H. ŌSHIMAKODAI MATH. J.31 (2008), 82–91

A QUOTIENT GROUP OF THE GROUP OF SELF HOMOTOPY EQUIVALENCES OF SO(4)

HIDEAKI ŌSHIMA

Abstract

The author studies the quotient group $\mathscr{E}(SO(4))/\mathscr{E}_{\#}(SO(4))$, where $\mathscr{E}(SO(4))$ is the group of homotopy classes of self homotopy equivalences of the rotation group SO(4) and $\mathscr{E}_{\#}(SO(4))$ is the subgroup of it consisting of elements that induce the identity on homotopy groups.

1. Introduction

For a space X with a base point, let $\mathscr{E}(X)$ denote the group of homotopy classes of based self homotopy equivalences of X and let $\mathscr{E}_{\#}(X)$ be the normal subgroup of $\mathscr{E}(X)$ consisting of elements that induce the identity on homotopy groups. These groups have been studied by many people [5]. But the group structures are still unknown except for a few special cases. In particular, while $\mathscr{E}_{\#}(SO(4))$ is known [4], $\mathscr{E}(SO(4))$ is unknown. The purpose of this paper is to study the quotient group $\mathscr{E}(SO(4))/\mathscr{E}_{\#}(SO(4))$. The following basic theorem is due to Sieradski [6] and Yamaguchi [7].

THEOREM 1.1. $\mathscr{E}(\mathrm{SO}(4))/\mathscr{E}_{\#}(\mathrm{SO}(4)) \cong \mathrm{Inv}(M_2(\sqrt{2})).$

Here $M_2(\sqrt{2})$ is the ring of 2×2 -matrices

$$\begin{bmatrix} a_{11} & \sqrt{2}a_{12} \\ \sqrt{2}a_{21} & a_{22} \end{bmatrix} \quad (a_{ij} \in \mathbf{Z})$$

and $Inv(M_2(\sqrt{2}))$ is the group of invertible elements of $M_2(\sqrt{2})$. Our main results are stated as follows.

THEOREM 1.2. Let $A \in \text{Inv}(M_2(\sqrt{2}))$.

²⁰⁰⁰ Mathematics Subject Classification. 55Q05. Key words and phrases. Self homotopy equivalence, rotation group. Supported by Grant-in-Aid for Scientific Research (18540064). Received July 25, 2007; revised September 11, 2007.

- (1) The order of A is finite if and only if $A = \pm E$ or tr(A) = 0.
- (2) If tr(A) = 0, then the order of A is 3 + det(A).
- (3) If A is of order 4, then $A^2 = -E$.

Here E denotes the unit matrix, and tr, det : $Inv(M_2(\sqrt{2})) \rightarrow \mathbb{Z}$ denote the trace and the determinant, respectively.

THEOREM 1.3. The group $Inv(M_2(\sqrt{2}))$ is not nilpotent and generated by

$$A = \begin{bmatrix} 1 & 0\\ \sqrt{2} & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & \sqrt{2}\\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$$

with relations:

(1.1)
$$C^2 = (AB^{-1})^4 = E$$
, $(AB^{-1})^2 = (B^{-1}A)^2$, $CA = A^{-1}C$, $CB = B^{-1}C$.

COROLLARY 1.4. The order of any element of $\mathscr{E}(SO(4))/\mathscr{E}_{\#}(SO(4))$ is 1, 2, 4 or ∞ .

In Section 2, for completeness, we prove Theorem 1.1 by our methods. We prove Theorem 1.2 and Theorem 1.3 in Section 3 and Section 4, respectively.

2. A proof of Theorem 1.1

In this paper spaces are assumed to be based, maps and homotopies preserve base points, and the base point of a topological group is the unit. The group $\mathscr{E}(X \times Y)/\mathscr{E}_{\#}(X \times Y)$ with X, Y group-like spaces was studied by Sieradski [6], and his method was applied to the case $X = S^3$ and Y = SO(3) by Yamaguchi [7]. Recall that there is a homeomorphism $SO(4) \approx S^3 \times SO(3)$, where SO(3) = \mathbf{P}^3 , the real projective space of dimension 3, and that it induces the isomorphisms $\mathscr{E}(SO(4)) \cong \mathscr{E}(S^3 \times \mathbf{P}^3)$, $\mathscr{E}_{\#}(SO(4)) \cong \mathscr{E}_{\#}(S^3 \times \mathbf{P}^3)$ and $\mathscr{E}(SO(4))/\mathscr{E}_{\#}(SO(4)) \cong$ $\mathscr{E}(S^3 \times \mathbf{P}^3)/\mathscr{E}_{\#}(S^3 \times \mathbf{P}^3)$. Hence Theorem 1.1 can be stated as follows.

