A QUOTIENT GROUP OF THE GROUP OF SELF HOMOTOPY EQUIVALENCES OF $\mathrm{SO}(4)$

Hideaki Ōshima

Abstract

The author studies the quotient group $\mathscr{E}(\mathrm{SO}(4)) / \mathscr{E}_{\#}(\mathrm{SO}(4))$, where $\mathscr{E}(\mathrm{SO}(4))$ is the group of homotopy classes of self homotopy equivalences of the rotation group $\mathrm{SO}(4)$ and $\mathscr{E}_{\#}(\mathrm{SO}(4))$ is the subgroup of it consisting of elements that induce the identity on homotopy groups.

1. Introduction

For a space X with a base point, let $\mathscr{E}(X)$ denote the group of homotopy classes of based self homotopy equivalences of X and let $\mathscr{E}_{\neq}(X)$ be the normal subgroup of $\mathscr{E}(X)$ consisting of elements that induce the identity on homotopy groups. These groups have been studied by many people [5]. But the group structures are still unknown except for a few special cases. In particular, while $\mathscr{E}_{\neq}(\mathrm{SO}(4))$ is known [4], $\mathscr{E}(\mathrm{SO}(4))$ is unknown. The purpose of this paper is to study the quotient group $\mathscr{E}(\mathrm{SO}(4)) / \mathscr{E}_{\#}(\mathrm{SO}(4))$. The following basic theorem is due to Sieradski [6] and Yamaguchi [7].

Theorem 1.1. $\mathscr{E}(\operatorname{SO}(4)) / \mathscr{E}_{\#}(\mathrm{SO}(4)) \cong \operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$.
Here $M_{2}(\sqrt{2})$ is the ring of 2×2-matrices

$$
\left[\begin{array}{cc}
a_{11} & \sqrt{2} a_{12} \\
\sqrt{2} a_{21} & a_{22}
\end{array}\right] \quad\left(a_{i j} \in \mathbf{Z}\right)
$$

and $\operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$ is the group of invertible elements of $M_{2}(\sqrt{2})$. Our main results are stated as follows.

Theorem 1.2. Let $A \in \operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$.

[^0](1) The order of A is finite if and only if $A= \pm E$ or $\operatorname{tr}(A)=0$.
(2) If $\operatorname{tr}(A)=0$, then the order of A is $3+\operatorname{det}(A)$.
(3) If A is of order 4 , then $A^{2}=-E$.

Here E denotes the unit matrix, and $\operatorname{tr}, \operatorname{det}: \operatorname{Inv}\left(M_{2}(\sqrt{2})\right) \rightarrow \mathbf{Z}$ denote the trace and the determinant, respectively.

Theorem 1.3. The group $\operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$ is not nilpotent and generated by

$$
A=\left[\begin{array}{cc}
1 & 0 \\
\sqrt{2} & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 1
\end{array}\right], \quad C=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

with relations:

$$
\begin{equation*}
C^{2}=\left(A B^{-1}\right)^{4}=E, \quad\left(A B^{-1}\right)^{2}=\left(B^{-1} A\right)^{2}, \quad C A=A^{-1} C, \quad C B=B^{-1} C \tag{1.1}
\end{equation*}
$$

Corollary 1.4. The order of any element of $\mathscr{E}(\mathrm{SO}(4)) / \mathscr{E}_{\#}(\mathrm{SO}(4))$ is $1,2,4$ or ∞.

In Section 2, for completeness, we prove Theorem 1.1 by our methods. We prove Theorem 1.2 and Theorem 1.3 in Section 3 and Section 4, respectively.

2. A proof of Theorem 1.1

In this paper spaces are assumed to be based, maps and homotopies preserve base points, and the base point of a topological group is the unit. The group $\mathscr{E}(X \times Y) / \mathscr{E}_{\#}(X \times Y)$ with X, Y group-like spaces was studied by Sieradski [6], and his method was applied to the case $X=\mathrm{S}^{3}$ and $Y=\mathrm{SO}(3)$ by Yamaguchi [7]. Recall that there is a homeomorphism $\mathrm{SO}(4) \approx \mathrm{S}^{3} \times \mathrm{SO}(3)$, where $\mathrm{SO}(3)=$ \mathbf{P}^{3}, the real projective space of dimension 3, and that it induces the isomorphisms $\mathscr{E}(\mathrm{SO}(4)) \cong \mathscr{E}\left(\mathrm{S}^{3} \times \mathbf{P}^{3}\right), \mathscr{E}_{\#}(\mathrm{SO}(4)) \cong \mathscr{E}_{\#}\left(\mathrm{~S}^{3} \times \mathbf{P}^{3}\right)$ and $\mathscr{E}(\mathrm{SO}(4)) / \mathscr{E}_{\#}(\mathrm{SO}(4)) \cong$ $\mathscr{E}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right) / \mathscr{E}_{\#}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$. Hence Theorem 1.1 can be stated as follows.

