Gn;þ and (right) Gn;� having one vertex of valence nþ 1.

Figure 6. combined trees Qn;þ: (left) general case, (right) case where GR is the trivial tree.
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R2 gRðGRÞHGR.
R3 The edge path gRðelþnþ1Þ passes through elþnþ1 only once and passes

through elþnþ2.
Finally, we define the tree map gn : Qn;þ=� ! Qn;þ=� satisfying the following

conditions.
n1 The map gn restricted to the set of vertices of EðQn;þ=�Þn

ðEðGn;þ=�ÞU fel; elþnþ2gÞ is the identity.
n2 gn rotates the subtree Gn;þ=� as in Figure 7.
n3 The image of each e A fel; elþnþ2g is as in Figure 7. The length of the

edge path gnðeÞ is 3.

The composition

qn ¼ gRgngL : Qn;þ=� ! Qn;þ=�

is called the combined tree map, obtained from the triple ðgL; gn; gRÞ. It makes
sense to consider the transition matrices MðgSÞ of gSjGS

: GS ! GS, S A fL;Rg
and MðgnÞ of gnjGn;þ=�

: Gn;þ=� ! Gn;þ=�. The transition matrix MðqnÞ has the
following form:

MðqnÞ ¼
ML A 0

B Mn C

D E MR

0
B@

1
CA; where Mn ¼

� 1

. .
.

1

�

0
BBBB@

1
CCCCAð3:1Þ

(each empty space in Mn represents the number 0), and the block matrices satisfy
ML bMðgLÞ, Mn bMðgnÞ and MR bMðgRÞ. (In fact ML ¼ MðgLÞ, although
we will not be using this fact.)

Throughout this subsection, we assume that the trees GL and GR are not
trivial. It is straightforward to see the following from the defining conditions of
gL, gn and gR.

Lemma 3.1. Let mi; j be the ði; jÞ entry of MðqnÞ. We have
(1) mlþn;lþnþ2 ¼ 1 and mlþnþ1;lþnþ2 ¼ 1, and

Figure 7. (top) gn rotates Gn;þ, (bottom) gn rotates Gn;�. The edges el and elþnþ2 and their images

are drawn in bold.
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(2) ml;lþ1 > 0, mlþ1;lþ1 > 0 and mlþnþ1;lþ1 > 1. Moreover, mlþ1; j ¼
mlþnþ1; j for each j with 1a ja l and mlþ1; j0 > 0 for some 1a j0 a l, and

(3) mlþnþ2;lþ1 > 0.

An important feature is that the growth rate of qn is always greater than 1 if
MðgLÞ and MðgRÞ are irreducible, which will be shown in Proposition 3.3. We
first show that MðqnÞ is irreducible in this case. Notice that MðgnÞ is always
irreducible, and since Mn bMðqnÞ so Mn must be irreducible as well.

Lemma 3.2. Let qn ¼ gRgngL : Qn;þ=� ! Qn;þ=� be the combined tree map.
Assume that both MðgLÞ and MðgRÞ are irreducible. Then, MðqnÞ is irreducible.

Proof. Note that ML, MR and Mn are irreducible. Let Gqn be the directed
graph of MðqnÞ. We identify vertices of Gqn with edges of Qn;þ=�. Let VL

(resp. VR, Vn) be the set of vertices of Gqn coming from the set of edges of the
subtree GL (resp. GR, Gn;þ=�) of Qn;þ=�. Lemma 3.1(2) shows that there exists
an edge connecting the set VL to the set Vn, and there exists an edge connecting
the set Vn to the set VL. This is also true between Vn and VR by Lemma
3.1(1,3). Thus, one can find an edge path between any two vertices of Gqn .

r

Proposition 3.3. Under the assumptions of Lemma 3.2, MðqnÞ is PF.

