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A QUOTIENT GROUP OF THE GROUP OF SELF HOMOTOPY

EQUIVALENCES OF SOð4Þ

Hideaki Ōshima

Abstract

The author studies the quotient group EðSOð4ÞÞ=EaðSOð4ÞÞ, where EðSOð4ÞÞ is the

group of homotopy classes of self homotopy equivalences of the rotation group SOð4Þ
and EaðSOð4ÞÞ is the subgroup of it consisting of elements that induce the identity on

homotopy groups.

1. Introduction

For a space X with a base point, let EðXÞ denote the group of homotopy
classes of based self homotopy equivalences of X and let EaðXÞ be the normal
subgroup of EðXÞ consisting of elements that induce the identity on homotopy
groups. These groups have been studied by many people [5]. But the group
structures are still unknown except for a few special cases. In particular, while
EaðSOð4ÞÞ is known [4], EðSOð4ÞÞ is unknown. The purpose of this paper is to
study the quotient group EðSOð4ÞÞ=EaðSOð4ÞÞ. The following basic theorem is
due to Sieradski [6] and Yamaguchi [7].

Theorem 1.1. EðSOð4ÞÞ=EaðSOð4ÞÞG InvðM2ð
ffiffiffi
2

p
ÞÞ.

Here M2ð
ffiffiffi
2

p
Þ is the ring of 2� 2-matrices

a11
ffiffiffi
2

p
a12ffiffiffi

2
p

a21 a22

� �
ðaij A ZÞ

and InvðM2ð
ffiffiffi
2

p
ÞÞ is the group of invertible elements of M2ð

ffiffiffi
2

p
Þ. Our main

results are stated as follows.

Theorem 1.2. Let A A InvðM2ð
ffiffiffi
2

p
ÞÞ.
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(1) The order of A is finite if and only if A ¼GE or trðAÞ ¼ 0.
(2) If trðAÞ ¼ 0, then the order of A is 3þ detðAÞ.
(3) If A is of order 4, then A2 ¼ �E.

Here E denotes the unit matrix, and tr; det : InvðM2ð
ffiffiffi
2

p
ÞÞ ! Z denote the trace

and the determinant, respectively.

Theorem 1.3. The group InvðM2ð
ffiffiffi
2

p
ÞÞ is not nilpotent and generated by

A ¼ 1 0ffiffiffi
2

p
1

� �
; B ¼ 1

ffiffiffi
2

p

0 1

� �
; C ¼ 1 0

0 �1

� �

with relations:

C 2 ¼ ðAB�1Þ4 ¼ E; ðAB�1Þ2 ¼ ðB�1AÞ2; CA ¼ A�1C; CB ¼ B�1C:ð1:1Þ

Corollary 1.4. The order of any element of EðSOð4ÞÞ=EaðSOð4ÞÞ is 1, 2, 4
or y.

In Section 2, for completeness, we prove Theorem 1.1 by our methods. We
prove Theorem 1.2 and Theorem 1.3 in Section 3 and Section 4, respectively.

2. A proof of Theorem 1.1

In this paper spaces are assumed to be based, maps and homotopies preserve
base points, and the base point of a topological group is the unit. The group
EðX � YÞ=EaðX � Y Þ with X , Y group-like spaces was studied by Sieradski [6],
and his method was applied to the case X ¼ S3 and Y ¼ SOð3Þ by Yamaguchi
[7]. Recall that there is a homeomorphism SOð4ÞAS3 � SOð3Þ, where SOð3Þ ¼
P3, the real projective space of dimension 3, and that it induces the isomorphisms
EðSOð4ÞÞGEðS3 � P3Þ, EaðSOð4ÞÞGEaðS3 � P3Þ and EðSOð4ÞÞ=EaðSOð4ÞÞG
EðS3 � P3Þ=EaðS3 � P3Þ. Hence Theorem 1.1 can be stated as follows.

Theorem 2.1 ([6, 7]). EðS3 � P3Þ=EaðS3 � P3ÞG InvðM2ð
ffiffiffi
2

p
ÞÞ.