Theorem 2.1 ([6, 7]). $\mathscr{E}(S^3 \times \mathbf{P}^3) / \mathscr{E}_{\#}(S^3 \times \mathbf{P}^3) \cong Inv(M_2(\sqrt{2})).$

We shall prove Theorem 2.1. For convenience we use the same notations for a map and its homotopy class and we do not distinguish them. Given a topological group G and a space X, let [X, G] denote the set of homotopy classes of maps from X into G. It inherits a group structure from G; its multiplication is denoted by +. In the special case X = G, we denote [X, G] by $\mathscr{H}(G)$, because the notation [G, G] may be confused with the commutator subgroup of G. If $\alpha : X \to Y$ and $\beta : Y \to Z$ are maps (or homotopy classes of them), then their composition is denoted by $\beta \circ \alpha$. The following result is well known.

LEMMA 2.2. For any maps $\alpha, \beta: Y \to G$ and $\gamma: X \to Y$, we have $(\alpha + \beta) \circ \gamma = \alpha \circ \gamma + \beta \circ \gamma$.

HIDEAKI ÖSHIMA

We use the following notations as in [3]: \mathbf{P}^n the real projective space of dimension n; $q : S^3 \times P^3 \to S^3 \wedge P^3$ and $q_3 : P^3 \to P^3/P^2 = S^3$ the quotient maps; $i : S^3 \vee P^3 \to S^3 \times P^3$, $i'_1 : S^3 \to S^3 \vee P^3$ and $i'_2 : P^3 \to S^3 \vee P^3$ the inclusion maps; $i_k = i \circ i'_k$ (k = 1, 2); $p : S^3 \to P^3$ the canonical double covering map. We have the following exact sequence of groups.

$$1 \to [\mathbf{S}^3 \wedge \mathbf{P}^3, \mathbf{S}^3 \times \mathbf{P}^3] \xrightarrow{q} \mathscr{H}(\mathbf{S}^3 \times \mathbf{P}^3) \xrightarrow{t^2} [\mathbf{S}^3 \vee \mathbf{P}^3, \mathbf{S}^3 \times \mathbf{P}^3] \to 1$$

We define a binary operation • of $[S^3 \vee P^3, S^3 \times P^3]$ as follows:

(2.1)
$$\alpha \bullet \beta = i^*(i^{*-1}(\alpha) \circ i^{*-1}(\beta)) \quad (\alpha, \beta \in [\mathbf{S}^3 \vee \mathbf{P}^3, \mathbf{S}^3 \times \mathbf{P}^3]).$$

The operation • is well-defined. For, if $\tilde{\alpha}, \tilde{\alpha}' \in i^{*-1}(\alpha)$ and $\tilde{\beta}, \tilde{\beta}' \in i^{*-1}(\beta)$, then $\tilde{\alpha}' = \tilde{\alpha} + q^*(a)$ for some $a \in [\mathbf{S}^3 \wedge \mathbf{P}^3, \mathbf{S}^3 \times \mathbf{P}^3]$ and

$$i^*(\tilde{\alpha}'\circ\tilde{\beta}')=\tilde{\alpha}'\circ\beta=(\tilde{\alpha}+q^*(a))\circ\beta=\tilde{\alpha}\circ\beta+a\circ q\circ\beta=\tilde{\alpha}\circ\beta=i^*(\tilde{\alpha}\circ\tilde{\beta}),$$

since $q \circ \beta$ is null-homotopic.

LEMMA 2.3. The triple $([S^3 \vee P^3, S^3 \times P^3], +, \bullet)$ is a unitary ring such that *i* is the unit and $i^* : \mathscr{H}(S^3 \times P^3) \to [S^3 \vee P^3, S^3 \times P^3]$ is additive and multiplicative, that is, $i^*(x + y) = i^*(x) + i^*(y)$ and $i^*(x \circ y) = i^*(x) \bullet i^*(y)$.

Proof. By definitions, i^* is additive and multiplicative. Thus it suffices to prove the following equalities:

(2.3)
$$(\alpha \bullet \beta) \bullet \gamma = \alpha \bullet (\beta \bullet \gamma),$$

(2.4)
$$(\alpha + \beta) \bullet \gamma = \alpha \bullet \gamma + \beta \bullet \gamma$$

(2.5)
$$\alpha \bullet (\beta + \gamma) = \alpha \bullet \beta + \alpha \bullet \gamma,$$

where $\alpha, \beta, \gamma \in [S^3 \vee P^3, S^3 \times P^3]$.

