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GAPS IN THE EXPONENT SPECTRUM OF SUBGROUPS

OF DISCRETE QUASICONFORMAL GROUPS

Petra Bonfert-Taylor, Kurt Falk and Edward C. Taylor

Abstract

Let G be a discrete quasiconformal group preserving B3 whose limit set LðGÞ is

purely conical and all of qB3. Let ĜG be a non-elementary normal subgroup of G: we

show that there exists a set A of full measure in LðGÞ so that A, regarded as a subset

of LðĜGÞ, has ‘‘fat horospherical’’ dynamics relative to ĜG. As an application we will

bound from below the exponent of convergence of ĜG in terms of the Hausdor¤

dimension of A.

1. Introduction

Recall that the definition of a convergence group allows one to broadly
replicate the dynamics of a discrete isometric group action on a pinched
Hadamard manifold. For example, discrete convergence groups acting on
perfect metrizable compacta have the following properties. The action of the
group divides the underlying space into two dynamically distinct sets: the set of
discontinuity and its complement, the limit set. The classification of elements of
the group into the categories of loxodromic, elliptic, or parabolic remains valid,
and in the non-elementary case loxodromic fixed points are dense in the limit
set. See Gehring and Martin [11].

We focus on a class of convergence groups called discrete quasiconformal
groups. A group G is a discrete quasiconformal group if it consists of
quasiconformal homeomorphisms, and there exists a uniform bound on the
dilatation of all elements of the group. From this point of view Kleinian groups
acting on Sn are the discrete 1-quasiconformal groups on Sn. While a discrete
quasiconformal group does not typically act isometrically, the theory of quasi-
conformal mappings contains enough analytic and geometric structure to produce
an interesting dynamical action on Sn.
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In this note our goals are two-fold: first we explore the dynamical degen-
eration of the conical limit set of a non-elementary discrete quasiconformal
group as one passes to a non-elementary normal subgroup, and then we show
that the geometric picture one receives of this degeneration in the isometric
setting is in fact an asymptotic limit of the geometric picture in the quasicon-
formal setting.

Acknowledgements. We thank the referee for valuable suggestions and
comments on an earlier version of the paper.

2. Statement of main results

Let G be a non-elementary Kleinian group, and let LðGÞ be its limit set. It
is easy to show that if ĜG is a non-elementary normal subgroup of G then
LðĜGÞ ¼ LðGÞ. Though the limit sets of G and ĜG are the same, the orbital
dynamics, relative to the orbits Gð0Þ and ĜGð0Þ ð0 A BnÞ, may be very di¤erent.
Here we are most interested in the conical limit set. The foundational result of
Bishop and Jones ([4]) says that the Hausdor¤ dimension of the conical limit set of
a non-elementary Kleinian group G is the exponent of convergence of the Poincaré
series of G. Though the limit sets are the same for ĜG and G, the size (as
measured by Hausdor¤ dimension) of the conical limit set of ĜG may be strictly
less than the size of the conical limit set of G (for examples of this see e.g. [9],
[15], and [10]). The key point in explaining the phenomenon, from a Kleinian
group point of view, is the following fact established by K. Matsuzaki [14]: If ĜG
is a non-elementary normal subgroup of G then the conical limit set of G is
contained in the horospherical limit set of ĜG.

We will demonstrate a generalization of this phenomenon in the setting of
discrete quasiconformal groups, and thus realize Matsuzaki’s result as a limit as
K ! 1 in this generalization.

Definition 2.1. Let G be a discrete quasiconformal group acting on Bn. A
point z A Sn�1 is a conical limit point of G if there exists a sequence fgjgHG such
that fgjð0Þg converges to z within a Euclidean non-tangential cone based at
z. The conical limit set LcðGÞ is the set of all conical limit points.

A conical limit point z is a strong conical limit point of G if there exists a
conical approach fgjð0Þg that has the additional property that fg�1

j ð0Þg converges
to a point b0 z. The strong conical limit set Ls

cðGÞ is the set of all strong
conical limit points.

A non-elementary quasiconformal group G acting on Bn always has Ls
cðGÞ0j

because the loxodromic fixed point set of such a G is contained in Ls
cðGÞ.