We shall prove Theorem 2.1. For convenience we use the same notations
for a map and its homotopy class and we do not distinguish them. Given a
topological group G and a space X , let ½X ;G� denote the set of homotopy classes
of maps from X into G. It inherits a group structure from G; its multiplication
is denoted by þ. In the special case X ¼ G, we denote ½X ;G� by HðGÞ, because
the notation ½G;G� may be confused with the commutator subgroup of G. If
a : X ! Y and b : Y ! Z are maps (or homotopy classes of them), then their
composition is denoted by b � a. The following result is well known.

Lemma 2.2. For any maps a; b : Y ! G and g : X ! Y , we have
ðaþ bÞ � g ¼ a � gþ b � g.
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We use the following notations as in [3]: Pn the real projective space of

dimension n; q : S3 � P3 ! S35P3 and q3 : P
3 ! P3=P2 ¼ S3 the quotient maps;

i : S34P3 ! S3 � P3, i 01 : S
3 ! S34P3 and i 02 : P

3 ! S34P3 the inclusion maps;
ik ¼ i � i 0k ðk ¼ 1; 2Þ; p : S3 ! P3 the canonical double covering map.

We have the following exact sequence of groups.

1 ! ½S35P3; S3 � P3� !q
�

HðS3 � P3Þ !i
�
½S34P3; S3 � P3� ! 1

We define a binary operation � of ½S34P3; S3 � P3� as follows:

a � b ¼ i�ði��1ðaÞ � i��1ðbÞÞ ða; b A ½S34P3; S3 � P3�Þ:ð2:1Þ

The operation � is well-defined. For, if ~aa; ~aa 0 A i��1ðaÞ and ~bb; ~bb 0 A i��1ðbÞ, then
~aa 0 ¼ ~aaþ q�ðaÞ for some a A ½S35P3; S3 � P3� and

i�ð~aa 0 � ~bb 0Þ ¼ ~aa 0 � b ¼ ð~aaþ q�ðaÞÞ � b ¼ ~aa � b þ a � q � b ¼ ~aa � b ¼ i�ð~aa � ~bbÞ;

since q � b is null-homotopic.

Lemma 2.3. The triple ð½S34P3; S3 � P3�;þ; �Þ is a unitary ring such that i

is the unit and i� : HðS3 � P3Þ ! ½S34P3; S3 � P3� is additive and multiplicative,
that is, i�ðxþ yÞ ¼ i�ðxÞ þ i�ðyÞ and i�ðx � yÞ ¼ i�ðxÞ � i�ðyÞ.

Proof. By definitions, i� is additive and multiplicative. Thus it su‰ces to
prove the following equalities:

i � a ¼ a ¼ a � i;ð2:2Þ
ða � bÞ � g ¼ a � ðb � gÞ;ð2:3Þ

ðaþ bÞ � g ¼ a � gþ b � g;ð2:4Þ
a � ðb þ gÞ ¼ a � b þ a � g;ð2:5Þ

where a; b; g A ½S34P3; S3 � P3�.
Since i�ð1Þ ¼ i, (2.2) is obvious. Hence i is the unit. We have (2.3) and

(2.4) from (2.1) and Lemma 2.2. To prove (2.5), consider the homomorphism

Y : ½S34P3; S3 � P3� ���!ð14pÞ� ½S34S3; S3 � P3�ð2:6Þ

���!G
p3ðS3 � P3Þl p3ðS3 � P3Þ

which is defined by YðaÞ ¼ i 0�1 ðaÞl p�i 0�2 ðaÞ. Since Y is injective, it su‰ces for
(2.5) to prove the following two equalities:

i 0�1 ða � ðb þ gÞÞ ¼ i 0�1 ða � b þ a � gÞ;
p�i 0�2 ða � ðb þ gÞÞ ¼ p�i 0�2 ða � b þ a � gÞ:

Let ~aa, ~bb, ~gg satisfy i�ð~aaÞ ¼ a, i�ð ~bbÞ ¼ b, i�ð~ggÞ ¼ g. Then we have i�ð ~bb þ ~ggÞ ¼
b þ g and
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i 0�1 ða � ðb þ gÞÞ ¼ ~aa � ð ~bb þ ~ggÞ � i1 ¼ ~aa � ð ~bb � i1 þ ~gg � i1Þ ¼ ~aa�ð ~bb � i1 þ ~gg � i1Þ

¼ ~aa�ð ~bb � i1Þ þ ~aa�ð~gg � i1Þ

ðsince ~aa� : p3ðS3 � P3Þ ! p3ðS3 � P3Þ is a homomorphismÞ

¼ ð~aa � ~bb þ ~aa � ~ggÞ � i1 ¼ i 0�1 ða � b þ a � gÞ

and

p�i 0�2 ða � ðb þ gÞÞ ¼ ~aa � ð ~bb þ ~ggÞ � i2 � p ¼ ~aa�ð ~bb � i2 � pþ ~gg � i2 � pÞ

¼ ~aa�ð ~bb � i2 � pÞ þ ~aa�ð~gg � i2 � pÞ ¼ p�i 0�2 ða � b þ a � gÞ:

Hence we obtain (2.5). This completes the proof of Lemma 2.3. r

By Lemma 2.3, the set of invertible elements

Inv :¼ fa A ½S34P3; S3 � P3� j bb A ½S34P3; S3 � P3�; a � b ¼ i ¼ b � ag
becomes a group.

Lemma 2.4. (1) EaðS3 � P3Þ ¼ i��1ðiÞ and EðS3 � P3Þ ¼ i��1ðInvÞ.
(2) EðS3 � P3Þ=EaðS3 � P3ÞG Inv.

Proof. (1). Let Y be the monomorphism in (2.6). If f A EaðS3 � P3Þ,
then Yði�ð f ÞÞ ¼ YðiÞ so that i�ð f Þ ¼ i. Hence EaðS3 � P3ÞH i��1ðiÞ.
Conversely let g A i��1ðiÞ. Since i� : p�ðS34P3Þ ! p�ðS3 � P3Þ is surjective, the

equality i�ðgÞ ¼ i implies g A EaðS3 � P3Þ. Thus EaðS3 � P3Þ ¼ i��1ðiÞ.
Let f A EðS3 � P3Þ. Take g A EðS3 � P3Þ such that f � g ¼ 1 ¼ g � f .

Then i�ð f Þ � i�ðgÞ ¼ i�ð f � gÞ ¼ i ¼ i�ðg � f Þ ¼ i�ðgÞ � i�ð f Þ. Hence i�ð f Þ A Inv
and so EðS3 � P3ÞH i��1ðInvÞ.

Conversely let f A i��1ðInvÞ. Then there exists g A HðS3 � P3Þ such
that i�ð f Þ � i�ðgÞ ¼ i ¼ i�ðgÞ � i�ð f Þ. Hence i�ð f � gÞ ¼ i�ð1Þ ¼ i�ðg � f Þ, and so
f � g� 1 and g � f � 1 belong to the image of q�. Since any element of the
image of q� induces the trivial homomorphism on homotopy groups, it follows
that f � g and g � f induce the identity homomorphism on homotopy groups
so that f is a homotopy equivalence, that is, f A EðS3 � P3Þ, and so i��1ðInvÞH
EðS3 � P3Þ. Therefore EðS3 � P3Þ ¼ i��1ðInvÞ.