Since $i^*(1) = i$, (2.2) is obvious. Hence *i* is the unit. We have (2.3) and (2.4) from (2.1) and Lemma 2.2. To prove (2.5), consider the homomorphism

(2.6)
$$\Theta : [\mathbf{S}^3 \vee \mathbf{P}^3, \mathbf{S}^3 \times \mathbf{P}^3] \xrightarrow{(1 \vee p)^*} [\mathbf{S}^3 \vee \mathbf{S}^3, \mathbf{S}^3 \times \mathbf{P}^3]$$
$$\xrightarrow{\cong} \pi_3(\mathbf{S}^3 \times \mathbf{P}^3) \oplus \pi_3(\mathbf{S}^3 \times \mathbf{P}^3)$$

which is defined by $\Theta(\alpha) = i_1^{\prime*}(\alpha) \oplus p^* i_2^{\prime*}(\alpha)$. Since Θ is injective, it suffices for (2.5) to prove the following two equalities:

$$i_1'^*(\alpha \bullet (\beta + \gamma)) = i_1'^*(\alpha \bullet \beta + \alpha \bullet \gamma),$$

$$p^*i_2'^*(\alpha \bullet (\beta + \gamma)) = p^*i_2'^*(\alpha \bullet \beta + \alpha \bullet \gamma).$$

Let $\tilde{\alpha}$, $\tilde{\beta}$, $\tilde{\gamma}$ satisfy $i^*(\tilde{\alpha}) = \alpha$, $i^*(\tilde{\beta}) = \beta$, $i^*(\tilde{\gamma}) = \gamma$. Then we have $i^*(\tilde{\beta} + \tilde{\gamma}) = \beta$ $\beta + \gamma$ and

THE GROUP OF SELF HOMOTOPY EQUIVALENCES OF so(4)

$$i_{1}^{\prime*}(\alpha \bullet (\beta + \gamma)) = \tilde{\alpha} \circ (\tilde{\beta} + \tilde{\gamma}) \circ i_{1} = \tilde{\alpha} \circ (\tilde{\beta} \circ i_{1} + \tilde{\gamma} \circ i_{1}) = \tilde{\alpha}_{*}(\tilde{\beta} \circ i_{1} + \tilde{\gamma} \circ i_{1})$$

$$= \tilde{\alpha}_{*}(\tilde{\beta} \circ i_{1}) + \tilde{\alpha}_{*}(\tilde{\gamma} \circ i_{1})$$
(since $\tilde{\alpha}_{*} : \pi_{3}(\mathbf{S}^{3} \times \mathbf{P}^{3}) \to \pi_{3}(\mathbf{S}^{3} \times \mathbf{P}^{3})$ is a homomorphism)
$$= (\tilde{\alpha} \circ \tilde{\beta} + \tilde{\alpha} \circ \tilde{\gamma}) \circ i_{1} = i_{1}^{\prime*}(\alpha \bullet \beta + \alpha \bullet \gamma)$$

and

$$\begin{split} p^* i_2'^* (\alpha \bullet (\beta + \gamma)) &= \tilde{\alpha} \circ (\tilde{\beta} + \tilde{\gamma}) \circ i_2 \circ p = \tilde{\alpha}_* (\tilde{\beta} \circ i_2 \circ p + \tilde{\gamma} \circ i_2 \circ p) \\ &= \tilde{\alpha}_* (\tilde{\beta} \circ i_2 \circ p) + \tilde{\alpha}_* (\tilde{\gamma} \circ i_2 \circ p) = p^* i_2'^* (\alpha \bullet \beta + \alpha \bullet \gamma). \end{split}$$

Hence we obtain (2.5). This completes the proof of Lemma 2.3.

By Lemma 2.3, the set of invertible elements

Inv := { $\alpha \in [S^3 \vee P^3, S^3 \times P^3] \mid \exists \beta \in [S^3 \vee P^3, S^3 \times P^3]; \alpha \bullet \beta = i = \beta \bullet \alpha$ }

becomes a group.