Theorem $2.1([6,7]) . \quad \mathscr{E}\left(S^{3} \times \mathbf{P}^{3}\right) / \mathscr{E} \neq \#\left(S^{3} \times \mathbf{P}^{3}\right) \cong \operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$.
We shall prove Theorem 2.1. For convenience we use the same notations for a map and its homotopy class and we do not distinguish them. Given a topological group G and a space X, let $[X, G]$ denote the set of homotopy classes of maps from X into G. It inherits a group structure from G; its multiplication is denoted by + . In the special case $X=G$, we denote $[X, G]$ by $\mathscr{H}(G)$, because the notation $[G, G]$ may be confused with the commutator subgroup of G. If $\alpha: X \rightarrow Y$ and $\beta: Y \rightarrow Z$ are maps (or homotopy classes of them), then their composition is denoted by $\beta \circ \alpha$. The following result is well known.

Lemma 2.2. For any maps $\alpha, \beta: Y \rightarrow G$ and $\gamma: X \rightarrow Y$, we have $(\alpha+\beta) \circ \gamma=\alpha \circ \gamma+\beta \circ \gamma$.

We use the following notations as in [3]: \mathbf{P}^{n} the real projective space of dimension $n ; q: \mathbf{S}^{3} \times \mathbf{P}^{3} \rightarrow \mathbf{S}^{3} \wedge \mathbf{P}^{3}$ and $q_{3}: \mathbf{P}^{3} \rightarrow \mathbf{P}^{3} / \mathbf{P}^{2}=\mathbf{S}^{3}$ the quotient maps; $i: \mathrm{S}^{3} \vee \mathbf{P}^{3} \rightarrow \mathbf{S}^{3} \times \mathbf{P}^{3}, i_{1}^{\prime}: \mathrm{S}^{3} \rightarrow \mathrm{~S}^{3} \vee \mathbf{P}^{3}$ and $i_{2}^{\prime}: \mathbf{P}^{3} \rightarrow \mathrm{~S}^{3} \vee \mathbf{P}^{3}$ the inclusion maps; $i_{k}=i \circ i_{k}^{\prime}(k=1,2) ; p: \mathrm{S}^{3} \rightarrow \mathbf{P}^{3}$ the canonical double covering map.

We have the following exact sequence of groups.

$$
1 \rightarrow\left[\mathrm{~S}^{3} \wedge \mathbf{P}^{3}, \mathrm{~S}^{3} \times \mathbf{P}^{3}\right] \xrightarrow{q^{*}} \mathscr{H}\left(\mathrm{~S}^{3} \times \mathbf{P}^{3}\right) \xrightarrow{i^{*}}\left[\mathrm{~S}^{3} \vee \mathbf{P}^{3}, \mathrm{~S}^{3} \times \mathbf{P}^{3}\right] \rightarrow 1
$$

We define a binary operation - of $\left[S^{3} \vee \mathbf{P}^{3}, S^{3} \times \mathbf{P}^{3}\right]$ as follows:

$$
\begin{equation*}
\alpha \bullet \beta=i^{*}\left(i^{*-1}(\alpha) \circ i^{*-1}(\beta)\right) \quad\left(\alpha, \beta \in\left[\mathbf{S}^{3} \vee \mathbf{P}^{3}, \mathbf{S}^{3} \times \mathbf{P}^{3}\right]\right) \tag{2.1}
\end{equation*}
$$

The operation • is well-defined. For, if $\tilde{\alpha}, \tilde{\alpha}^{\prime} \in i^{*-1}(\alpha)$ and $\tilde{\beta}, \tilde{\beta}^{\prime} \in i^{*-1}(\beta)$, then $\tilde{\alpha}^{\prime}=\tilde{\alpha}+q^{*}(a)$ for some $a \in\left[\mathbf{S}^{3} \wedge \mathbf{P}^{3}, \mathbf{S}^{3} \times \mathbf{P}^{3}\right]$ and

$$
i^{*}\left(\tilde{\alpha}^{\prime} \circ \tilde{\beta}^{\prime}\right)=\tilde{\alpha}^{\prime} \circ \beta=\left(\tilde{\alpha}+q^{*}(a)\right) \circ \beta=\tilde{\alpha} \circ \beta+a \circ q \circ \beta=\tilde{\alpha} \circ \beta=i^{*}(\tilde{\alpha} \circ \tilde{\beta}),
$$

since $q \circ \beta$ is null-homotopic.
Lemma 2.3. The triple $\left(\left[\mathbf{S}^{3} \vee \mathbf{P}^{3}, \mathbf{S}^{3} \times \mathbf{P}^{3}\right],+, \bullet\right)$ is a unitary ring such that i is the unit and $i^{*}: \mathscr{H}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right) \rightarrow\left[\mathbf{S}^{3} \vee \mathbf{P}^{3}, \mathrm{~S}^{3} \times \mathbf{P}^{3}\right]$ is additive and multiplicative, that is, $i^{*}(x+y)=i^{*}(x)+i^{*}(y)$ and $i^{*}(x \circ y)=i^{*}(x) \bullet i^{*}(y)$.