(2). By (1) and Lemma 2.3, the assertion follows. r

We define fkl A HðS3 � P3Þ and f 0
kl A ½S34P3; S3 � P3� by

f11 ¼ i1 � pr1; f21 ¼ i2 � p � pr1; f12 ¼ i1 � q3 � pr2; f22 ¼ i2 � pr2; f 0
kl ¼ fkl � i;

where pr1 : S
3 � P3 ! S3 and pr2 : S

3 � P3 ! P3 are the projections. Then, as
is easily shown, we have

½S34P3; S3 � P3� ¼ 0
1ak; la2

Zf f 0
klg:
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Given a 2� 2-matrix ðaijÞ with aij A Z, let

ðaijÞ0 ¼
a11

ffiffiffi
2

p
a12ffiffiffi

2
p

a21 a22

� �
A M2ð

ffiffiffi
2

p
Þ:ð2:7Þ

Lemma 2.5. The function j : ½S34P3; S3 � P3� ! M2ð
ffiffiffi
2

p
Þ defined by

j
P

akl f
0
kl

� �
¼ ðaklÞ0 is an isomorphism of rings.

Proof. Obviously j is an additive isomorphism. By direct calculation, we
have

fkl � fmn ¼
eðk; l; nÞ fkn l ¼ m

0 l0m

�
and so f 0

kl � f 0
mn ¼

eðk; l; nÞ f 0
kn l ¼ m

0 l0m

�
;

where

eðk; l; nÞ ¼ 2 ðk; l; nÞ ¼ ð1; 2; 1Þ; ð2; 1; 2Þ
1 otherwise.

�
Hence X

k; l

akl f
0
kl

 !
�
X
m;n

bmn f
0
mn

 !
¼
X
k;n

ckn f
0
kn;

where ckn ¼
P

l aklblneðk; l; nÞ. The last equality implies ðcknÞ0 ¼ ðaknÞ0ðbknÞ0, that
is, j

P
akl f

0
kl

� �
�
P

bkl f
0
kl

� �� �
¼ j

P
akl f

0
kl

� �
j
P

bkl f
0
kl

� �
. Therefore j is multipli-

cative. This completes the proof. r

Proof of Theorem 2.1. It follows from Lemma 2.4 and Lemma 2.5 that
the surjection j � i� : HðS3 � P3Þ ! M2ð

ffiffiffi
2

p
Þ induces a multiplicative surjection

EðS3 � P3Þ ! InvðM2ð
ffiffiffi
2

p
ÞÞ with EaðS3 � P3Þ the kernel. Hence we obtain

Theorem 2.1. r

3. Proof of Theorem 1.2

We have InvðM2ð
ffiffiffi
2

p
ÞÞ ¼ det�1f1;�1g and we write

InvþðM2ð
ffiffiffi
2

p
ÞÞ ¼ det�1ð1Þ; Inv�ðM2ð

ffiffiffi
2

p
ÞÞ ¼ det�1ð�1Þ:

Then InvþðM2ð
ffiffiffi
2

p
ÞÞ is a subgroup of InvðM2ð

ffiffiffi
2

p
ÞÞ of index 2.

To prove Theorem 1.2 we need three lemmas. Given an integer d, we define
a sequence of integers bn ¼ bnðdÞ ðnb 1Þ by

b1 ¼ 1; b2 ¼ d; bnþ1 ¼ dbn � bn�1 ðnb 2Þ:
The following two lemmas are easily proved by the induction.

Lemma 3.1. If A A InvþðM2ð
ffiffiffi
2

p
ÞÞ and d ¼ trðAÞ, then

An ¼ �bn�1E þ bnA ðnb 2Þ:
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Lemma 3.2. We have

b2n�1 ¼
Xn�1

i¼0

ð�1Þnþi�1 nþ i � 1

2i

� 	
d2i; b2n ¼

Xn�1

i¼0

ð�1Þnþi�1 nþ i

2i þ 1

� 	
d2iþ1:

The third lemma we need is

Lemma 3.3. If d is even and b2n�1 ¼ �1, then n is even and d ¼ 0.