LEMMA 2.4. (1)
$$\mathscr{E}_{\#}(\mathbf{S}^3 \times \mathbf{P}^3) = i^{*-1}(i)$$
 and $\mathscr{E}(\mathbf{S}^3 \times \mathbf{P}^3) = i^{*-1}(\operatorname{Inv}).$
(2) $\mathscr{E}(\mathbf{S}^3 \times \mathbf{P}^3) / \mathscr{E}_{\#}(\mathbf{S}^3 \times \mathbf{P}^3) \cong \operatorname{Inv}.$

Proof. (1). Let Θ be the monomorphism in (2.6). If $f \in \mathscr{E}_{\#}(\mathbf{S}^3 \times \mathbf{P}^3)$, then $\Theta(i^*(f)) = \Theta(i)$ so that $i^*(f) = i$. Hence $\mathscr{E}_{\#}(\mathbf{S}^3 \times \mathbf{P}^3) \subset i^{*-1}(i)$. Conversely let $g \in i^{*-1}(i)$. Since $i_* : \pi_*(\mathbf{S}^3 \vee \mathbf{P}^3) \to \pi_*(\mathbf{S}^3 \times \mathbf{P}^3)$ is surjective, the equality $i^*(g) = i$ implies $g \in \mathscr{E}_{\#}(\mathbf{S}^3 \times \mathbf{P}^3)$. Thus $\mathscr{E}_{\#}(\mathbf{S}^3 \times \mathbf{P}^3) = i^{*-1}(i)$. Let $f \in \mathscr{E}(\mathbf{S}^3 \times \mathbf{P}^3)$. Take $g \in \mathscr{E}(\mathbf{S}^3 \times \mathbf{P}^3)$ such that $f \circ g = 1 = g \circ f$. Then $i^*(f) \bullet i^*(g) = i^*(f \circ g) = i = i^*(g \circ f) = i^*(g) \bullet i^*(f)$. Hence $i^*(f) \in \text{Inv}$ and so $\mathscr{E}(\mathbf{S}^3 \times \mathbf{P}^3) \subset i^{*-1}(\text{Inv})$.

and so $\mathscr{E}(S^3 \times \mathbf{P}^3) \subset i^{*-1}(Inv)$.

Conversely let $f \in i^{*-1}(Inv)$. Then there exists $g \in \mathscr{H}(S^3 \times P^3)$ such that $i^{*}(f) \bullet i^{*}(g) = i = i^{*}(g) \bullet i^{*}(f)$. Hence $i^{*}(f \circ g) = i^{*}(1) = i^{*}(g \circ f)$, and so $f \circ g - 1$ and $g \circ f - 1$ belong to the image of q^* . Since any element of the image of q^* induces the trivial homomorphism on homotopy groups, it follows that $f \circ g$ and $g \circ f$ induce the identity homomorphism on homotopy groups so that f is a homotopy equivalence, that is, $f \in \mathscr{E}(\mathbf{S}^3 \times \mathbf{P}^3)$, and so $i^{*-1}(\mathrm{Inv}) \subset$ $\mathscr{E}(\mathbf{S}^3 \times \mathbf{P}^3)$. Therefore $\mathscr{E}(\mathbf{S}^3 \times \mathbf{P}^3) = i^{*-1}(\mathrm{Inv})$.

(2). By (1) and Lemma 2.3, the assertion follows.

We define
$$f_{kl} \in \mathscr{H}(\mathbf{S}^3 \times \mathbf{P}^3)$$
 and $f'_{kl} \in [\mathbf{S}^3 \vee \mathbf{P}^3, \mathbf{S}^3 \times \mathbf{P}^3]$ by

 $f_{11} = i_1 \circ \mathrm{pr}_1, \quad f_{21} = i_2 \circ p \circ \mathrm{pr}_1, \quad f_{12} = i_1 \circ q_3 \circ \mathrm{pr}_2, \quad f_{22} = i_2 \circ \mathrm{pr}_2, \quad f'_{kl} = f_{kl} \circ i,$ where $pr_1: S^3 \times P^3 \to S^3$ and $pr_2: S^3 \times P^3 \to P^3$ are the projections. Then, as is easily shown, we have

$$[\mathbf{S}^3 \vee \mathbf{P}^3, \mathbf{S}^3 \times \mathbf{P}^3] = \bigoplus_{1 \le k, l \le 2} \mathbf{Z}\{f'_{kl}\}.$$

HIDEAKI ŌSHIMA

Given a 2 × 2-matrix (a_{ij}) with $a_{ij} \in \mathbb{Z}$, let

(2.7)
$$(a_{ij})' = \begin{bmatrix} a_{11} & \sqrt{2}a_{12} \\ \sqrt{2}a_{21} & a_{22} \end{bmatrix} \in M_2(\sqrt{2}).$$

LEMMA 2.5. The function $\varphi : [\mathbf{S}^3 \vee \mathbf{P}^3, \mathbf{S}^3 \times \mathbf{P}^3] \to M_2(\sqrt{2})$ defined by $\varphi(\sum a_{kl}f'_{kl}) = (a_{kl})'$ is an isomorphism of rings.