Proof. By definitions, i^{*} is additive and multiplicative. Thus it suffices to prove the following equalities:

$$
\begin{gather*}
i \bullet \alpha=\alpha=\alpha \bullet i, \tag{2.2}\\
(\alpha \bullet \beta) \bullet \gamma=\alpha \bullet(\beta \bullet \gamma), \tag{2.3}\\
(\alpha+\beta) \bullet \gamma=\alpha \bullet \gamma+\beta \bullet \gamma, \tag{2.4}\\
\alpha \bullet(\beta+\gamma)=\alpha \bullet \beta+\alpha \bullet \gamma, \tag{2.5}
\end{gather*}
$$

where $\alpha, \beta, \gamma \in\left[\mathbf{S}^{3} \vee \mathbf{P}^{3}, \mathbf{S}^{3} \times \mathbf{P}^{3}\right]$.
Since $i^{*}(1)=i,(2.2)$ is obvious. Hence i is the unit. We have (2.3) and (2.4) from (2.1) and Lemma 2.2. To prove (2.5), consider the homomorphism

$$
\begin{align*}
\Theta:\left[S^{3} \vee \mathbf{P}^{3}, S^{3} \times \mathbf{P}^{3}\right] & \xrightarrow{(1 \vee p)^{*}}\left[S^{3} \vee S^{3}, S^{3} \times \mathbf{P}^{3}\right] \tag{2.6}\\
& \xrightarrow{\cong} \pi_{3}\left(S^{3} \times \mathbf{P}^{3}\right) \oplus \pi_{3}\left(S^{3} \times \mathbf{P}^{3}\right)
\end{align*}
$$

which is defined by $\Theta(\alpha)=i_{1}^{\prime *}(\alpha) \oplus p^{*} i_{2}^{i^{*}}(\alpha)$. Since Θ is injective, it suffices for (2.5) to prove the following two equalities:

$$
\begin{aligned}
i_{1}^{\prime *}(\alpha \bullet(\beta+\gamma)) & =i_{1}^{\prime *}(\alpha \bullet \beta+\alpha \bullet \gamma), \\
p^{*} i_{2}^{\prime *}(\alpha \bullet(\beta+\gamma)) & =p^{*} i_{2}^{\prime *}(\alpha \bullet \beta+\alpha \bullet \gamma) .
\end{aligned}
$$

Let $\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}$ satisfy $i^{*}(\tilde{\alpha})=\alpha, i^{*}(\tilde{\beta})=\beta, i^{*}(\tilde{\gamma})=\gamma$. Then we have $i^{*}(\tilde{\beta}+\tilde{\gamma})=$ $\beta+\gamma$ and

$$
\begin{aligned}
i_{1}^{\prime *}(\alpha \bullet(\beta+\gamma))= & \tilde{\alpha} \circ(\tilde{\beta}+\tilde{\gamma}) \circ i_{1}=\tilde{\alpha} \circ\left(\tilde{\beta} \circ i_{1}+\tilde{\gamma} \circ i_{1}\right)=\tilde{\alpha}_{*}\left(\tilde{\beta} \circ i_{1}+\tilde{\gamma} \circ i_{1}\right) \\
= & \tilde{\alpha}_{*}\left(\tilde{\beta} \circ i_{1}\right)+\tilde{\alpha}_{*}\left(\tilde{\gamma} \circ i_{1}\right) \\
& \left(\text { since } \tilde{\alpha}_{*}: \pi_{3}\left(\mathrm{~S}^{3} \times \mathbf{P}^{3}\right) \rightarrow \pi_{3}\left(\mathrm{~S}^{3} \times \mathbf{P}^{3}\right) \text { is a homomorphism }\right) \\
= & (\tilde{\alpha} \circ \tilde{\beta}+\tilde{\alpha} \circ \tilde{\gamma}) \circ i_{1}=i_{1}^{\prime *}(\alpha \bullet \beta+\alpha \bullet \gamma)
\end{aligned}
$$

and

$$
\begin{aligned}
p^{*} i_{2}^{\prime *}(\alpha \bullet(\beta+\gamma)) & =\tilde{\alpha} \circ(\tilde{\beta}+\tilde{\gamma}) \circ i_{2} \circ p=\tilde{\alpha}_{*}\left(\tilde{\beta} \circ i_{2} \circ p+\tilde{\gamma} \circ i_{2} \circ p\right) \\
& =\tilde{\alpha}_{*}\left(\tilde{\beta} \circ i_{2} \circ p\right)+\tilde{\alpha}_{*}\left(\tilde{\gamma} \circ i_{2} \circ p\right)=p^{*} i_{2}^{\prime *}(\alpha \bullet \beta+\alpha \bullet \gamma) .
\end{aligned}
$$

