LAGRANGIAN SUBMANIFOLDS WITH CODIMENSION 1 TOTALLY GEODESIC FOLIATION IN COMPLEX PROJECTIVE SPACES

Makoto Kimura*

Dedicated to Professor Yoshio Matsuyama on the occasion of his sixtieth birthday

1. Introduction

Let (\tilde{M}, ω) be a complex *n*-dimensional Kähler manifold with Kähler form ω , and let M be a real *n*-dimensional manifold. Then an immersion $x : M \to \tilde{M}$ is called *Lagrangian* if $x^*\omega = 0$ on M. Y. G. Oh defined [8] that a Lagrangian submanifold M in \tilde{M} is *Hamiltonian minimal* (or *H-minimal*) if the volume of M is stationary for any compactly-supported Hamiltonian deformation of the Lagrangian immersion. The Hamiltonian minimality is characterized as the harmonicity of mean curvature form $\delta \alpha_H = 0$ by the first variational formula. It is important to study either minimal or H-minimal Lagrangian submanifolds in complex projective spaces \mathbb{CP}^n .

This paper is concerned with Lagrangian submanifolds in \mathbb{CP}^n which are solutions of above variational problem, with some *symmetry*. Namely, we consider Lagrangian submanifolds which are obtained as a 1-parameter family of totally geodesic \mathbb{RP}^{n-1} in \mathbb{CP}^n . To do that let \mathcal{M}_n be the set of totally geodesic \mathbb{RP}^{n-1} in \mathbb{CP}^n . Since the unitary group U(n+1) acts on \mathcal{M}_n transitively, \mathcal{M}_n is a homogeneous space of U(n+1). From a curve $\gamma : I \to \mathcal{M}_n$, we can construct a real *n*-dimensional submanifold M (which may have some singularities) with 1-parameter family of totally geodesic $\gamma(t) = \mathbb{RP}^{n-1}$ in \mathbb{CP}^n . First we will show that M is a Lagrangian submanifold on the open subset of regular points if and only if the corresponding curve γ in \mathcal{M}_n is *horizontal* with respect to the natural fibration $\mathcal{M}_n \to \mathbb{CP}^n$ (Proposition 3.1).

Using this argument, we will see that minimal Lagrangian submanifold with 1-parameter family of totally geodesic \mathbf{RP}^{n-1} in \mathbf{CP}^n is totally geodesic (Theorem 4.1). Next we will show that for a Lagrangian submanifold with 1-parameter family of totally geodesic \mathbf{RP}^{n-1} in \mathbf{CP}^n , its Hamiltonian minimality is expressed as a system of 2nd order ODE's for curves in S^3 (Proposition 4.1). As a special solution, if we take a curve γ in \mathcal{M}_n as an orbit of 1-parameter subgroup of

^{*}The author was partially supported by Grants-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan, No. 17540078.

Received February 8, 2007; revised August 3, 2007.

U(n + 1), then we have neither totally geodesic nor minimal Lagrangian submanifolds M^n in \mathbb{CP}^n satisfying $\delta \alpha_H = 0$ (cf. Theorem 4.2). When $n \ge 3$, M^n must have some singularities, but when n = 2, M^2 is everywhere regular and flat, and the mean curvature vector $H \ne 0$ is parallel with respect to the normal connection. Such Lagrangian surface in \mathbb{CP}^2 was studied by Ogata [7].

The author would like to express his gratitude to the referee for careful reading, valuable suggestions and comments.