Proof. Suppose that d is even and b2n�1 ¼ �1. Since b2n�1 1 ð�1Þn�1

ðmod d2Þ by Lemma 3.2, it follows that n is even. Set n ¼ 2m and define

g2m :¼
X2m�1

i¼1

ð�1Þ i�1 2mþ i � 1

2i

� 	
d2i�2 ¼

X2m�2

j¼0

ð�1Þ j 2mþ j

2j þ 2

� 	
d2j:

Then d2g2m ¼ b2n�1 þ 1 ¼ 0. Thus it su‰ces to prove that g2m 0 0. Since
g2 ¼ 1, we assume mb 2. Note that

g2m ¼ ð2m� 1Þmþ
X2m�2

j¼1

ð�1Þ j ð2m� j � 1Þð2m� jÞ � � � ð2mþ jÞ
ð2j þ 2Þ! d2j:

We prove that if 1a ja 2m� 2 and d is a non-zero even integer, then

Fð jÞ :¼ n2
ð2m� j � 1Þð2m� jÞ � � � ð2mþ jÞ

ð2j þ 2Þ! d2j
� 	

b n2ðmÞ þ 1:ð3:1Þ

Here n2ðkÞ is the exponent of 2 in the integer k, that is, k ¼ 2n2ðkÞl such that
n2ðkÞ is a non-negative integer and l is an odd integer. If (3.1) holds, then
g2m 1 2n2ðmÞ ðmod 2n2ðmÞþ1Þ and so g2m 0 0. Now we prove (3.1). Let eðkÞ
denote the sum of all coe‰cients in the 2-adic expansion of the positive integer
k. As is well known, n2ðk!Þ ¼ k � eðkÞ. We have

Fð jÞ ¼ eð2j þ 2Þ � ð2j þ 2Þ þ 2jn2ðdÞ þ
X2jþ1

i¼0

n2ð2m� j � 1þ iÞ

b eð2j þ 2Þ � 2þ
X2jþ1

i¼0

n2ð2m� j � 1þ iÞ ¼: Cð jÞ:

It su‰ces for (3.1) to prove

Cð jÞb n2ðmÞ þ 1 if 1a ja 2m� 2:ð3:2Þ
If lb 0 and 2l þ 2a 2m� 2, then

Cð2l þ 1Þ ¼ eð4l þ 4Þ � 2þ n2ð2m� 2l � 2Þ þ � � � þ n2ð2mÞ þ � � � þ n2ð2mþ 2lÞ
b 1� 2þ 1þ n2ð2mÞ ¼ n2ðmÞ þ 1
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and

Cð2l þ 2Þ ¼ eð4l þ 6Þ � 2þ n2ð2m� 2l � 2Þ þ � � � þ n2ð2mÞ þ � � � þ n2ð2mþ 2l þ 2Þ
b 2� 2þ n2ð2m� 2l � 2Þ þ n2ð2mÞ þ n2ð2mþ 2l þ 2Þ
b n2ðmÞ þ 3 > n2ðmÞ þ 1:

This proves (3.2) and completes the proof of Lemma 3.3. r

Proof of Theorem 1.2. Let A ¼ ðaijÞ0 A InvðM2ð
ffiffiffi
2

p
ÞÞ and write d ¼ trðAÞ,

where ðaijÞ0 is the matrix defined in (2.7). Since detðAÞ ¼ a11a22 � 2a12a21 ¼G1,
it follows that a11 and a22 are odd so that d is even.

(i) Suppose detðAÞ ¼ 1 and A0GE. We prove that the following con-
ditions are equivalent: (1) the order of A is 4; (2) the order of A is finite;
(3) d ¼ 0; (4) A2 ¼ �E. Note that the order of A is 3þ detðAÞ if (1) holds.
It is obvious that (1) and (4) imply (2) and (1), respectively. It follows from
Lemma 3.1 that (3) implies (4). By Lemma 3.1, for nb 2, the equality An ¼ E
holds if and only if

�bn�1 þ bna11 ¼ �bn�1 þ bna22 ¼ 1; bna12 ¼ bna21 ¼ 0:

Assume (2), that is, An ¼ E for nb 2. Then bn ¼ 0 and bn�1 ¼ �1 by the
assumption A0GE. Hence n is even by Lemma 3.2 so that n1 0 ðmod 4Þ and
d ¼ 0 by Lemma 3.3. Thus (3) holds.