Remark 2.2. We will demonstrate (Lemma 2.10) that the strong conical
limit set is of full measure in the limit set of a co-finite Kleinian group.
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We remark that the condition of the sequence fgjð0Þg converging to z within
a Euclidean non-tangential cone can equivalently be described via the existence of
a constant C > 0 such that

1� jgjð0Þj
jgjð0Þ � zj bC for all j:

A third, and equivalent, condition is the existence of a constant ~CC such that
fgjð0Þg converges to z within hyperbolic distance ~CC from the hyperbolic geodesic
ray ½0; zÞ.

Definition 2.3. Let G be a discrete quasiconformal group acting on Bn. A
point z A Sn�1 is a K-fat-horospherical limit point of G if there exists a sequence
fgjgHG and a constant C > 0 such that

1� jgjð0Þj
jgjð0Þ � zjKþ1

bC for all j:

The K-fat-horospherical limit set LKðGÞ is the set of all K-fat horospherical limit
points.

Remark 2.4.
� The 1-fat horospherical limit points are just the points z A Sn�1 for which
there exists an orbit fgjð0Þg that approaches z within a horoball based at z,
see for example [17].

� If G is a geometrically finite Kleinian group acting on Bn then every point
in the limit set is 1-fat horospherical ([3].)

Now let G be a discrete K-quasiconformal group, and let ĜGpG be a
non-elementary normal subgroup of G. While LðGÞ equals LðĜGÞ under these
assumptions, it may happen that LcðĜGÞ is properly contained in LcðGÞ. An
example where the conical limit set of the subgroup is smaller (even in the sense of
dimension) than the conical limit set of the big group can be easily constructed,
using a result of R. Brooks: see Example 3.3 at the end of Section 3.

Though the property of being conical may not be preserved in passing to a
normal subgroup, the degeneration happens in a geometrically controlled fashion.

Theorem 2.5. Let G be a discrete K-quasiconformal group acting on Bn with
empty regular set, and let ĜGpG be a non-elementary normal subgroup of G.
Then

Ls
cðGÞHLKðĜGÞ:

Remark 2.6. This theorem partially generalizes Theorem 6 of K. Matsuzaki
[14] to the discrete quasiconformal group setting.

Let G be a discrete quasiconformal group acting on Bn. We denote by dðGÞ
the exponent of convergence of G, that is
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dðGÞ ¼ inf s > 0

����X
g AG

e�sdðx;gðyÞÞ < y

( )
;

where d is the hyperbolic metric in Bn and x; y A Bn are arbitrary points. See
[17] for the basics concerning the exponent of convergence of Kleinian groups.
Note that the exponent of convergence does not depend on the choice of points x,
y. It is easy to realize dðGÞ into a more Euclidean form, that is,

dðGÞ ¼ inf s > 0

����X
g AG

ð1� jgð0ÞjÞ s < y

( )
:

For discrete quasiconformal groups preserving Bn the relationship between
the exponent of convergence and the Hausdor¤ dimension of the conical limit set
is:

Theorem 2.7 ([5], Theorem 2.7). Let G be a discrete quasiconformal group
preserving Bn. Then dimðLcðGÞÞa dðGÞ.

We note that the inequality cannot be promoted to equality. In [5] we
provide an example of a discrete quasiconformal group G that is quasiconfor-
mally conjugate to a finitely generated Fuchsian group, having the property
that dim LcðGÞ is strictly smaller than dðGÞ. For the further development of
Patterson-Sullivan theory in the setting of discrete quasiconformal groups see e.g.
[5], [6], [2], and [7].

A standard argument will yield the following result.

Theorem 2.8. Let G be a discrete quasiconformal group acting on Bn. Then

dim LKðGÞa ðK þ 1ÞdðGÞ:

Combining Theorems 2.5 and 2.8 we obtain finer information about the
conical limit set:

Theorem 2.9. Let G be a discrete K-quasiconformal group acting on Bn with
empty regular set, and let ĜGpG be a non-elementary normal subgroup of G.
Then

dim Ls
cðGÞa ðK þ 1ÞdðĜGÞ:

If G is a discrete quasiconformal group acting on B3 with empty regular set
and purely conical limit set then one can show:

Lemma 2.10. Let G be a discrete quasiconformal group acting on B3

with empty regular set and purely conical limit set. Then the strong conical
limit set of G has full 2-dimensional Lebesgue measure in S2 and thus
dim Ls

cðGÞ ¼ dim LcðGÞ ¼ dðGÞ ¼ 2.
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Proof. First let us assume that the strong conical limit set of G is of full
Lebesgue measure in S2: then 2 ¼ dimðLs

cÞðGÞ. Note that since Ls
cðGÞJLcðGÞ

we have from Theorem 2.7 that dðGÞb 2. A result of Gehring and Martin [12]
asserts that in this setting dðGÞa 2, and so under the assumption we conclude
dimðLs

cðGÞÞ ¼ dðGÞ ¼ 2.
To show that the strong conical limit set of G has full measure we will need

some preliminary observations. Let ~GG be the discrete quasiconformal group,
induced by G, acting on qB3 ¼ S2. From a result of Sullivan [18], and separately
Tukia [19], we can find a Kleinian group G, and a quasiconformal mapping
f : S2 ! S2, so that ~GG ¼ f � G � f�1. Both the conjugating map f and the
Kleinian group G extend to B3, and so one easily sees that on B3 the actions of
the quasiconformal groups f � G � f�1 and G di¤er at most by a uniformly
bounded hyperbolic distance. Thus in particular the strong conical limit set of
f � G � f�1 and that of G must agree. If we can show that G has a strong
conical limit set that is of full measure in S2, then because a quasiconformal
conjugacy maps strong conical limit sets to strong conical limit sets, and because
a quasiconformal mapping of S2 of a set of full measure has image with full
measure (Theorem 33.2 in [22]), then G has a strong conical limit set of full
measure.

We will thus need to observe that, under the assumptions on G, any Kleinian
group that is quasiconformally conjugate to ~GG has the property that its strong
conical limit set is of full measure in S2. But this is a well known observation:
first any Kleinian group G quasiconformally conjugate to such a G has a limit
set that is purely conical and is the whole sphere at infinity. Such a G must
uniformize, up to finite index, a closed hyperbolic 3-manifold (since any Dirichlet
polyhedron for the action of G on B3 has compact closure, see Chapter 6 of [13])
and thus G is geometrically finite and therefore of divergence type. Next observe
that the strong conical limit set contains the Myberg limit set ([16]), which is
known to be of full measure for Kleinian groups of divergence type (Agard [1],
Tukia [21]). r

Using Lemma 2.10 and Theorem 2.9 we show in dimension 3 under certain
assumptions that a drop in the exponent of convergence for a non-elementary
normal subgroup both can’t be too large and is bounded in terms of K (compare
Matsuzaki [15]; see also Falk and Stratmann [10]):

Theorem 2.11. Let G be a discrete K-quasiconformal group acting on B3,
with empty regular set and purely conical limit set. Let ĜGpG be a non-
elementary normal subgroup of G. Then

dðĜGÞb dðGÞ
K þ 1

¼ 2

K þ 1
:

Remark 2.12.
� Lemma 2.10 can be proved using the geometry of hyperbolic quasigeo-
desics as in [8].
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� A more general statement can be proved: Let G be a convex co-compact
Kleinian group acting on Hn, possibly with non-empty regular set. Then
the strong conical limit set is of full measure in the measure class of the
Patterson-Sullivan measure of dimension dðGÞ based at 0. We cannot use
this formulation in part because we will not be able to conclude that the
strong conical limit set of G (as a quasiconformal conjugate of G) is of full
measure in LðGÞ. In particular, it is not the case that a quasiconformal
conjugation will necessarily preserve sets of full measure in sets of
Hausdor¤ dimension less than n� 1, even in the Kleinian setting. E.g.
see [20].

� If Theorem 2.5 is established for purely conical quasiconformal groups
having non-empty regular set, then we can obtain a more general version of
Theorem 2.11. In particular, using techniques from our work in [7] we
can show that a discrete K-quasiconformal group G acting on B3 with non-
empty regular set has the property that

dðGÞa 2K dim Ls
cðGÞ

2þ ðK � 1Þ dim Ls
cðGÞ :ð2:1Þ

Together with Theorem 2.9 this would imply:

Conjecture 2.13. Let G be a discrete K-quasiconformal group acting on B3

with purely conical limit set and non-empty regular set. Let ĜGpG be a non-
elementary normal subgroup of G. Then

dðĜGÞb 2dðGÞ
2K 2 þ 2K � dðGÞðK 2 � 1Þ :

We note that as K approaches 1 in this conjecture we recover the analogous
theorem for the Kleinian case which was proved by Matsuzaki in [15].