Hence we obtain (2.5). This completes the proof of Lemma 2.3.
By Lemma 2.3, the set of invertible elements

$$
\text { Inv }:=\left\{\alpha \in\left[\mathbf{S}^{3} \vee \mathbf{P}^{3}, \mathbf{S}^{3} \times \mathbf{P}^{3}\right] \mid \exists \beta \in\left[\mathbf{S}^{3} \vee \mathbf{P}^{3}, \mathrm{~S}^{3} \times \mathbf{P}^{3}\right] ; \alpha \bullet \beta=i=\beta \bullet \alpha\right\}
$$

becomes a group.
Lemma 2.4. (1) $\mathscr{E}_{\#}\left(\mathrm{~S}^{3} \times \mathbf{P}^{3}\right)=i^{*-1}(i)$ and $\mathscr{E}\left(\mathrm{S}^{3} \times \mathbf{P}^{3}\right)=i^{*-1}(\mathrm{Inv})$.
(2) $\mathscr{E}\left(\mathrm{S}^{3} \times \mathbf{P}^{3}\right) / \mathscr{E}_{\#}\left(\mathrm{~S}^{3} \times \mathbf{P}^{3}\right) \cong$ Inv.

Proof. (1). Let Θ be the monomorphism in (2.6). If $f \in \mathscr{E}_{\#}\left(S^{3} \times \mathbf{P}^{3}\right)$, then $\boldsymbol{\Theta}\left(i^{*}(f)\right)=\boldsymbol{\Theta}(i)$ so that $i^{*}(f)=i$. Hence $\mathscr{E}_{\#}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right) \subset i^{*-1}(i)$. Conversely let $g \in i^{*-1}(i)$. Since $i_{*}: \pi_{*}\left(\mathrm{~S}^{3} \vee \mathbf{P}^{3}\right) \rightarrow \pi_{*}\left(\mathrm{~S}^{3} \times \mathbf{P}^{3}\right)$ is surjective, the equality $i^{*}(g)=i$ implies $g \in \mathscr{E}_{\#}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$. Thus $\mathscr{E}_{\#}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)=i^{*-1}(i)$.

Let $f \in \mathscr{E}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$. Take $g \in \mathscr{E}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$ such that $f \circ g=1=g \circ f$. Then $i^{*}(f) \bullet i^{*}(g)=i^{*}(f \circ g)=i=i^{*}(g \circ f)=i^{*}(g) \bullet i^{*}(f)$. Hence $i^{*}(f) \in \operatorname{Inv}$ and so $\mathscr{E}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right) \subset i^{*-1}($ Inv $)$.

Conversely let $f \in i^{*-1}$ (Inv). Then there exists $g \in \mathscr{H}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$ such that $i^{*}(f) \bullet i^{*}(g)=i=i^{*}(g) \bullet i^{*}(f)$. Hence $i^{*}(f \circ g)=i^{*}(1)=i^{*}(g \circ f)$, and so $f \circ g-1$ and $g \circ f-1$ belong to the image of q^{*}. Since any element of the image of q^{*} induces the trivial homomorphism on homotopy groups, it follows that $f \circ g$ and $g \circ f$ induce the identity homomorphism on homotopy groups so that f is a homotopy equivalence, that is, $f \in \mathscr{E}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$, and so $i^{*-1}($ Inv $) \subset$ $\mathscr{E}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$. Therefore $\mathscr{E}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)=i^{*-1}($ Inv $)$.
(2). By (1) and Lemma 2.3, the assertion follows.

We define $f_{k l} \in \mathscr{H}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$ and $f_{k l}^{\prime} \in\left[\mathbf{S}^{3} \vee \mathbf{P}^{3}, \mathrm{~S}^{3} \times \mathbf{P}^{3}\right]$ by $f_{11}=i_{1} \circ \mathrm{pr}_{1}, \quad f_{21}=i_{2} \circ p \circ \mathrm{pr}_{1}, \quad f_{12}=i_{1} \circ q_{3} \circ \mathrm{pr}_{2}, \quad f_{22}=i_{2} \circ \mathrm{pr}_{2}, \quad f_{k l}^{\prime}=f_{k l} \circ i$, where $\mathrm{pr}_{1}: \mathrm{S}^{3} \times \mathbf{P}^{3} \rightarrow \mathrm{~S}^{3}$ and $\mathrm{pr}_{2}: \mathrm{S}^{3} \times \mathbf{P}^{3} \rightarrow \mathbf{P}^{3}$ are the projections. Then, as is easily shown, we have

$$
\left[\mathrm{S}^{3} \vee \mathbf{P}^{3}, \mathrm{~S}^{3} \times \mathbf{P}^{3}\right]=\underset{1 \leq k, l \leq 2}{ } \mathbf{Z}\left\{f_{k l}^{\prime}\right\}
$$