Proof. Lemma 3.1(2) says that the directed graph Gqn has an edge from the
vertex vlþ1 to itself, and we denote such edge by e. Since MðqnÞ is irreducible,
for any vertex v of Gqn there exists an edge path E ¼ e1e2 � � � enðvÞ from vlþ1 to
v. Thus, for any nb nðvÞ we have an edge path e � � � eE of length n from vlþ1 to
v. Since the number of vertices is finite, there exists an integer N > 0 such that
for any vertex w of Gqn and any integer nbN we have an edge path of length n
from vlþ1 to w. Since there exists an edge path from any vertex x of Gqn to vlþ1,
we can find a su‰ciently large integer N 0 such that for any pair of vertices x and
w there exists an edge path of length N 0 from x to w. Thus, MðqnÞ is PF. r

The following property is crucial in proving Proposition 1.1 and Theorem
1.3.

Proposition 3.4. Under the assumptions of Lemma 3.2, we have
lðMðqnÞÞ > lðMðqnþ1ÞÞ > 1.

Proof. To compare Mðqnþ1Þ with MðqnÞ we introduce a new labeling of
edges of Qnþ1;þ=�. The trees GL and GR are the common subtrees for both trees
Qn;þ=� and Qnþ1;þ=�. Edges of the subtrees GL and GR of Qnþ1;þ=� are numbered
in the same manner as those of Qn;þ=�, and edges of Gnþ1 are numbered

lþ 1; lþ nþ rþ 1; lþ 2; lþ 3; . . . ; lþ nþ 1
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in the clockwise/counterclockwise direction. Here the edge sharing a vertex with
the l th edge is numbered lþ 1.

Let MðqnÞ ¼ ðmi; jÞ1ai; jalþnþr be the matrix given in (3.1). Then,
Mðqnþ1Þ ¼ ðm 0

i; jÞ1ai; jalþnþrþ1 with new labeling has the following form:

Mðqnþ1Þ ¼

ML A 0

� 1

1

B . .
.

C

1

�

D E MR

1

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

:

Put s ¼ lðMðqnþ1ÞÞ > 1 and let y ¼ tðy1; . . . ; ylþnþrþ1Þ be the PF eigenvector for
Mðqnþ1Þ. Then,

Xlþnþrþ1

j¼1

m 0
i; jyj ¼ syj for i with 1a ia lþ nþ rþ 1:ð3:2Þ

For i ¼ lþ 1 and i ¼ lþ nþ rþ 1 of (3.2) we have

Xlþnþrþ1

j¼1

m 0
lþ1; jyj ¼

Xlþ1

j¼1

mlþ1; jyj þ ylþnþrþ1 ¼ sylþ1 and

ylþ2 ¼ sylþnþrþ1:

These two equalities together with s > 1 yield

Xlþ1

j¼1

mlþ1; jyj þ ylþ2 > sylþ1:ð3:3Þ

The equalities (3.2) for all i0 lþ 1, lþ nþ rþ 1 together with the inequality
(3.3) imply

MðqnÞŷyb sŷy; where ŷy ¼ tðy1; . . . ; ylþnþrÞ:

By Lemma 2.2(1), we have lðMðqnÞÞb s ¼ lðMðqnþ1ÞÞ. By Lemma 2.2(2)
together with (3.3), we have lðMðqnÞÞ > s. r

3.2. Asymptotic behavior of growth rate
In this section we concentrate on the combined tree obtained from the triple

ðGL;Gn;þ=�;T0Þ. We assume that gLðGLÞ ¼ GL and study the combined tree
map qn ¼ gngL.
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Let R be the subtree of Qn;þ=� such that R is obtained from the subtree
GL together with the ðlþ 1Þst edge. (Hence EðRÞ ¼ fe1; e2; . . . ; elþ1g.) For an
example of R, see Figure 8.

By the assumption gLðGLÞ ¼ GL, we have qnðRÞIR and hence the following
tree map r : R ! R is well defined: for each e A EðRÞ, the edge path rðeÞ is given
by the edge path qnðeÞ by eliminating edges which do not belong to EðRÞ. The
tree map r does not depend on the choice of n. The transition matrix MðrÞ is
given by the upper-left ðlþ 1Þ � ðlþ 1Þ submatrix of MðqnÞ. We call R the
dominant tree and r the dominant tree map for a family of combined tree maps
fqngnb1.