3. Proofs

We begin by recalling that quasiconformal maps of Bn are ðK ;K log 4Þ-
quasiisometries (in the hyperbolic metric), see, for example Thm. 11.2 in [23].

Lemma 3.1. Let f : Bn ! Bn be a K-quasiconformal homeomorphism. Then

1

K
dðx; yÞ � log 4a dð f ðxÞ; f ðyÞÞaK dðx; yÞ þ K log 4

for all x; y A Bn.

It is crucial to our arguments that the bi-Lipschitz distortion constant is K
here. Using this fact we will show that the degeneration from the conformal
case is controlled by the quasiconformal dilatation of the group.
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In order to prepare for the proof of Theorem 2.5, recall the definition of the
K-fat horospherical limit set (Definition 2.3); the proposition below is a useful
characterization of the set of fat-horospherical limit points in terms of the
geometry of covering orbits.

Proposition 3.2. Let G be a discrete quasiconformal group acting on Bn,
and let z A Sn�1 and Kb 1. Then z belongs to LKðGÞ if and only if there exists a
constant C and elements gj A G such that

dðqj; gjð0ÞÞa
K

K þ 1
dð0; gjð0ÞÞ þ Cð3:1Þ

for all j. Here, qj denotes the (hyperbolic) projection of gjð0Þ onto the geodesic
ray from 0 to z.

Proof of Proposition 3.2. We first note that (3.1) implies that fgjð0Þg
converges to z as otherwise the distance between gjð0Þ and the geodesic ray from
0 to z would increase exponentially in dð0; gjð0ÞÞ. Hence the angle yj at 0
formed by the geodesic ray ½0; zÞ and the geodesic segment ½0; gjð0Þ� tends to zero
as j ! y, see Figure 1. Furthermore we note that if fgjð0Þg tends to z in a
Euclidean non-tangential cone based at z then z A LKðGÞ for any Kb 1 (in fact,
z A LKðGÞ for K ¼ 0, but here we only consider values of K that are b 1), and
also (3.1) is true for any Kb 1. Thus we may assume from now on that
dðgjð0Þ; qjÞ ! y as j ! y.

An application of the hyperbolic sine law in the right triangle 0, qj, gjð0Þ implies
that

sin yj ¼
sinh dðgjð0Þ; qjÞ
sinh dð0; gjð0ÞÞ

:

Figure 1
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Euclidean trigonometry in the triangle 0, z, gjð0Þ implies that

sin yj ¼ jgjð0Þ � zj � cj;
where cj ! 1 as j ! y (here we used that fgjð0Þg does not converge to z within
a non-tangential Euclidean cone based at z). Combining the previous two
equations we obtain

jgjð0Þ � zj ¼ edðgjð0Þ;qjÞ

edð0;gjð0ÞÞ
� dj;

where dj ! 1 as j ! y. Hence

1� jgjð0Þj
jgjð0Þ � zjKþ1

¼ e�dð0;gjð0ÞÞ edð0;gjð0ÞÞ

edðgjð0Þ;qjÞ

� �Kþ1

� ~ddj

¼ ðeðK=ðKþ1ÞÞ dð0;gjð0ÞÞ�dðgjð0Þ;qjÞÞKþ1 � ~ddj;

where ~ddj ! 1 as j ! y. Thus
1� jgjð0Þj

jgjð0Þ � zjKþ1
is bounded away from zero if and

only if
K

K þ 1
dð0; gjð0ÞÞ � dðgjð0Þ; qjÞ is bounded away from minus infinity, and

this is equivalent to (3.1). r

We are now ready for the proof of the fact that the strong conical limit set
of a discrete K-quasiconformal group G acting on Bn with empty regular set is
contained in the K-fat-horospherical limit set of any non-elementary normal
subgroup ĜG.