2. Preliminaries

First we recall about Hamiltonian deformation of Lagrangian submanifolds in Kähler manifolds, defined by Oh [8]. Let \tilde{M} be a complex *n*-dimensional Kähler manifold with Kähler form ω , Riemann metric \langle , \rangle , and complex structure J. Let $x : M \to \tilde{M}$ be a Lagrangian immersion from a real *n*-dimensional manifold M to \tilde{M} , i.e., $\omega|_{TM} = 0$. For a vector field V along x, we define a 1-form α_V on M as $\alpha_V = \langle JV, \cdot \rangle|_{TM}$. Smooth family of embeddings $\iota_t : M \to P$ is called *Hamiltonian deformation* if for the variational vector field V, the 1-form α_V is exact. A Lagrangian submanifold M is *Hamiltonian minimal* (or *H-minimal*) if M is stationary for any Hamiltonian deformation. Oh [8] showed that when M is *compact*, M is *H*-minimal if and only if α_H is co-closed, i.e., $\delta \alpha_H = 0$ where H is the mean curvature vector field of M. We have

(1)
$$\delta \alpha_H = 0 \Leftrightarrow \operatorname{div} JH = 0.$$

Next we recall the Fubini-Study metric on the complex projective space \mathbb{CP}^n (cf. [2, 4]). The Euclidean metric \langle , \rangle on \mathbb{C}^{n+1} is given by $\langle z, w \rangle = \operatorname{Re}({}^t z \overline{w})$ for $z, w \in \mathbb{CP}^{n+1}$. The unit sphere S^{2n+1} in \mathbb{C}^{n+1} is the principal fiber bundle over \mathbb{CP}^n with the structure group S^1 and the Hopf fibration $\pi : S^{2n+1} \to \mathbb{CP}^n$. The tangent space of S^{2n+1} at a point z is

$$T_z S^{2n+1} = \{ w \in C^{n+1} \, | \, \langle z, w \rangle = 0 \}.$$

Let

$$T'_{z} = \{ w \in C^{n+1} \, | \, \langle z, w \rangle = \langle iz, w \rangle = 0 \}.$$

The distribution T'_z defines a connection in the principal fiber bundle $S^{2n+1}(\mathbb{CP}^n, S^1)$, because T'_z is complementary to the subspace $\{iz\}$ tangent to the fibre through z, and invariant under the S^1 -action. Then the Fubini-Study metric g of constant holomorphic sectional curvature 4 is given by $g(X, Y) = \langle X^*, Y^* \rangle$, where $X, Y \in T_x \mathbb{CP}^n$, and X^*, Y^* are respectively their horizontal lifts at a point z with $\pi(z) = x$. The complex structure on T' defined by multiplication by $\sqrt{-1}$ induces a canonical complex structure J on \mathbb{CP}^n through π_* .

3. Lagrangian submanifolds with 1-parameter family of totally geodesic \mathbb{RP}^{n-1} in \mathbb{CP}^n

Let \mathbb{CP}^n be the complex projective space with Fubini-Study metric of constant holomorphic sectional curvature 4 as §2. We will construct Lagrangian

MAKOTO KIMURA

submanifolds M^n in \mathbb{CP}^n with codimension 1 totally geodesic foliation such that each leaf is a part of totally geodesic (n-1)-dimensional real projective space \mathbb{RP}^{n-1} , from a curve in

(2)
$$\mathcal{M}_n = \{ \mathbf{RP}^{n-1} \subset \mathbf{CP}^n : \text{ totally geodesic} \}.$$

In [5] we showed that the space of totally geodesic \mathbb{RP}^n in \mathbb{CP}^n is naturally identified with Riemannian symmetric space SU(n+1)/SO(n+1). Since U(n+1) acts on \mathcal{M}_n transitively, \mathcal{M}_n is identified with the homogeneous space U(n+1)/K, where

$$K = \left\{ e^{i\theta} \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix}; g_1 \in O(n), g_2 \in U(1), \theta \in \mathbf{R} \right\}.$$

We define a bi-invariant Riemannian metric (,) on U(n+1) as

 $(A, B) = \operatorname{Re}(\operatorname{trace} A^{t}\overline{B})/4, \quad A, B \in \mathfrak{u}(n+1).$

Then U(n+1)-invariant Riemannian metric g on \mathcal{M}_n is defined naturally such that the projection $\hat{\pi}: U(n+1) \to \mathcal{M}_n$ is a Riemannian submersion.