Given a 2×2-matrix $\left(a_{i j}\right)$ with $a_{i j} \in \mathbf{Z}$, let

$$
\left(a_{i j}\right)^{\prime}=\left[\begin{array}{cc}
a_{11} & \sqrt{2} a_{12} \tag{2.7}\\
\sqrt{2} a_{21} & a_{22}
\end{array}\right] \in M_{2}(\sqrt{2}) .
$$

Lemma 2.5. The function $\varphi:\left[\mathrm{S}^{3} \vee \mathbf{P}^{3}, \mathrm{~S}^{3} \times \mathbf{P}^{3}\right] \rightarrow M_{2}(\sqrt{2})$ defined by $\varphi\left(\sum a_{k l} f_{k l}^{\prime}\right)=\left(a_{k l}\right)^{\prime}$ is an isomorphism of rings.

Proof. Obviously φ is an additive isomorphism. By direct calculation, we have

$$
f_{k l} \circ f_{m n}=\left\{\begin{array}{ll}
\varepsilon(k, l, n) f_{k n} & l=m \\
0 & l \neq m
\end{array} \quad \text { and so } \quad f_{k l}^{\prime} \bullet f_{m n}^{\prime}= \begin{cases}\varepsilon(k, l, n) f_{k n}^{\prime} & l=m \\
0 & l \neq m\end{cases}\right.
$$

where

$$
\varepsilon(k, l, n)= \begin{cases}2 & (k, l, n)=(1,2,1),(2,1,2) \\ 1 & \text { otherwise }\end{cases}
$$

Hence

$$
\left(\sum_{k, l} a_{k l} f_{k l}^{\prime}\right) \bullet\left(\sum_{m, n} b_{m n} f_{m n}^{\prime}\right)=\sum_{k, n} c_{k n} f_{k n}^{\prime},
$$

where $c_{k n}=\sum_{l} a_{k l} b_{l n} \varepsilon(k, l, n)$. The last equality implies $\left(c_{k n}\right)^{\prime}=\left(a_{k n}\right)^{\prime}\left(b_{k n}\right)^{\prime}$, that is, $\varphi\left(\left(\sum a_{k l} f_{k l}^{\prime}\right) \bullet\left(\sum b_{k l} f_{k l}^{\prime}\right)\right)=\varphi\left(\sum a_{k l} f_{k l}^{\prime}\right) \varphi\left(\sum b_{k l} f_{k l}^{\prime}\right)$. Therefore φ is multiplicative. This completes the proof.

Proof of Theorem 2.1. It follows from Lemma 2.4 and Lemma 2.5 that the surjection $\varphi \circ i^{*}: \mathscr{H}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right) \rightarrow M_{2}(\sqrt{2})$ induces a multiplicative surjection $\mathscr{E}\left(\mathrm{S}^{3} \times \mathbf{P}^{3}\right) \rightarrow \operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$ with $\mathscr{E}_{\#}\left(\mathrm{~S}^{3} \times \mathbf{P}^{3}\right)$ the kernel. Hence we obtain Theorem 2.1.

3. Proof of Theorem 1.2

We have $\operatorname{Inv}\left(M_{2}(\sqrt{2})\right)=\operatorname{det}^{-1}\{1,-1\}$ and we write

$$
\operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right)=\operatorname{det}^{-1}(1), \quad \operatorname{Inv}_{-}\left(M_{2}(\sqrt{2})\right)=\operatorname{det}^{-1}(-1)
$$

Then $\operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right)$ is a subgroup of $\operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$ of index 2 .
To prove Theorem 1.2 we need three lemmas. Given an integer δ, we define a sequence of integers $\beta_{n}=\beta_{n}(\delta)(n \geq 1)$ by

$$
\beta_{1}=1, \quad \beta_{2}=\delta, \quad \beta_{n+1}=\delta \beta_{n}-\beta_{n-1} \quad(n \geq 2) .
$$

The following two lemmas are easily proved by the induction.
Lemma 3.1. If $A \in \operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right)$ and $\delta=\operatorname{tr}(A)$, then

$$
A^{n}=-\beta_{n-1} E+\beta_{n} A \quad(n \geq 2) .
$$

Lemma 3.2. We have

$$
\beta_{2 n-1}=\sum_{i=0}^{n-1}(-1)^{n+i-1}\binom{n+i-1}{2 i} \delta^{2 i}, \quad \beta_{2 n}=\sum_{i=0}^{n-1}(-1)^{n+i-1}\binom{n+i}{2 i+1} \delta^{2 i+1} .
$$

The third lemma we need is
Lemma 3.3. If δ is even and $\beta_{2 n-1}=-1$, then n is even and $\delta=0$.
Proof. Suppose that δ is even and $\beta_{2 n-1}=-1$. Since $\beta_{2 n-1} \equiv(-1)^{n-1}$ $\left(\bmod \delta^{2}\right)$ by Lemma 3.2, it follows that n is even. Set $n=2 m$ and define

$$
g_{2 m}:=\sum_{i=1}^{2 m-1}(-1)^{i-1}\binom{2 m+i-1}{2 i} \delta^{2 i-2}=\sum_{j=0}^{2 m-2}(-1)^{j}\binom{2 m+j}{2 j+2} \delta^{2 j}
$$