Proof of Theorem 2.5. Let G be a discrete K-quasiconformal group acting
on Bn, and let ĜG be a non-elementary normal subgroup of G. Let z A Ls

cðGÞ.
Hence there are elements gj A G such that gjð0Þ ! z in a Euclidean non-tangential
cone based at z, and so that fg�1

j ð0Þg converges to a point s0 z. By passing to
a subsequence if necessary we can assume that the sequence fgjg converges to
z locally uniformly in Bnnfsg, and fg�1

j g converges to s locally uniformly in
Bnnfzg. By conjugation with a Möbius transformation f (which maps Ls

cðGÞ to

Ls
cðf � G � f�1Þ and which maps LKðĜGÞ to LKðf � ĜG � f�1Þ by Proposition 3.2)

we may assume that z ¼ �en and s ¼ en ¼ ð0; . . . ; 0; 1Þ.
In what follows, for a; b A Sn�1, the symbol Ca;b denotes the hyperbolic

geodesic whose endpoints are a and b. Since every element of G is K-
quasiconformal, there exists a constant C (only depending on K) such that
any hyperbolic geodesic Ca;b and any element g A G satisfy that gðCa;bÞ is
contained in a hyperbolic C-neighborhood of CgðaÞ;gðbÞ.

Since ĜG is a non-elementary normal subgroup of G, and G has empty regular
set, we have that LðĜGÞ ¼ LðGÞ ¼ Sn�1, and hence there exists a loxodromic
element ĝg A ĜG whose fixed points a, b are close to e1 ¼ ð1; 0; . . . ; 0Þ and �e1,
respectively. In particular, the hyperbolic geodesics Ca;b can be chosen to have
an arbitrarily small hyperbolic distance to the origin. Thus there exists a
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quasiline L equidistant (in the hyperbolic metric) from Ca;b that intersects
Cz; s at the origin and at an angle arbitrarily close to p=2. As before, any
element g A G satisfies that gðLÞ lies within bounded hyperbolic distance of
CgðaÞ;gðbÞ, where the bound is independent of g. Furthermore, we can choose ĝg
such that dð0; ĝgð0ÞÞ is as large as desired (we will see later in the proof how
large we need this quantity to be). Fix such an element ĝg A ĜG, and define
ĝgj ¼ gj � ĝg � g�1

j . Since ĜG is normal in G this implies that ĝgj A ĜG. We will show
that fĝgjð0Þg converges to z within a K-fat-horosphere. Note that clearly fĝgjð0Þg
converges to z since the sequence fgjg converges to z locally uniformly in Bnnfeng
and fg�1

j g converges to en locally uniformly in Bnnfzg. Thus g�1
j ð0Þ ! en, so

ĝgg�1
j ð0Þ ! ĝgðenÞ0 en, and so gjðĝgðg�1

j ð0ÞÞÞ ! z. Let pj be the hyperbolic pro-
jection of gjð0Þ onto the radial segment ½0; zÞ, and let qj be the hyperbolic
projection of ĝgjð0Þ onto the same hyperbolic segment (since ĝgjð0Þ ! z we can
assume that ĝgjð0Þ is contained in the lower half of Bn for all j). We wish to
show that dðpj; qjÞ is bounded above independently of j. To do so, consider the
quadrilateral whose four sides are the hyperbolic segments ðqj; pjÞ, ðpj; gjĝgð0ÞÞ,
ðgjĝgð0Þ; ĝgjð0ÞÞ, and ðĝgjð0Þ; qjÞ; see Figure 2. We make several observations:

(1) Clearly, the angle formed at qj is a right angle by construction.
(2) The angle at pj is bounded away from zero in terms of K only. This

can be seen as follows. The segment ðpj; gjĝgð0ÞÞ has bounded hyperbolic
distance from the segment ðgjð0Þ; gjĝgð0ÞÞ since dðgjð0Þ; pjÞ is bounded
above independently of j by choice of gj. Furthermore, the segment
ðgjð0Þ; gjĝgð0ÞÞ has bounded hyperbolic distance from gjðLÞ since ĝgð0Þ and
L have bounded distance from each other. Hence the side ðpj ; gjĝgð0ÞÞ

Figure 2
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has bounded hyperbolic distance from CgjðaÞ;gjðbÞ. Furthermore, ðqj; pjÞ
has an arbitrarily small (Euclidean) distance from gjð½g�1

j ð0Þ; zÞÞ for large
enough j, since ðqj ; pjÞ lies on the ray ½0; zÞ, and gjð½g�1

j ð0Þ; zÞÞ ¼
½0; g�1

j ðzÞÞ converges to ½0; zÞ as j ! y. Here, ½g�1
j ð0Þ; zÞ denotes the

hyperbolic geodesic ray from g�1
j ð0Þ to z. Since g�1

j ð0Þ ! en, we have
that L and ½g�1

j ð0Þ; zÞ intersect at an angle close to p=2, and since all gj
have uniformly bounded quasiconformal dilatation, the angle of the
quadrilateral at pj is bounded below only in terms of K .