The Lie algebra \mathfrak{k} of K is written as

$$\mathfrak{t} = \left\{ \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \middle| A \in \mathfrak{o}(n) \right\} \oplus \left\{ \sqrt{-1} \begin{pmatrix} \alpha E_n & 0 \\ 0 & \beta \end{pmatrix} \middle| \alpha, \beta \in \mathbf{R} \right\},\$$

where E_n denotes $n \times n$ identity matrix. If we put

$$\mathfrak{p} = \left\{ \begin{pmatrix} \sqrt{-1}B & \mathbf{z} \\ -\mathbf{z}^* & 0 \end{pmatrix} \middle| B \in \operatorname{Sym}(n, \mathbf{R}), \text{ trace } B = 0, \mathbf{z} \in \mathbf{C}^n \right\},\$$

where $\text{Sym}(n, \mathbf{R})$ denotes the set of $n \times n$ real symmetric matrices, then $\mathfrak{u}(n+1) = \mathfrak{k} + \mathfrak{p}$ is a direct sum decomposition of the Lie algebra of U(n+1).

Let $\gamma: I \to \mathcal{M}_n$ be a regular curve and let $g: I \to U(n+1)$ be a lift of γ , where $I \subset \mathbf{R}$ denotes an interval. Then g is horizontal with respect to the Riemannian submersion $\hat{\pi}: U(n+1) \to \mathcal{M}_n$ if and only if for each $t \in I$, $g(t)^{-1}g'(t) \in \mathfrak{p}$. We define a map $\tilde{\Phi}: I \times S^{n-1} \to S^{2n+1} \subset \mathbb{C}^{n+1}$ as

(3)
$$\tilde{\Phi}(t,\mathbf{x}) = g(t) \begin{pmatrix} \mathbf{x} \\ 0 \end{pmatrix}, \quad (\mathbf{x} \in S^{n-1} \subset \mathbf{R}^n, 0 \in \mathbf{R}),$$

where g is a horizontal lift of γ . Then $\Phi: I \times \mathbf{RP}^{n-1} \to \mathbf{CP}^n$ is defined by

(4)
$$\Phi(t, [\mathbf{x}]) = [\tilde{\Phi}(t, \mathbf{x})] = \left[g(t) \begin{pmatrix} \mathbf{x} \\ \mathbf{0} \end{pmatrix}\right],$$

where $[\mathbf{x}]$ (resp. $[\tilde{\Phi}(t, \mathbf{x})]$) denotes the image of the projection $S^{n-1} \to \mathbf{RP}^{n-1}$ (resp. Hopf fibration $S^{2n+1} \to \mathbf{CP}^n$). We note that the image of Φ is the union of 1-parameter family of totally geodesic \mathbf{RP}^{n-1} and independent of a choice of horizontal lift g(t) of $\gamma(t)$. The pullback of Maurer-Cartan form on U(n+1) by g is written as

(5)
$$g(t)^{-1}g'(t) = \begin{pmatrix} \sqrt{-1}B(t) & \mathbf{z}(t) \\ -\mathbf{z}(t)^* & 0 \end{pmatrix} \in \mathfrak{p}$$

Then the differential map of Φ is given by

(6)
$$d\tilde{\Phi}(\partial/\partial t) = g'(t) \begin{pmatrix} \mathbf{x} \\ 0 \end{pmatrix} = g(t) \begin{pmatrix} \sqrt{-1}B(t)\mathbf{x} \\ -\mathbf{z}(t)^*\mathbf{x} \end{pmatrix},$$
$$d\tilde{\Phi}(X) = g(t) \begin{pmatrix} X \\ 0 \end{pmatrix}, \quad (X \in T_{\mathbf{x}}S^{n-1}).$$

The horizontal part $\mathscr{H}X$ of $X \in T_{\mathbf{z}} \mathbb{C}\mathbf{P}^n$ with respect to the Hopf fibration $S^{2n+1} \to \mathbb{C}\mathbf{P}^n$ is given by $\mathscr{H}X = X - \langle X, \sqrt{-1}\mathbf{z} \rangle \sqrt{-1}\mathbf{z}$. Hence we have