Then $\delta^{2} g_{2 m}=\beta_{2 n-1}+1=0$. Thus it suffices to prove that $g_{2 m} \neq 0$. Since $g_{2}=1$, we assume $m \geq 2$. Note that

$$
g_{2 m}=(2 m-1) m+\sum_{j=1}^{2 m-2}(-1)^{j} \frac{(2 m-j-1)(2 m-j) \cdots(2 m+j)}{(2 j+2)!} \delta^{2 j}
$$

We prove that if $1 \leq j \leq 2 m-2$ and δ is a non-zero even integer, then

$$
\begin{equation*}
\Phi(j):=v_{2}\left(\frac{(2 m-j-1)(2 m-j) \cdots(2 m+j)}{(2 j+2)!} \delta^{2 j}\right) \geq v_{2}(m)+1 . \tag{3.1}
\end{equation*}
$$

Here $v_{2}(k)$ is the exponent of 2 in the integer k, that is, $k=2^{v_{2}(k)} l$ such that $v_{2}(k)$ is a non-negative integer and l is an odd integer. If (3.1) holds, then $g_{2 m} \equiv 2^{v_{2}(m)}\left(\bmod 2^{v_{2}(m)+1}\right)$ and so $g_{2 m} \neq 0$. Now we prove (3.1). Let $\varepsilon(k)$ denote the sum of all coefficients in the 2-adic expansion of the positive integer k. As is well known, $v_{2}(k!)=k-\varepsilon(k)$. We have

$$
\begin{aligned}
\Phi(j) & =\varepsilon(2 j+2)-(2 j+2)+2 j v_{2}(\delta)+\sum_{i=0}^{2 j+1} v_{2}(2 m-j-1+i) \\
& \geq \varepsilon(2 j+2)-2+\sum_{i=0}^{2 j+1} v_{2}(2 m-j-1+i)=: \Psi(j)
\end{aligned}
$$

It suffices for (3.1) to prove

$$
\begin{equation*}
\Psi(j) \geq v_{2}(m)+1 \quad \text { if } 1 \leq j \leq 2 m-2 \tag{3.2}
\end{equation*}
$$

If $l \geq 0$ and $2 l+2 \leq 2 m-2$, then

$$
\begin{aligned}
\Psi(2 l+1) & =\varepsilon(4 l+4)-2+v_{2}(2 m-2 l-2)+\cdots+v_{2}(2 m)+\cdots+v_{2}(2 m+2 l) \\
& \geq 1-2+1+v_{2}(2 m)=v_{2}(m)+1
\end{aligned}
$$

and

$$
\begin{aligned}
\Psi(2 l+2) & =\varepsilon(4 l+6)-2+v_{2}(2 m-2 l-2)+\cdots+v_{2}(2 m)+\cdots+v_{2}(2 m+2 l+2) \\
& \geq 2-2+v_{2}(2 m-2 l-2)+v_{2}(2 m)+v_{2}(2 m+2 l+2) \\
& \geq v_{2}(m)+3>v_{2}(m)+1
\end{aligned}
$$

This proves (3.2) and completes the proof of Lemma 3.3.
Proof of Theorem 1.2. Let $A=\left(a_{i j}\right)^{\prime} \in \operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$ and write $\delta=\operatorname{tr}(A)$, where $\left(a_{i j}\right)^{\prime}$ is the matrix defined in (2.7). Since $\operatorname{det}(A)=a_{11} a_{22}-2 a_{12} a_{21}= \pm 1$, it follows that a_{11} and a_{22} are odd so that δ is even.
(i) Suppose $\operatorname{det}(A)=1$ and $A \neq \pm E$. We prove that the following conditions are equivalent: (1) the order of A is 4 ; (2) the order of A is finite; (3) $\delta=0$; (4) $A^{2}=-E$. Note that the order of A is $3+\operatorname{det}(A)$ if (1) holds. It is obvious that (1) and (4) imply (2) and (1), respectively. It follows from Lemma 3.1 that (3) implies (4). By Lemma 3.1, for $n \geq 2$, the equality $A^{n}=E$ holds if and only if

$$
-\beta_{n-1}+\beta_{n} a_{11}=-\beta_{n-1}+\beta_{n} a_{22}=1, \quad \beta_{n} a_{12}=\beta_{n} a_{21}=0
$$