(3) The length of the side ðpj ; gjĝgð0ÞÞ is

dðpj; gjĝgð0ÞÞb dðgjð0Þ; gjĝgð0ÞÞ � dðgjð0Þ; pjÞb
1

K
dð0; ĝgð0ÞÞ � C;

(see Lemma 3.1 for the last inequality) and this is as large as desired (yet
bounded independently of j) if ĝg has been chosen to have large enough
translation length.

(4) Similarly we see that the angle at gjĝgð0Þ is bounded away from zero in
terms of K only; see Figure 2.

Altogether this implies that if dð0; ĝgð0ÞÞ was chosen large enough initially
(depending on K only), then dðpj; qjÞ is bounded above independently of j.

We can now draw several conclusions. In what follows, we use the symbol
‘‘A@B’’ to mean that the two quantities A and B di¤er only by an additive
amount that is independent of j. The symbol ‘‘A6B’’ is used to mean that
there exists a constant C independent of j such that AaBþ C. We first
observe:

dð0; gjð0ÞÞ@ dð0; qjÞ@ dð0; ĝgjð0ÞÞ � dðĝgjð0Þ; qjÞ:ð3:2Þ
The first relation here follows from the facts that dðgjð0Þ; pjÞ and dðpj ; qjÞ are
bounded, the second relation follows from hyperbolic geometry in the right
triangle with corners 0, qj, ĝgjð0Þ. Next we note:

dðĝgjð0Þ; gjð0ÞÞ@ dðqj; ĝgjð0ÞÞ:ð3:3Þ
This equality comes from the facts that dðgjð0Þ; pjÞ and dðpj; qjÞ are bounded.
Finally we have:

dðgjð0Þ; ĝgjð0ÞÞa dðgjð0Þ; gjĝgð0ÞÞ þ dðĝgjgjð0Þ; ĝgjð0ÞÞ6K dðgjð0Þ; 0Þ:ð3:4Þ
where in the last inequality we have used Lemma 3.1 to see that
dðĝgjgjð0Þ; ĝgjð0ÞÞ6K dðgjð0Þ; 0Þ and that dðgjð0Þ; gjĝgð0ÞÞ6K dð0; ĝgð0ÞÞ and is
thus bounded above independently of j.

Equations (3.2), (3.3) and (3.4) now imply

dðqj; ĝgjð0ÞÞ@ dðgjð0Þ; ĝgjð0ÞÞ

6K dðgjð0Þ; 0Þ
@K dð0; ĝgjð0ÞÞ � K dðĝgjð0Þ; qjÞ:

This implies that

77gaps in the exponent spectrum



dðqj; ĝgjð0ÞÞ6
K

K þ 1
dð0; ĝgjð0ÞÞ:

Using Proposition 3.2, this last inequality implies that z is a K-fat-horospherical
limit point of ĜG. r

The following proof of Theorem 2.8 uses a standard argument which we
include for the reader’s convenience.

Proof of Theorem 2.8. Let G be a discrete quasiconformal group acting on
Bn, and fix Kb 1. For each M A N and each g A G with gð0Þ0 0 let Bg;M;K

be the Euclidean ball centered at the projection
gð0Þ
jgð0Þj of gð0Þ onto Sn�1 and of

radius Mð1� jgð0ÞjÞ1=ðKþ1Þ.
Then a point z A Sn�1 belongs to LKðGÞ if and only if there exists M A N

such that z belongs to Bg;M;K for infinitely many g A G. Let

EM;K ¼ fx A Sn�1 : x A Bg;M;K for infinitely many g A Gg:
Then

LKðGÞ ¼ 6
y

M¼1

EM;K :