(7)
$$\mathscr{H} d\tilde{\Phi}(\partial/\partial t) = g(t) \begin{pmatrix} \sqrt{-1} (B(t)\mathbf{x} - \langle B(t)\mathbf{x}, \mathbf{x} \rangle \mathbf{x}) \\ -\mathbf{z}(t)^* \mathbf{x} \end{pmatrix},$$
$$\mathscr{H} d\tilde{\Phi}(X) = d\tilde{\Phi}(X).$$

With respect to the complex structure J on \mathbb{CP}^n , Φ is a Lagrangian immersion on the open subset of regular points of Φ if and only if $J\mathscr{H} d\tilde{\Phi}(\partial/\partial t) \perp d\tilde{\Phi}(X)$ for any $X \in T_{\mathbf{x}}S^{n-1}$. By (6) and (7), this condition is equivalent to $B(t)\mathbf{x} = \langle B(t)\mathbf{x}, \mathbf{x} \rangle$ for any $\mathbf{x} \in S^{n-1}$. Since B(t) is a symmetric matrix and trace B(t) = 0, we see that Φ is a Lagrangian immersion on the open subset of regular points if and only if $B(t) \equiv 0$.

For $\mathbf{RP}^{n-1} \in \mathcal{M}_n$, there exists unique complex projective hyperplane $\mathbf{CP}^{n-1}(\subset \mathbf{CP}^n)$ which contains \mathbf{RP}^{n-1} , and we have a Riemannian submersion

(8)
$$\tilde{\pi}: \mathscr{M}_n \to \mathbf{CP}^n, \quad \mathbf{RP}^{n-1} \mapsto \mathbf{CP}^{n-1}$$

where we identify a complex line in \mathbb{C}^{n+1} and its dual complex projective hyperplane in $\mathbb{C}\mathbb{P}^n$. If $\gamma(t)$ be a regular curve in \mathcal{M}_n and if g(t) is its horizontal lift to U(n+1), then γ is horizontal with respect to the fibration $\mathcal{M}_n \to \mathbb{C}\mathbb{P}^n$ if and only if $B(t) \equiv 0$ in (5). From the above argument, we obtain

PROPOSITION 3.1. Let $\gamma: I \to \mathcal{M}_n$ be a regular curve and let $g: I \to U(n+1)$ be a horizontal lift with respect to the Riemannian submersion $U(n+1) \to \mathcal{M}_n$. Then the map $\Phi: I \times \mathbb{RP}^{n-1} \to \mathbb{CP}^n$ is a Lagrangian immersion on the subset of regular points if and only if γ is horizontal with respect to the fibration $\tilde{\pi}: \mathcal{M}_n \to \mathbb{CP}^n$.

4. Results

Let $\gamma(s)$ be a regular curve in \mathcal{M}_n with unit speed and suppose that γ is horizontal with respect to the fibration (8) $\tilde{\pi} : \mathcal{M}_n \to \mathbb{CP}^n$. Then for a horizontal lift g(s) of γ to U(n+1), according to Proposition 3.1 we have

(9)
$$g(s)^{-1}g'(s) = \begin{pmatrix} 0 & \mathbf{z}(s) \\ -\mathbf{z}(s)^* & 0 \end{pmatrix} \in \mathfrak{p}, \quad \mathbf{z}(s) \in S^{2n-1} \subset \mathbf{C}^n.$$

In this case the vector tangent to $\tilde{\Phi}$,

(10)
$$d\tilde{\Phi}(\partial/\partial s) = -g(s) \begin{pmatrix} 0 \\ \mathbf{z}(s)^* \mathbf{x} \end{pmatrix}$$

in (6) is horizontal with respect to the Hopf fibration $\pi: S^{2n+1} \to \mathbb{CP}^n$. We define a quadratic form $G(s, \cdot)$ on \mathbb{R}^n as

$$G(s,\mathbf{x}) = |\mathbf{z}(s)^*\mathbf{x}|^2 = {}^t\mathbf{x}(\operatorname{Re}(\mathbf{z}(s)\mathbf{z}(s)^*))\mathbf{x}.$$