(ii) Suppose detðAÞ ¼ �1. We prove that the following conditions are
equivalent: (1) the order of A is 2; (2) the order of A is finite; (3) d ¼ 0.
Note that the order of A is 3þ detðAÞ if (1) holds. It is obvious that (1)
implies (2). Assume (2), that is, An ¼ E for nb 2. Then ðA2Þn ¼ E with
A2 A InvþðM2ð

ffiffiffi
2

p
ÞÞ. Hence A2 ¼GE or trðA2Þ ¼ 0 by (i). Since

A2 ¼ 1þ a11d
ffiffiffi
2

p
a12dffiffiffi

2
p

a21d 1þ a22d

� �
;ð3:3Þ

it follows that trðA2Þ ¼ 2þ d2 b 2 so that A2 ¼GE. Then the assumption
detðAÞ ¼ �1 and (3.3) imply that d ¼ 0 and A2 ¼ E, that is, (1) and (3) follows.
This completes the proof of Theorem 1.2. r

For a group G, let Tor G denote the subset of G consisting of elements with
finite order.

Corollary 3.4. (1) Tor InvðM2ð
ffiffiffi
2

p
ÞÞ is not a subgroup of InvðM2ð

ffiffiffi
2

p
ÞÞ.

(2) Tor EðS3 � P3Þ is not a subgroup of EðS3 � P3Þ.

Proof. Let

P ¼ 1 0ffiffiffi
2

p
�1

� �
; Q ¼ 1

ffiffiffi
2

p

0 �1

� �
:
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Then P2 ¼ Q2 ¼ E and so P;Q A Tor InvðM2ð
ffiffiffi
2

p
ÞÞ, while their product

PQ ¼ 1
ffiffiffi
2

pffiffiffi
2

p
3

� �
has an infinite order by Theorem 1.2. This implies (1). Since EaðS3 � P3ÞH
Tor EðS3 � P3Þ by [4], Tor EðS3 � P3Þ is mapped onto Tor InvðM2ð

ffiffiffi
2

p
ÞÞ under

the epimorphism that induces the isomorphism of Theorem 2.1. This implies (2).
r

4. Proof of Theorem 1.3

Let A, B, C be the matrices defined in Theorem 1.3. For each n A Z, we
have

An ¼ 1 0ffiffiffi
2

p
n 1

� �
; Bn ¼ 1

ffiffiffi
2

p
n

0 1

� �
:ð4:1Þ

The following lemma is a part of Theorem 1.3.

Lemma 4.1. The group InvþðM2ð
ffiffiffi
2

p
ÞÞ is not nilpotent and generated by A

and B with relations:

ðAB�1Þ4 ¼ E; ðAB�1Þ2 ¼ ðB�1AÞ2:

Proof. Direct calculation implies that InvðM2ð
ffiffiffi
2

p
ÞÞ and InvþðM2ð

ffiffiffi
2

p
ÞÞ

have the same center Z2f�Eg and that the following equalities hold

ðAB�1Þ2 ¼ ðA�1BÞ2 ¼ ðB�1AÞ2 ¼ ðBA�1Þ2 ¼ �E:ð4:2Þ

Hence ðAB�1Þ4 ¼ E. Define Cn A InvþðM2ð
ffiffiffi
2

p
ÞÞ inductively by

C1 ¼ ABA�1B�1; Cn ¼ Cn�1BC
�1
n�1B

�1 ðnb 2Þ:

By the induction on n, we can easily prove that the ð2; 1Þ-component of Cn is
�

ffiffiffi
2

p
22

n�1 and so Cn 0E for all nb 1. Hence InvþðM2ð
ffiffiffi
2

p
ÞÞ is not nilpotent.