Proof. Obviously φ is an additive isomorphism. By direct calculation, we have

$$f_{kl} \circ f_{mn} = \begin{cases} \varepsilon(k,l,n) f_{kn} & l = m \\ 0 & l \neq m \end{cases} \text{ and so } f'_{kl} \bullet f'_{mn} = \begin{cases} \varepsilon(k,l,n) f'_{kn} & l = m \\ 0 & l \neq m \end{cases}$$

where

$$\varepsilon(k,l,n) = \begin{cases} 2 & (k,l,n) = (1,2,1), (2,1,2) \\ 1 & \text{otherwise.} \end{cases}$$

Hence

$$\left(\sum_{k,l} a_{kl} f_{kl}'\right) \bullet \left(\sum_{m,n} b_{mn} f_{mn}'\right) = \sum_{k,n} c_{kn} f_{kn}',$$

where $c_{kn} = \sum_{l} a_{kl} b_{ln} \varepsilon(k, l, n)$. The last equality implies $(c_{kn})' = (a_{kn})'(b_{kn})'$, that is, $\varphi((\sum_{l} a_{kl} f'_{kl}) \bullet (\sum_{l} b_{kl} f'_{kl})) = \varphi(\sum_{l} a_{kl} f'_{kl}) \varphi(\sum_{l} b_{kl} f'_{kl})$. Therefore φ is multiplicative. This completes the proof.

Proof of Theorem 2.1. It follows from Lemma 2.4 and Lemma 2.5 that the surjection $\varphi \circ i^* : \mathscr{H}(\mathbf{S}^3 \times \mathbf{P}^3) \to M_2(\sqrt{2})$ induces a multiplicative surjection $\mathscr{E}(\mathbf{S}^3 \times \mathbf{P}^3) \to \operatorname{Inv}(M_2(\sqrt{2}))$ with $\mathscr{E}_{\#}(\mathbf{S}^3 \times \mathbf{P}^3)$ the kernel. Hence we obtain Theorem 2.1.

3. Proof of Theorem 1.2

We have $\operatorname{Inv}(M_2(\sqrt{2})) = \det^{-1}\{1, -1\}$ and we write

$$\operatorname{Inv}_{+}(M_{2}(\sqrt{2})) = \det^{-1}(1), \quad \operatorname{Inv}_{-}(M_{2}(\sqrt{2})) = \det^{-1}(-1).$$

Then $\operatorname{Inv}_+(M_2(\sqrt{2}))$ is a subgroup of $\operatorname{Inv}(M_2(\sqrt{2}))$ of index 2.

To prove Theorem 1.2 we need three lemmas. Given an integer δ , we define a sequence of integers $\beta_n = \beta_n(\delta)$ $(n \ge 1)$ by

$$\beta_1 = 1, \quad \beta_2 = \delta, \quad \beta_{n+1} = \delta \beta_n - \beta_{n-1} \quad (n \ge 2).$$

The following two lemmas are easily proved by the induction.

LEMMA 3.1. If
$$A \in \text{Inv}_+(M_2(\sqrt{2}))$$
 and $\delta = \text{tr}(A)$, then

$$A^n = -\beta_{n-1}E + \beta_n A \quad (n \ge 2).$$

LEMMA 3.2. We have

$$\beta_{2n-1} = \sum_{i=0}^{n-1} (-1)^{n+i-1} \binom{n+i-1}{2i} \delta^{2i}, \quad \beta_{2n} = \sum_{i=0}^{n-1} (-1)^{n+i-1} \binom{n+i}{2i+1} \delta^{2i+1}.$$

The third lemma we need is

LEMMA 3.3. If δ is even and $\beta_{2n-1} = -1$, then n is even and $\delta = 0$.