Then the metric on $I \times \mathbf{RP}^{n-1}$ which is induced by $\Phi: I \times \mathbf{RP}^{n-1} \to \mathbf{CP}^n$ is written as

(11)

$$\langle \partial/\partial s, \partial/\partial s \rangle = G(s, \mathbf{x}),$$

$$\langle \partial/\partial s, X \rangle = 0, \quad (X \in T_{[\mathbf{x}]} \mathbf{R} \mathbf{P}^{n-1})$$

and for tangent vectors in $T_{[\mathbf{x}]}\mathbf{RP}^{n-1}$, the induced metric $\Phi^*\langle , \rangle$ is same as the standard metric on \mathbf{RP}^{n-1} . Hence Φ is regular at $(s, [\mathbf{x}]) \in I \times \mathbf{RP}^{n-1}$ if and only if $G(s, \mathbf{x}) \neq 0$. By (6), (7) and (10), on a regular point $(s, [\mathbf{x}])$ of Φ , the normal space is written by

$$T_{\Phi(s,[\mathbf{x}])}^{\perp}(I \times \mathbf{RP}^{n-1}) = \left\{ d\pi \left(g(s) \left(\begin{array}{c} \sqrt{-1}X \\ 0 \end{array} \right) \right) \middle| X \in T_{\mathbf{x}} S^{n-1} \right\}$$
$$\bigoplus \mathbf{R} \sqrt{-1} \ d\pi \left(g(s) \left(\begin{array}{c} 0 \\ \mathbf{z}(s)^* \mathbf{x} \end{array} \right) \right).$$

Let σ be the second fundamental tensor of the Lagrangian immersion Φ on the open subset of regular points in $I \times \mathbb{RP}^{n-1}$. Since \mathbb{RP}^{n-1} is totally geodesic in \mathbb{CP}^n , we have

(12)
$$\sigma(X, Y) = 0 \quad \text{for } X, Y \in T_{[\mathbf{x}]} \mathbf{R} \mathbf{P}^{n-1}$$

By (9) and (10), we obtain

(13)
$$D_{d\tilde{\Phi}(\partial/\partial s)} d\tilde{\Phi}(\partial/\partial s) = -g'(s) \begin{pmatrix} 0 \\ \mathbf{z}(s)^* \mathbf{x} \end{pmatrix} - g(s) \begin{pmatrix} 0 \\ \mathbf{z}'(s)^* \mathbf{x} \end{pmatrix}$$
$$= -g(s) \begin{pmatrix} \mathbf{z}(s)\mathbf{z}(s)^* \mathbf{x} \\ \mathbf{z}'(s)^* \mathbf{x} \end{pmatrix},$$

where D denotes the Euclidean covariant differentiation on C^{n+1} . Also (3) implies that

$$D_{d\tilde{\Phi}(\partial/\partial s)} d\tilde{\Phi}(\partial/\partial s) \perp \sqrt{-1}\tilde{\Phi}(s,\mathbf{x})$$

and is horizontal with respect to the Hopf fibration $S^{2n+1} \to \mathbb{CP}^n$. By taking the normal component of (13), we get

(14)
$$\sigma(\partial/\partial s, \partial/\partial s) = d\pi \left(\sqrt{-1}g(s) \begin{pmatrix} -\operatorname{Im}(\mathbf{z}(s)\mathbf{z}(s)^*)\mathbf{x} \\ {}^{t}\mathbf{x} \operatorname{Im}(\mathbf{z}'(s)\mathbf{z}(s))\mathbf{x}/{}^{t}\mathbf{z}(s)\mathbf{x} \end{pmatrix} \right).$$

42

THEOREM 4.1. Let $\gamma: I \to \mathcal{M}_n$ be a regular curve and suppose that γ is horizontal with respect to the fibration $\tilde{\pi}: \mathcal{M}_n \to \mathbb{CP}^n$. If the corresponding map $\Phi: I \times \mathbb{RP}^{n-1} \to \mathbb{CP}^n$ is a minimal Lagrangian immersion on the regular points, then Φ is totally geodesic.