We now define a polynomial SðtÞ (resp. UðtÞ) as follows: Consider the
matrix tI �MðqnÞ (resp. I � tMðqnÞ) and replace the ðlþ 1Þst row by the last
row. Take the upper-left ðlþ 1Þ � ðlþ 1Þ submatrix of the resulting matrix,
denoted by S (resp. U), and then SðtÞ (resp. UðtÞ) is defined equal to the
determinant of S (resp. U). It is not hard to see that the matrices S and U do
not depend on n.

The following statement, which will be crucial later, tells us that MðrÞðtÞ is
the dominant polynomial and SðtÞ is the recessive polynomial for a family of
polynomials fMðqnÞðtÞgnb1.

Proposition 3.5. We have
(1) MðqnÞðtÞ ¼ tnMðrÞðtÞ þ SðtÞ, and
(2) MðqnÞ�ðtÞ ¼ tnUðtÞ þMðrÞ�ðtÞ.

Proof. The transition matrix MðqnÞ ¼ ðmi; jÞ is of the form

MðqnÞ ¼

MðrÞ
1

. .
.

1

mlþnþ1;1 � � � mlþnþ1;lþ1

0
BBBBBBB@

1
CCCCCCCA
;

and it is easy to see that mlþ1; j ¼ mlþnþ1; j for 1a ja l. For the proof of
(1) (resp. (2)), apply the determinant expansion with respect to the last row of
tI �MðqnÞ (resp. I � tMðqnÞÞ. r

Figure 8. (left) Qn;þ, (right) its subtree R.
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Proposition 3.6. Suppose that MðgLÞ is irreducible. Then, we have
(1) MðqnÞ is PF for each n and lðMðqnÞÞ > lðMðqnþ1ÞÞ, and
(2) lðMðrÞÞ ¼ limn!y lðMðqnÞÞ.

Proof. (1) The proof is parallel to the proofs of Propositions 3.3 and 3.4.
(2) Apply Lemma 2.5 with Proposition 3.5(1). r

4. Proof

This section is devoted to proving Proposition 1.1 and Theorems 1.2, 1.3,
1.6.

Proposition 4.1. The braids bðm1;...;mkþ1Þ are pA.

By a result of W. Menasco’s [6, Corollary 2], if L is a non-split prime alternating
link which is not a torus link, then S3nL has a complete hyperbolic structure of
finite volume. Since bðm1;...;mkþ1Þ is a 2 bridge link as depicted in Figure 13, his
result tells us that bðm1;...;mkþ1Þ is pA. Here we will show Proposition 4.1 by using
Proposition 2.4. As a result, we will find the polynomial whose largest root
equals the dilatation of bðm1;...;mkþ1Þ.

Proof of Proposition 4.1. To begin with, we define a tree Qðm1;...;mkþ1Þ and a
tree map qðm1;...;mkþ1Þ on the tree Qðm1;...;mkþ1Þ inductively.

For k ¼ 1 let Qðm1;m2Þ be the combined tree obtained from the triple
ðGm1;þ ;Gm2;�;T0Þ. Take the tree maps gm1

and gm2
with conditions n1, n2,

n3 and let us define qðm1;m2Þ as the combined tree map

qðm1;m2Þ ¼ gm2
gm1

: Qðm1;m2Þ ! Qðm1;m2Þ (Figure 9):

Next, suppose that these are defined up to k. Let Qðm1;...;mkþ1Þ be the
combined tree obtained from the triple ðQðm1;...;mkÞ;Gmkþ1;þ=�;T0Þ in case k þ 1
odd/even. We extend qðm1;...;mkÞ : Qðm1;...;mkÞ ! Qðm1;...;mkÞ to a tree map