Proof. Suppose that δ is even and $\beta_{2n-1} = -1$. Since $\beta_{2n-1} \equiv (-1)^{n-1} \pmod{\delta^2}$ by Lemma 3.2, it follows that *n* is even. Set n = 2m and define

$$g_{2m} := \sum_{i=1}^{2m-1} (-1)^{i-1} \binom{2m+i-1}{2i} \delta^{2i-2} = \sum_{j=0}^{2m-2} (-1)^j \binom{2m+j}{2j+2} \delta^{2j}.$$

Then $\delta^2 g_{2m} = \beta_{2n-1} + 1 = 0$. Thus it suffices to prove that $g_{2m} \neq 0$. Since $g_2 = 1$, we assume $m \ge 2$. Note that

$$g_{2m} = (2m-1)m + \sum_{j=1}^{2m-2} (-1)^j \frac{(2m-j-1)(2m-j)\cdots(2m+j)}{(2j+2)!} \delta^{2j}.$$

We prove that if $1 \le j \le 2m - 2$ and δ is a non-zero even integer, then

(3.1)
$$\Phi(j) := v_2 \left(\frac{(2m-j-1)(2m-j)\cdots(2m+j)}{(2j+2)!} \delta^{2j} \right) \ge v_2(m) + 1.$$

Here $v_2(k)$ is the exponent of 2 in the integer k, that is, $k = 2^{v_2(k)}l$ such that $v_2(k)$ is a non-negative integer and l is an odd integer. If (3.1) holds, then $g_{2m} \equiv 2^{v_2(m)} \pmod{2^{v_2(m)+1}}$ and so $g_{2m} \neq 0$. Now we prove (3.1). Let $\varepsilon(k)$ denote the sum of all coefficients in the 2-adic expansion of the positive integer k. As is well known, $v_2(k!) = k - \varepsilon(k)$. We have

$$\Phi(j) = \varepsilon(2j+2) - (2j+2) + 2jv_2(\delta) + \sum_{i=0}^{2j+1} v_2(2m-j-1+i)$$

$$\geq \varepsilon(2j+2) - 2 + \sum_{i=0}^{2j+1} v_2(2m-j-1+i) =: \Psi(j).$$

It suffices for (3.1) to prove

(3.2)
$$\Psi(j) \ge v_2(m) + 1$$
 if $1 \le j \le 2m - 2$.
If $l \ge 0$ and $2l + 2 \le 2m - 2$, then

$$\Psi(2l+1) = \varepsilon(4l+4) - 2 + v_2(2m-2l-2) + \dots + v_2(2m) + \dots + v_2(2m+2l)$$

$$\ge 1 - 2 + 1 + v_2(2m) = v_2(m) + 1$$

HIDEAKI ŌSHIMA

and

$$\begin{aligned} \Psi(2l+2) &= \varepsilon(4l+6) - 2 + v_2(2m-2l-2) + \dots + v_2(2m) + \dots + v_2(2m+2l+2) \\ &\geq 2 - 2 + v_2(2m-2l-2) + v_2(2m) + v_2(2m+2l+2) \\ &\geq v_2(m) + 3 > v_2(m) + 1. \end{aligned}$$

This proves (3.2) and completes the proof of Lemma 3.3.

Proof of Theorem 1.2. Let $A = (a_{ij})' \in \text{Inv}(M_2(\sqrt{2}))$ and write $\delta = \text{tr}(A)$, where $(a_{ij})'$ is the matrix defined in (2.7). Since $\det(A) = a_{11}a_{22} - 2a_{12}a_{21} = \pm 1$, it follows that a_{11} and a_{22} are odd so that δ is even.

(i) Suppose $\det(A) = 1$ and $A \neq \pm E$. We prove that the following conditions are equivalent: (1) the order of A is 4; (2) the order of A is finite; (3) $\delta = 0$; (4) $A^2 = -E$. Note that the order of A is $3 + \det(A)$ if (1) holds. It is obvious that (1) and (4) imply (2) and (1), respectively. It follows from Lemma 3.1 that (3) implies (4). By Lemma 3.1, for $n \ge 2$, the equality $A^n = E$ holds if and only if

$$-\beta_{n-1} + \beta_n a_{11} = -\beta_{n-1} + \beta_n a_{22} = 1, \quad \beta_n a_{12} = \beta_n a_{21} = 0.$$

Assume (2), that is, $A^n = E$ for $n \ge 2$. Then $\beta_n = 0$ and $\beta_{n-1} = -1$ by the assumption $A \ne \pm E$. Hence *n* is even by Lemma 3.2 so that $n \equiv 0 \pmod{4}$ and $\delta = 0$ by Lemma 3.3. Thus (3) holds.