Assume (2), that is, $A^{n}=E$ for $n \geq 2$. Then $\beta_{n}=0$ and $\beta_{n-1}=-1$ by the assumption $A \neq \pm E$. Hence n is even by Lemma 3.2 so that $n \equiv 0(\bmod 4)$ and $\delta=0$ by Lemma 3.3. Thus (3) holds.
(ii) Suppose $\operatorname{det}(A)=-1$. We prove that the following conditions are equivalent: (1) the order of A is 2 ; (2) the order of A is finite; (3) $\delta=0$. Note that the order of A is $3+\operatorname{det}(A)$ if (1) holds. It is obvious that (1) implies (2). Assume (2), that is, $A^{n}=E$ for $n \geq 2$. Then $\left(A^{2}\right)^{n}=E$ with $A^{2} \in \operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right)$. Hence $A^{2}= \pm E$ or $\operatorname{tr}\left(A^{2}\right)=0$ by (i). Since

$$
A^{2}=\left[\begin{array}{cc}
1+a_{11} \delta & \sqrt{2} a_{12} \delta \tag{3.3}\\
\sqrt{2} a_{21} \delta & 1+a_{22} \delta
\end{array}\right],
$$

it follows that $\operatorname{tr}\left(A^{2}\right)=2+\delta^{2} \geq 2$ so that $A^{2}= \pm E$. Then the assumption $\operatorname{det}(A)=-1$ and (3.3) imply that $\delta=0$ and $A^{2}=E$, that is, (1) and (3) follows. This completes the proof of Theorem 1.2.

For a group G, let Tor G denote the subset of G consisting of elements with finite order.

Corollary 3.4. (1) Tor $\operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$ is not a subgroup of $\operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$. (2) Tor $\mathscr{E}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$ is not a subgroup of $\mathscr{E}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$.

Proof. Let

$$
P=\left[\begin{array}{cc}
1 & 0 \\
\sqrt{2} & -1
\end{array}\right], \quad Q=\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & -1
\end{array}\right] .
$$

Then $P^{2}=Q^{2}=E$ and so $P, Q \in \operatorname{Tor} \operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$, while their product

$$
P Q=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 3
\end{array}\right]
$$

has an infinite order by Theorem 1.2. This implies (1). Since $\mathscr{E}_{\#}\left(\mathrm{~S}^{3} \times \mathbf{P}^{3}\right) \subset$ Tor $\mathscr{E}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$ by [4], Tor $\mathscr{E}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$ is mapped onto $\operatorname{Tor} \operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$ under the epimorphism that induces the isomorphism of Theorem 2.1. This implies (2).

4. Proof of Theorem 1.3

Let A, B, C be the matrices defined in Theorem 1.3. For each $n \in \mathbf{Z}$, we have

$$
A^{n}=\left[\begin{array}{cc}
1 & 0 \tag{4.1}\\
\sqrt{2} n & 1
\end{array}\right], \quad B^{n}=\left[\begin{array}{cc}
1 & \sqrt{2} n \\
0 & 1
\end{array}\right] .
$$

The following lemma is a part of Theorem 1.3.
Lemma 4.1. The group $\operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right)$ is not nilpotent and generated by A and B with relations:

$$
\left(A B^{-1}\right)^{4}=E, \quad\left(A B^{-1}\right)^{2}=\left(B^{-1} A\right)^{2} .
$$

Proof. Direct calculation implies that $\operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$ and $\operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right)$ have the same center $\mathbf{Z}_{2}\{-E\}$ and that the following equalities hold

$$
\begin{equation*}
\left(A B^{-1}\right)^{2}=\left(A^{-1} B\right)^{2}=\left(B^{-1} A\right)^{2}=\left(B A^{-1}\right)^{2}=-E \tag{4.2}
\end{equation*}
$$

Hence $\left(A B^{-1}\right)^{4}=E$. Define $C_{n} \in \operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right)$ inductively by

$$
C_{1}=A B A^{-1} B^{-1}, \quad C_{n}=C_{n-1} B C_{n-1}^{-1} B^{-1} \quad(n \geq 2)
$$

By the induction on n, we can easily prove that the (2,1)-component of C_{n} is $-\sqrt{2} 2^{2^{n}-1}$ and so $C_{n} \neq E$ for all $n \geq 1$. Hence $\operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right)$ is not nilpotent.

In the rest of the proof we prove that $\operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right)$ is generated by A and B. That is, we will show that if $X=\left(x_{i j}\right)^{\prime} \in \operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right)$, then $X \in\langle A, B\rangle$, where $\left(x_{i j}\right)^{\prime}$ is the notation of (2.7), and $\langle A, B\rangle$ is the subgroup generated by A and B. By the definition, we have

$$
\begin{equation*}
x_{11} x_{22}-2 x_{12} x_{21}=1 \tag{4.3}
\end{equation*}
$$