Figure 9. case ðm1;m2Þ ¼ ð4; 2Þ.
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q̂q : Qðm1;...;mkþ1Þ ! Qðm1;...;mkþ1Þ

satisfying L1, L2, L3 so that for the edge e of Gmkþ1;þ=� sharing a vertex with the
edge of Qðm1;...;mkÞ, the length of the edge path q̂qðeÞ is 3. Let us define the
combined tree map

qðm1;...;mkþ1Þ ¼ gmkþ1
q̂q : Qðm1;...;mkþ1Þ ! Qðm1;...;mkþ1Þ:

By Proposition 3.6(1), the transition matrix Mðqðm1;...;mkþ1ÞÞ is PF.
We now deform Q ¼ Qðm1;...;mkþ1Þ into a train track tðm1;...;mkþ1Þ (as in Figure

10):
1. Puncture a disk near each valence 1 vertex of Q, and connect a 1-gon at

the vertex which contains the puncture.
2. Deform a neighborhood of a valence mi þ 1 vertex of the subtree Gmi ;þ=�

of Q into an ðmi þ 1Þ-gon for each i.
3. For each i þ 1 odd/even, puncture above/below the vertex of valence 2

which connects the two subtrees Gmi ;þ=� and Gmiþ1;�=þ. Deform a neighborhood
of the vertex and connect a 1-gon which contains the puncture.

Then, q ¼ qðm1;...;mkþ1Þ induces the graph map q̂q on t ¼ tðm1;...;mkþ1Þ into itself.
Since q̂q rotates a part of the train track smoothly (Figure 11), it turns out that q̂q
is a smooth map. It is easy to show the existence of a representative homeo-
morphism f of f ¼ Gðbðm1;...;mkþ1ÞÞ such that t is invariant under f and such that

q̂q is the train track map induced by f . The transition matrix of q̂q with respect to
real edges of t is exactly equal to the PF matrix Mðqðm1;...;mkþ1ÞÞ. By Proposition
2.4, the braid bðm1;...;mkþ1Þ is pA. This completes the proof of Proposition 4.1.

r

Example 4.2. Let us express the formula to compute the dilatation of the
braids bð4;mÞ for mb 1. We know that the dilatation of the braid bð4;mÞ is the
largest root of the polynomial Mðqð4;mÞÞðtÞ for the combined tree map qð4;mÞ. By
using qð4;2Þ shown in Figure 9, the transition matrix for qð4;2Þ is

Figure 10. numbers 1, 2 and 3 correspond to deformations 1, 2 and 3.

Figure 11. q̂q rotates a part of the train track smoothly.

106 eiko kin and mitsuhiko takasawa



Mðqð4;2ÞÞ ¼

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0

1 0 0 0 0 1 0 0

1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 2 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

The transition matrix MðrÞ of the dominant tree map r (Figure 12) for a family
of combined tree maps fqð4;mÞgmb1 is the upper-left 6� 6 matrix. Hence the
dominant polynomial MðrÞðtÞ for fqð4;mÞgmb1 equals t6 � t5 � 2t with the largest
rootA1:45109. In this case the recessive polynomial SðtÞ is

SðtÞ ¼

t �1 0 0 0 0

0 t �1 0 0 0

0 0 t �1 0 0

0 0 0 t �1 �1

�1 0 0 0 t �1

�1 0 0 0 0 �2

�������������

�������������
¼ �2t5 � tþ 1:

By Proposition 3.5(1), the dilatation of bð4;mÞ is the largest root of

Mðqð4;mÞÞðtÞ ¼ tmMðrÞðtÞ þ SðtÞ ¼ tmðt6 � t5 � 2tÞ þ ð�2t5 � tþ 1Þ;
and Proposition 3.6(2) says that limm!y lðbð4;mÞÞA1:45109.

We are now ready to show Proposition 1.1.