(ii) Suppose det(A) = -1. We prove that the following conditions are equivalent: (1) the order of A is 2; (2) the order of A is finite; (3) $\delta = 0$. Note that the order of A is $3 + \det(A)$ if (1) holds. It is obvious that (1) implies (2). Assume (2), that is, $A^n = E$ for $n \ge 2$. Then $(A^2)^n = E$ with $A^2 \in \operatorname{Inv}_+(M_2(\sqrt{2}))$. Hence $A^2 = \pm E$ or $\operatorname{tr}(A^2) = 0$ by (i). Since

(3.3)
$$A^{2} = \begin{bmatrix} 1 + a_{11}\delta & \sqrt{2}a_{12}\delta \\ \sqrt{2}a_{21}\delta & 1 + a_{22}\delta \end{bmatrix},$$

it follows that $tr(A^2) = 2 + \delta^2 \ge 2$ so that $A^2 = \pm E$. Then the assumption det(A) = -1 and (3.3) imply that $\delta = 0$ and $A^2 = E$, that is, (1) and (3) follows. This completes the proof of Theorem 1.2.

For a group G, let Tor G denote the subset of G consisting of elements with finite order.

COROLLARY 3.4. (1) Tor $Inv(M_2(\sqrt{2}))$ is not a subgroup of $Inv(M_2(\sqrt{2}))$. (2) Tor $\mathscr{E}(S^3 \times \mathbf{P}^3)$ is not a subgroup of $\mathscr{E}(S^3 \times \mathbf{P}^3)$.

Proof. Let

$$P = \begin{bmatrix} 1 & 0\\ \sqrt{2} & -1 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & \sqrt{2}\\ 0 & -1 \end{bmatrix}.$$

88

Then $P^2 = Q^2 = E$ and so $P, Q \in \text{Tor Inv}(M_2(\sqrt{2}))$, while their product

$$PQ = \begin{bmatrix} 1 & \sqrt{2} \\ \sqrt{2} & 3 \end{bmatrix}$$

has an infinite order by Theorem 1.2. This implies (1). Since $\mathscr{E}_{\#}(\mathbf{S}^3 \times \mathbf{P}^3) \subset$ Tor $\mathscr{E}(\mathbf{S}^3 \times \mathbf{P}^3)$ by [4], Tor $\mathscr{E}(\mathbf{S}^3 \times \mathbf{P}^3)$ is mapped onto Tor Inv $(M_2(\sqrt{2}))$ under the epimorphism that induces the isomorphism of Theorem 2.1. This implies (2).

4. Proof of Theorem 1.3

Let A, B, C be the matrices defined in Theorem 1.3. For each $n \in \mathbb{Z}$, we have

(4.1)
$$A^n = \begin{bmatrix} 1 & 0\\ \sqrt{2}n & 1 \end{bmatrix}, \quad B^n = \begin{bmatrix} 1 & \sqrt{2}n\\ 0 & 1 \end{bmatrix}.$$

The following lemma is a part of Theorem 1.3.

LEMMA 4.1. The group $Inv_+(M_2(\sqrt{2}))$ is not nilpotent and generated by A and B with relations:

$$(AB^{-1})^4 = E, \quad (AB^{-1})^2 = (B^{-1}A)^2.$$

Proof. Direct calculation implies that $Inv(M_2(\sqrt{2}))$ and $Inv_+(M_2(\sqrt{2}))$ have the same center $\mathbb{Z}_2\{-E\}$ and that the following equalities hold

(4.2)
$$(AB^{-1})^2 = (A^{-1}B)^2 = (B^{-1}A)^2 = (BA^{-1})^2 = -E$$

Hence $(AB^{-1})^4 = E$. Define $C_n \in Inv_+(M_2(\sqrt{2}))$ inductively by

$$C_1 = ABA^{-1}B^{-1}, \quad C_n = C_{n-1}BC_{n-1}^{-1}B^{-1} \quad (n \ge 2).$$

By the induction on *n*, we can easily prove that the (2, 1)-component of C_n is $-\sqrt{22^{2^{n-1}}}$ and so $C_n \neq E$ for all $n \geq 1$. Hence $\text{Inv}_+(M_2(\sqrt{2}))$ is not nilpotent.

In the rest of the proof we prove that $\operatorname{Inv}_+(M_2(\sqrt{2}))$ is generated by A and B. That is, we will show that if $X = (x_{ij})' \in \operatorname{Inv}_+(M_2(\sqrt{2}))$, then $X \in \langle A, B \rangle$, where $(x_{ij})'$ is the notation of (2.7), and $\langle A, B \rangle$ is the subgroup generated by A and B. By the definition, we have

$$(4.3) x_{11}x_{22} - 2x_{12}x_{21} = 1.$$

Hence x_{11} is odd and so $x_{11} \neq 0$. By (4.2), $X \in \langle A, B \rangle$ if and only if $-X = X(-E) \in \langle A, B \rangle$. So we can assume $x_{11} > 0$ without loss of generality. By the induction on $l \ge 1$, we prove that if $X = (x_{ij})' \in \text{Inv}_+(M_2(\sqrt{2}))$ with $x_{11} = 2l - 1$, then