In the rest of the proof we prove that InvþðM2ð
ffiffiffi
2

p
ÞÞ is generated by A and

B. That is, we will show that if X ¼ ðxijÞ0 A InvþðM2ð
ffiffiffi
2

p
ÞÞ, then X A hA;Bi,

where ðxijÞ0 is the notation of (2.7), and hA;Bi is the subgroup generated by A
and B. By the definition, we have

x11x22 � 2x12x21 ¼ 1:ð4:3Þ
Hence x11 is odd and so x11 0 0. By (4.2), X A hA;Bi if and only if �X ¼
Xð�EÞ A hA;Bi. So we can assume x11 > 0 without loss of generality. By the
induction on lb 1, we prove that if X ¼ ðxijÞ0 A InvþðM2ð

ffiffiffi
2

p
ÞÞ with x11 ¼ 2l � 1,

then

X A hA;Bi:ð4:4Þ
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If l ¼ 1, then x11 ¼ 1 and, by (4.1) and (4.3), we have X ¼ Ax21Bx12 and so (4.4)
holds in this case. Assume that (4.4) is true if 1a x11 a 2l � 1 with lb 1. Sup-
pose x11 ¼ 2l þ 1. By (4.3), x11 and x21 are prime each other and so we can
write x21 ¼ kx11 þ i with 1a i < x11. We have X ¼ AkBD, where

D ¼ x11 � 2i
ffiffiffi
2

p
fð2k þ 1Þx12 � x22gffiffiffi

2
p

i �2kx12 þ x22

� �
:

Note that x11 � 2i is odd and jx11 � 2ija x11 � 2. By the inductive hypothesis,
D or Dð�EÞ is an element of hA;Bi according to whether x11 � 2i is positive or
negative. Hence, anyway, D A hA;Bi and so X A hA;Bi. This completes the
induction. r

By the algorithm in the above proof, we have

Proposition 4.2. Let X ¼ ðxijÞ0 A InvþðM2ð
ffiffiffi
2

p
ÞÞ. Then jx11j ¼ 2n� 1 with

nb 1 and

X ¼ ðAk1BÞðAk2BÞ � � � ðAkm�1BÞðAkmBkÞð�EÞe:ð4:5Þ

for some integers k1; . . . ; km, k, e such that 1ama n, e ¼ 0; 1, and that if mb 2,
then km 0 0.

The decomposition (4.5) is unique for na 2, while it is not unique for nb 3
because (4.2) implies

2n� 1
ffiffiffi
2

p

ðn� 1Þ
ffiffiffi
2

p
1

� �
¼ BAn�1 ¼ BAn�2BA�1Bð�EÞ:

Proof of Theorem 1.3. By Lemma 4.1, InvðM2ð
ffiffiffi
2

p
ÞÞ is not nilpotent.

Since the map

InvþðM2ð
ffiffiffi
2

p
ÞÞ ! Inv�ðM2ð

ffiffiffi
2

p
ÞÞ; X 7! CX

is a bijection, it follows from Lemma 4.1 that InvðM2ð
ffiffiffi
2

p
ÞÞ is generated by A, B

and C. Direct calculation implies the following equalities:

C2 ¼ E; CA ¼ A�1C; CB ¼ B�1C:

This and Lemma 4.1 complete the proof of Theorem 1.3. r

Problem 4.3. Are (1.1) the defining relations of InvðM2ð
ffiffiffi
2

p
ÞÞ?

While EaðS3 � P3Þ is nilpotent by [1] (or [4]), Theorem 2.1 and Theorem 1.3
imply

Corollary 4.4. The group EðS3 � P3Þ is not nilpotent.
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References

[ 1 ] E. Dror and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topol-

ogy 18 (1979), 187–197.
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[ 4 ] H. Ōshima, A group of self homotopy equivalences of SOð4Þ, Quart. J. Math. Oxford 56

(2005), 95–100.

[ 5 ] J. W. Rutter, Spaces of homotopy self-equivalences, a survey, Lecture notes in math. 1662,

Springer-Verlag, Berlin, 1997.

[ 6 ] A. J. Sieradski, Twisted self homotopy equivalences, Pacific J. Math. 34 (1970), 789–802.

[ 7 ] K. Yamaguchi, Self-homotopy equivalences of SOð4Þ, Hiroshima Math. J. 30 (2000),

129–136.

Hideaki Ōshima
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