Proof of Proposition 1.1. Recall the tree Qðm1;...;mkþ1Þ and the tree map
qðm1;...;mkþ1Þ used in the proof of Proposition 4.1. For i even, Qðm1;...;mkþ1Þ is
also the combined tree obtained from the triple ðQðm1;...;mi�1Þ;Gmi ;�;Qðmiþ1;...;mkþ1ÞÞ.
Then, qðm1;...;mkþ1Þ is also the combined tree map given by

q̂qðm1;...;mi�1Þgmi
q̂qðmiþ1;...;mkþ1Þ : Qðm1;...;mkþ1Þ ! Qðm1;...;mkþ1Þ;

where q̂qðm1;...;mi�1Þ and q̂qðmiþ1;...;mkþ1Þ are suitable extensions of qðm1;...;mi�1Þ and
qðmiþ1;...;mkþ1Þ respectively. By Proposition 3.4, the claim holds.

For i odd, Qðm1;...;mkþ1Þ is the combined tree obtained from (Qðm1;...;mi�1Þ;
Gmi ;þ;Q

0
ðmiþ1;...;mkþ1ÞÞ, where Q 0

ðmiþ1;...;mkþ1Þ is the tree obtained from Qðmiþ1;...;mkþ1Þ by

Figure 12. dominant tree map r : R ! R for fqð4;mÞgmb1.
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the horizontal reflection. Then, the proof is similar to that for the even
case. r

We turn to the proof of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. By Proposition 2.4 and by the proof of Proposition
4.1, the dilatation of bðm1;...;mkþ1Þ is the largest root of Mðqðm1;...;mkþ1ÞÞðtÞ. Fixing
m1; . . . ;mk b 1, let Rðm1;...;mkÞ and rðm1;...;mkÞ be the dominant tree and the
dominant tree map for fqðm1;...;mkþ1Þgmkþ1b1, and we set

Rðm1;...;mkÞðtÞ ¼ Mðrðm1;...;mkÞÞðtÞ:
By Proposition 3.5,

Mðqðm1;...;mkþ1ÞÞðtÞ ¼ tmkþ1Rðm1;...;mkÞðtÞ þ Sðm1;...;mkÞðtÞ andð4:1Þ

Mðqðm1;...;mkþ1ÞÞ�ðtÞ ¼ tmkþ1Uðm1;...;mkÞðtÞ þ Rðm1;...;mkÞ�ðtÞ;ð4:2Þ
where Sðm1;...;mkÞðtÞ is the recessive polynomial for fMðqðm1;...;mkþ1ÞÞðtÞgmkþ1b1 and
Uðm1;...;mkÞðtÞ is the dominant polynomial for fMðqðm1;...;mkþ1ÞÞ�ðtÞgmkþ1b1.

Claim 4.3. We have
(1) Sðm1;...;mkÞðtÞ ¼ ð�1Þkþ1

Rðm1;...;mkÞ�ðtÞ and
(2) Uðm1;...;mkÞðtÞ ¼ ð�1Þkþ1

Rðm1;...;mkÞðtÞ.

Proof. It is enough to show Claim 4.3(1). For if (1) holds, by (4.1) we
have

Mðqðm1;...;mkþ1ÞÞðtÞ ¼ ð�1Þkþ1
Mðqðm1;...;mkþ1ÞÞ�ðtÞ:

This together with (4.1), (4.2) implies Claim 4.3(2).
We prove Claim 4.3(1) by an induction on k. For k ¼ 1, this holds

[4, Theorem 3.20(1)]. We assume Claim 4.3(1) up to k � 1. Then, we have
Sðm1;...;mk�1ÞðtÞ ¼ ð�1ÞkRðm1;...;mk�1Þ�ðtÞ,

Mðqðm1;...;mkÞÞðtÞ ¼ ð�1ÞkMðqðm1;...;mkÞÞ�ðtÞ andð4:3Þ

Uðm1;...;mk�1ÞðtÞ ¼ ð�1ÞkRðm1;...;mk�1ÞðtÞ:
For kb 2, the transition matrix Mðqðm1;...;mkþ1ÞÞ has the block form:

Mðqðm1 ;...;mkþ1ÞÞ

¼

1
CCCCCCCCCCCCCA

0
BBBBBBBBBBBBB@

1 n1 þ 1 n2 þ 1 � � � nk�1 þ 1 nk þ 1 nkþ1

Mðqðm1;...;mkÞÞ
1

1

nk þ 1 1 2 2 � � � 2 1 1

. .
.