HIDEAKI ŌSHIMA

If l = 1, then $x_{11} = 1$ and, by (4.1) and (4.3), we have $X = A^{x_{21}}B^{x_{12}}$ and so (4.4) holds in this case. Assume that (4.4) is true if $1 \le x_{11} \le 2l - 1$ with $l \ge 1$. Suppose $x_{11} = 2l + 1$. By (4.3), x_{11} and x_{21} are prime each other and so we can write $x_{21} = kx_{11} + i$ with $1 \le i < x_{11}$. We have $X = A^k BD$, where

$$D = \begin{bmatrix} x_{11} - 2i & \sqrt{2}\{(2k+1)x_{12} - x_{22}\}\\ \sqrt{2}i & -2kx_{12} + x_{22} \end{bmatrix}.$$

Note that $x_{11} - 2i$ is odd and $|x_{11} - 2i| \le x_{11} - 2$. By the inductive hypothesis, D or D(-E) is an element of $\langle A, B \rangle$ according to whether $x_{11} - 2i$ is positive or negative. Hence, anyway, $D \in \langle A, B \rangle$ and so $X \in \langle A, B \rangle$. This completes the induction.

By the algorithm in the above proof, we have

PROPOSITION 4.2. Let $X = (x_{ij})' \in \text{Inv}_+(M_2(\sqrt{2}))$. Then $|x_{11}| = 2n - 1$ with $n \ge 1$ and

(4.5)
$$X = (A^{k_1}B)(A^{k_2}B)\cdots(A^{k_{m-1}}B)(A^{k_m}B^k)(-E)^{\varepsilon}.$$

for some integers k_1, \ldots, k_m , k, ε such that $1 \le m \le n$, $\varepsilon = 0, 1$, and that if $m \ge 2$, then $k_m \ne 0$.

The decomposition (4.5) is unique for $n \le 2$, while it is not unique for $n \ge 3$ because (4.2) implies

$$\begin{bmatrix} 2n-1 & \sqrt{2} \\ (n-1)\sqrt{2} & 1 \end{bmatrix} = BA^{n-1} = BA^{n-2}BA^{-1}B(-E).$$

Proof of Theorem 1.3. By Lemma 4.1, $Inv(M_2(\sqrt{2}))$ is not nilpotent. Since the map

$$\operatorname{Inv}_+(M_2(\sqrt{2})) \to \operatorname{Inv}_-(M_2(\sqrt{2})), \quad X \mapsto CX$$

is a bijection, it follows from Lemma 4.1 that $Inv(M_2(\sqrt{2}))$ is generated by A, B and C. Direct calculation implies the following equalities:

$$C^2 = E$$
, $CA = A^{-1}C$, $CB = B^{-1}C$.

This and Lemma 4.1 complete the proof of Theorem 1.3.

PROBLEM 4.3. Are (1.1) the defining relations of $Inv(M_2(\sqrt{2}))$?

While $\mathscr{E}_{\#}(S^3 \times P^3)$ is nilpotent by [1] (or [4]), Theorem 2.1 and Theorem 1.3 imply

COROLLARY 4.4. The group $\mathscr{E}(S^3 \times \mathbf{P}^3)$ is not nilpotent.

References

- E. DROR AND A. ZABRODSKY, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), 187–197.
- [2] A. KONO AND H. ŌSHIMA, Commutativity of the group of self homotopy classes of Lie groups, Bull. London Math. Soc. 36 (2004), 37–52.
- [3] H. ŌSHIMA, The group of self homotopy classes of SO(4), J. Pure Appl. Algebra 185 (2003), 193-205.
- [4] H. ŌSHIMA, A group of self homotopy equivalences of SO(4), Quart. J. Math. Oxford 56 (2005), 95–100.
- [5] J. W. RUTTER, Spaces of homotopy self-equivalences, a survey, Lecture notes in math. 1662, Springer-Verlag, Berlin, 1997.
- [6] A. J. SIERADSKI, Twisted self homotopy equivalences, Pacific J. Math. 34 (1970), 789-802.
- [7] K. YAMAGUCHI, Self-homotopy equivalences of SO(4), Hiroshima Math. J. 30 (2000), 129–136.

Hideaki Ōshima Ibaraki University Mito, Ibaraki 310-8512 Japan E-mail: ooshima@mx.ibaraki.ac.jp