Let now d ¼ dðGÞ, and let e > 0 be arbitrary. ThenX
g AG:gð0Þ00

ðdiam Bg;M;KÞðKþ1ÞðdþeÞ
a

X
g AG

ð2Mð1� jgð0ÞjÞ1=ðKþ1ÞÞðKþ1ÞðdþeÞ

¼ ð2MÞðKþ1ÞðdþeÞ X
g AG

ð1� jgð0ÞjÞdþe < y:

Let now r > 0 be arbitrary. Then, since G is discrete, there are only finitely
many g A G for which diam Bg;M;K b r, and so fBg;M;K : diam Bg;M;K < rg is
a cover for EM;K . We set some notation. For a set E let H r

s ðEÞ ¼
inff

P
j diamðUjÞsg, where the infimum is taken over all covers fUjg of E so

that diam Uj < r for all j. Note that as r ! 0 we recover the s-dimensional
Hausdor¤ measure of E. Hence

Hr
ðKþ1ÞðdþeÞðEM;KÞ ¼ inf

( X
U AU

ðdiam UÞðKþ1ÞðdþeÞ jU is a diameter < r

cover of EM;K

)

a
X

g AG:diamBg;M;K<r

ðdiam Bg;M;KÞðKþ1ÞðdþeÞ

a ð2MÞðKþ1ÞðdþeÞ X
g AG

ð1� jgð0ÞjÞdþe:
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Thus

HðKþ1ÞðdþeÞðEM;KÞ ¼ lim
r!0

Hr
ðKþ1ÞðdþeÞðEM;KÞ < y;

and this shows that

dim EM;K a ðK þ 1ÞdðGÞ
for all M A N. Since EM;K HEðMþ1Þ;K for all M A N, and since LKðGÞ ¼
6y

M¼1
EM;K , we have that

dim LKðGÞa lim sup
M!y

EM;K a ðK þ 1ÞdðGÞ: r

We end by providing an example of a non-elementary normal subgroup ĜG of
a discrete quasiconformal group G so that dðĜGÞ < dðGÞ.

Example 3.3. Let S be a closed Riemann surface of genus gb 2, and let F
be a Fuchsian group of the first kind that uniformizes S. The Retrosection
Theorem guarantees that we can find a Schottky group H that uniformizes the
Riemann surface S; in particular the regular set WS ¼ WðHÞ is a planar Riemann
surface (with infinitely generated fundamental group) that is a regular cover of S
(with covering group H). Let G be a Fuchsian group that uniformizes WS; since
WS is a non-amenable cover of S (the covering group H is a free group on gb 2
generators, and is thus non-amenable) then by a result of Brooks [9] we have that
dðGÞ < dðFÞ ¼ 1. Let f : B2 ! B2 be a K-quasiconformal mapping; by Lemma
3.1 we know that f acts as a ðK ;K log 4Þ-quasiisometry with respect to the
hyperbolic metric. If we let G ¼ fFf�1 and ĜG ¼ fGf�1, then we observe that
1

K
dðGÞa dðĜGÞaKdðGÞ. This implies for all � > 0 su‰ciently small that if f is

ð1þ �Þ-quasiconformal then we have that dðĜGÞ < 1. Because a quasiconformal
mapping preserves the conical limit set and because S is closed, we have that the
Hausdor¤ dimension of the conical limit set of G is one, from which we conclude
that dðGÞ ¼ 1. In particular, ĜG is a non-trivial normal subgroup of the discrete
quasiconformal group G so that dðĜGÞ < dðGÞ and so that there are K-fat
horospherical limit points of ĜG (by Theorem 2.9 and Theorem 2.7) that are
not conical limit points.

The question below is true in the conformal setting via the Bishop and Jones
result that the exponent of convergence is the Hausdor¤ dimension of the conical
limit set of a non-elementary Kleinian group. However, because the exponent of
convergence can be strictly greater than the Hausdor¤ dimension of the conical
limit set of a discrete and non-elementary quasiconformal group (Example 4.1 in
[5]), we are motivated to ask:

Question: Let G be a non-elementary discrete K-quasiconformal group
ðK > 1Þ that preserves Bn, and let ĜG be a non-trivial normal subgroup so
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that dðĜGÞ < dðGÞ. Then is the conical limit set of ĜG properly contained in the
conical limit set of G?
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[20] P. Tukia, A rigidity theorem for Möbius groups, Invent. Math. 97 (1989), 405–431.
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