1

nkþ1 1 2 2 � � � 2 2

;
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where nj ¼ m1 þ � � � þmj þ j for 1a ja k þ 1. Note that the last edge of the
tree Rðm1;...;mjÞ is numbered nj. In this case the polynomial Sðm1;...;mkÞðtÞ is the
determinant of a matrix:

tI �Mðrðm1;...;mk�1ÞÞ
�1

t . .
.

. .
.

�1 �1

�1 �2 �2 � � � �2 t �1

�1 �2 �2 � � � �2 �2

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Subtract the second last row from the last row of this matrix, and let A ¼ ðai; jÞ
be the resulting matrix. Applying the determinant expansion with respect to the
last row of A, we have

Sðm1;...;mkÞðtÞ ¼ jAj ¼
Xnkþ1

j¼1

ð�1Þnkþ1þ j
ankþ1; jjAnkþ1; jj

where Ai; j is the matrix obtained by A with row i and column j removed. Since
ankþ1; j ¼ 0 for j0 nk; nk þ 1 and ankþ1;nk ¼ �t, ankþ1;nkþ1 ¼ �1, we have

jAj ¼ tjAnkþ1;nk j � jAnkþ1;nkþ1j:
We note that jAnkþ1;nkþ1j ¼ Mðqðm1;...;mkÞÞðtÞ. For the computation of jAnkþ1;nk j,
subtract the second last row of Ankþ1;nkþ1�1 from the last row, and for the resulting
matrix, apply the determinant expansion of the last column successively. Then,
we obtain

jAnkþ1;nk j ¼ �tmk�1Rðm1;...;mk�1ÞðtÞ þ Sðm1;...;mk�1ÞðtÞ:
Thus,

Sðm1;...;mkÞðtÞ ¼ �Mðqðm1;...;mkÞÞðtÞ � tmkRðm1;...;mk�1ÞðtÞ þ tSðm1;...;mk�1ÞðtÞ:
In the same manner we have

Rðm1;...;mkÞ�ðtÞ ¼ Mðqðm1;...;mkÞÞ�ðtÞ þ tmkUðm1;...;mk�1ÞðtÞ � tRðm1;...;mk�1Þ�ðtÞ:
By using (4.3), these two equalities imply Claim 4.3(1). This completes the proof.

We now turn to proving Theorem 1.2. We will prove an inductive formula
for Rðm1;...;mkÞðtÞ. It is not hard to show that Rðm1ÞðtÞ ¼ tm1þ1ðt� 1Þ � 2t.

For kb 2, one can verify

Rðm1;...;mkÞðtÞ ¼ tMðqðm1;...;mkÞÞðtÞ � tmkRðm1;...;mk�1ÞðtÞ þ tSðm1;...;mk�1ÞðtÞ:ð4:4Þ
Substitute the two equalities

Mðqðm1;...;mkÞÞðtÞ ¼ tmkRðm1;...;mk�1ÞðtÞ þ ð�1ÞkRðm1;...;mk�1Þ�ðtÞ and

Sðm1;...;mk�1ÞðtÞ ¼ ð�1ÞkRðm1;...;mk�1Þ�ðtÞ
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into (4.4), then we find the inductive formula

Rðm1;...;mkÞðtÞ ¼ tmk ðt� 1ÞRðm1;...;mk�1ÞðtÞ þ ð�1Þk2tRðm1;...;mk�1Þ�ðtÞ:

This completes the proof of Theorem 1.2. r

Proof of Theorem 1.3. To begin with, we show

Claim 4.4. We have
(1) limmi!y limmiþ1!y � � � limmkþ1!y lðbðm1;...;mkþ1ÞÞ ¼ 1 for i ¼ 1 and
(2) limmi!y limmiþ1!y � � � limmkþ1!y lðbðm1;...;mkþ1ÞÞ ¼ lðRðm1;...;mi�1ÞðtÞÞ > 1 for

ib 2.