Hence x_{11} is odd and so $x_{11} \neq 0$. By (4.2), $X \in\langle A, B\rangle$ if and only if $-X=$ $X(-E) \in\langle A, B\rangle$. So we can assume $x_{11}>0$ without loss of generality. By the induction on $l \geq 1$, we prove that if $X=\left(x_{i j}\right)^{\prime} \in \operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right)$ with $x_{11}=2 l-1$, then

$$
\begin{equation*}
X \in\langle A, B\rangle . \tag{4.4}
\end{equation*}
$$

If $l=1$, then $x_{11}=1$ and, by (4.1) and (4.3), we have $X=A^{x_{21}} B^{x_{12}}$ and so (4.4) holds in this case. Assume that (4.4) is true if $1 \leq x_{11} \leq 2 l-1$ with $l \geq 1$. Suppose $x_{11}=2 l+1$. By (4.3), x_{11} and x_{21} are prime each other and so we can write $x_{21}=k x_{11}+i$ with $1 \leq i<x_{11}$. We have $X=A^{k} B D$, where

$$
D=\left[\begin{array}{cc}
x_{11}-2 i & \sqrt{2}\left\{(2 k+1) x_{12}-x_{22}\right\} \\
\sqrt{2} i & -2 k x_{12}+x_{22}
\end{array}\right] .
$$

Note that $x_{11}-2 i$ is odd and $\left|x_{11}-2 i\right| \leq x_{11}-2$. By the inductive hypothesis, D or $D(-E)$ is an element of $\langle A, B\rangle$ according to whether $x_{11}-2 i$ is positive or negative. Hence, anyway, $D \in\langle A, B\rangle$ and so $X \in\langle A, B\rangle$. This completes the induction.

By the algorithm in the above proof, we have
Proposition 4.2. Let $X=\left(x_{i j}\right)^{\prime} \in \operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right)$. Then $\left|x_{11}\right|=2 n-1$ with $n \geq 1$ and

$$
\begin{equation*}
X=\left(A^{k_{1}} B\right)\left(A^{k_{2}} B\right) \cdots\left(A^{k_{m-1}} B\right)\left(A^{k_{m}} B^{k}\right)(-E)^{\varepsilon} . \tag{4.5}
\end{equation*}
$$

for some integers $k_{1}, \ldots, k_{m}, k, \varepsilon$ such that $1 \leq m \leq n, \varepsilon=0,1$, and that if $m \geq 2$, then $k_{m} \neq 0$.

The decomposition (4.5) is unique for $n \leq 2$, while it is not unique for $n \geq 3$ because (4.2) implies

$$
\left[\begin{array}{cc}
2 n-1 & \sqrt{2} \\
(n-1) \sqrt{2} & 1
\end{array}\right]=B A^{n-1}=B A^{n-2} B A^{-1} B(-E)
$$

Proof of Theorem 1.3. By Lemma 4.1, $\operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$ is not nilpotent. Since the map

$$
\operatorname{Inv}_{+}\left(M_{2}(\sqrt{2})\right) \rightarrow \operatorname{Inv}_{-}\left(M_{2}(\sqrt{2})\right), \quad X \mapsto C X
$$

is a bijection, it follows from Lemma 4.1 that $\operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$ is generated by A, B and C. Direct calculation implies the following equalities:

$$
C^{2}=E, \quad C A=A^{-1} C, \quad C B=B^{-1} C .
$$

This and Lemma 4.1 complete the proof of Theorem 1.3.
Problem 4.3. Are (1.1) the defining relations of $\operatorname{Inv}\left(M_{2}(\sqrt{2})\right)$?
While $\mathscr{E}_{\#}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$ is nilpotent by [1] (or [4]), Theorem 2.1 and Theorem 1.3 imply

Corollary 4.4. The group $\mathscr{E}\left(\mathbf{S}^{3} \times \mathbf{P}^{3}\right)$ is not nilpotent.

References

[1] E. Dror and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), 187-197.
[2] A. Kono and H. Ōshima, Commutativity of the group of self homotopy classes of Lie groups, Bull. London Math. Soc. 36 (2004), 37-52.
[3] H. Ōshima, The group of self homotopy classes of SO(4), J. Pure Appl. Algebra 185 (2003), 193-205.
[4] H. Ōshima, A group of self homotopy equivalences of $\mathrm{SO}(4)$, Quart. J. Math. Oxford 56 (2005), 95-100.
[5] J. W. Rutter, Spaces of homotopy self-equivalences, a survey, Lecture notes in math. 1662, Springer-Verlag, Berlin, 1997.
[6] A. J. Sieradski, Twisted self homotopy equivalences, Pacific J. Math. 34 (1970), 789-802.
[7] K. Yamaguchi, Self-homotopy equivalences of SO(4), Hiroshima Math. J. 30 (2000), 129-136.

Hideaki Ōshima
Ibaraki University
Mito, Ibaraki 310-8512
Japan
E-mail: ooshima@mx.ibaraki.ac.jp

[^0]: 2000 Mathematics Subject Classification. 55Q05.
 Key words and phrases. Self homotopy equivalence, rotation group.
 Supported by Grant-in-Aid for Scientific Research (18540064).
 Received July 25, 2007; revised September 11, 2007.