Proof. (1) By Theorem 1.2 and by Lemma 2.5

lim
mkþ1!y

lðbðm1;...;mkþ1ÞÞ ¼ lðRðm1;...;mkÞðtÞÞ:

Recall that Rðm1;...;miÞðtÞ ¼ Mðrðm1;...;miÞÞðtÞ. It is not hard to see that the matrix
Mðrðm1;...;miÞÞ for ib 1 is PF, and hence the largest root of Rðm1;...;miÞðtÞ is greater
than 1. Then, by using the inductive formula of Rðm1;...;miÞðtÞ in Theorem 1.2
together with Lemma 2.5, we have

lim
mi!y

lðRðm1;...;miÞðtÞÞ ¼ lðRðm1;...;mi�1ÞðtÞÞ

for ib 2. Since Rðm1ÞðtÞ ¼ tm1þ1ðt� 1Þ � 2t, we have limm1!y lðRðm1ÞðtÞÞ ¼ 1 by
Lemma 2.6. This completes the proof of (1).

(2) The proof is identical to that of (1). This completes the proof of Claim
4.4.

Claim 4.4(1) says that for any l > 1 there exists an integer miðlÞ
for each i with 1a ia k þ 1 such that lðbm1ðlÞ;...;mkþ1ðlÞÞ < l. Set m ¼
maxfmiðlÞ j i ¼ 1; . . . ; k þ 1g. By Proposition 1.1 lðbðm1;...;mkþ1ÞÞ < l whenever
mi > m. This completes the proof of Theorem 1.3(1).

The proof of Theorem 1.3(2) is identical to that of (1), but using Claim
4.4(2) instead of Claim 4.4(1). r

We show the existence of two kinds of families of pA mapping classes with
arbitrarily small dilatation and with arbitrarily large volume.

Proof of Proposition 1.4. There exists a family of pseudo-Anosov mapping
classes cn of MðDnÞ such that

lim
n!y

lðcnÞ ¼ 1:

It su‰ces to show that for any pA mapping class f A MðSg;pÞ, there exists a
family of pA mapping classes f̂fn A MðSg;pðnÞÞ such that the dilatation of f̂fn is

same as f and the volume of f̂fn goes to y as n goes to y.
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Let F A f be a pA homeomorphism. Since the set of periodic orbits of F is
dense on Sg;p, one can find a periodic orbit of F, say Q ¼ fq1; . . . ; qsg. Now
puncture each point of Q, then the pA mapping class f 0 A MðSg;pþsÞ induced by f
satisfies lðf 0Þ ¼ lðfÞ. On the other hand, volðf 0Þ > volðfÞ since TðfÞ is a
complete hyperbolic manifold obtained topologically by filling a cusp of Tðf 0Þ
with a solid torus [9, Section 6]. The volume of any cusp is bounded below
uniformly. Thus, if we puncture periodic orbits of F A f successively, we obtain
a family of pA mapping class with the desired property. r

Finally, we show Theorem 1.6.

Proof of Theorem 1.6. By Theorem 1.3(1), for each integer kb 1, the
dilatation of bðm1; ...;mkþ1Þ goes to 1 as m1; . . . ;mkþ1 all go to y. Thus, it su‰ces
to show that the volume of bðm1; ...;mkþ1Þ goes to y as k goes to y.

One verifies that bðm1;...;mkþ1Þ is a 2 bridge link as in Figure 13. In particular
it is an alternating link with twist number k þ 1. Theorem 1 in [5] tells us that
for each m1; . . . ;mkþ1 b 1,

volðbðm1; ...;mkþ1ÞÞ >
1

2
ðk � 1Þv3;

where v3 is the volume of a regular ideal tetrahedron. This completes the
proof. r
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