Proof. By (11), (12) and (14), $\Phi: I \times \mathbf{RP}^{n-1} \to \mathbf{CP}^n$ is a minimal immersion on the regular points if and only if $\operatorname{Im}(\mathbf{z}(s)\mathbf{z}(s)^*) = 0$ and ${}^t\mathbf{x} \operatorname{Im}(\mathbf{z}'(s)\mathbf{z}(s)^*)\mathbf{x} = 0$ hold for any $\mathbf{x} \in S^{n-1}$. The former equation yields that $\mathbf{z}(s) = e^{\sqrt{-1}\theta(s)}\mathbf{y}(s)$ for some $\theta: I \to S^1$ and $\mathbf{y}: I \to S^{n-1} \subset \mathbf{R}^n$. Then $\operatorname{Im}(\mathbf{z}'(s)\mathbf{z}(s)^*) = \theta'(s)\mathbf{y}(s){}^t\mathbf{y}(s)$ and latter equation implies that $\theta(s)$ is constant. By (3), we can see that $\Phi(I \times \mathbf{RP}^{n-1}) \subset \mathbf{RP}^n$ and Φ is totally geodesic.

Next to study the condition for which $\Phi : I \times \mathbf{RP}^{n-1} \to \mathbf{CP}^n$ is Hamiltonian minimal, we will calculate div *JH* in terms of (1). By (11) and (14), the mean curvature vector of Φ is $H = G(s, \mathbf{x})^{-1} \sigma(\partial/\partial s, \partial/\partial s)$ and the tangent vector field *JH* along Φ is written as

(15)
$$JH = \frac{1}{G(s,\mathbf{x})} d\pi \left(g(s) \left(\frac{\operatorname{Im}(\mathbf{z}(s)\mathbf{z}(s)^*)\mathbf{x}}{-{}^t\mathbf{x} \operatorname{Im}(\mathbf{z}'(s)\mathbf{z}(s))\mathbf{x}/{}^t\mathbf{z}(s)\mathbf{x}} \right) \right).$$

For a real $n \times n$ matrix A, we denote a quadratic form on \mathbf{R}^n as (16) $Q(A, \mathbf{x}) = {}^t \mathbf{x} A \mathbf{x}.$

Then by using (13), we get

$$\begin{split} \langle \nabla_{\partial/\partial s}(JH), \partial/\partial s \rangle &= -\langle D_{d\tilde{\Phi}(\partial/\partial s)} d\tilde{\Phi}(\partial/\partial s), d\tilde{\Phi}(JH) \rangle \\ &= G(s, \mathbf{x})^{-1} \{ Q(\operatorname{Im}(\mathbf{z}''(s)\mathbf{z}(s)^*), \mathbf{x}) + Q(\operatorname{Im}(\mathbf{z}'(s)\mathbf{z}'(s)^*), \mathbf{x}) \\ &+ Q(\operatorname{Re}(\mathbf{z}(s)\mathbf{z}(s)^*), \mathbf{x}) Q(\operatorname{Im}(\mathbf{z}(s)\mathbf{z}(s)^*), \mathbf{x}) \} \\ &- 3G(s, \mathbf{x})^{-2} Q(\operatorname{Re}(\mathbf{z}'(s)\mathbf{z}(s)^*), \mathbf{x}) Q(\operatorname{Im}(\mathbf{z}'(s)\mathbf{z}(s)^*), \mathbf{x}), \end{split}$$

where ∇ denotes the Levi-Civita connection on $I \times \mathbf{RP}^{n-1}$ induced by $\Phi: I \times \mathbf{RP}^{n-1} \to \mathbf{CP}^n$. For $X \in T_{[\mathbf{x}]}\mathbf{RP}^{n-1}$, we obtain

$$\langle \nabla_X (JH), X \rangle = -2G(s, \mathbf{x})^{-2} \{ {}^t \mathbf{x} \operatorname{Re}(\mathbf{z}(s)\mathbf{z}(s)^*) X {}^t X \operatorname{Im}(\mathbf{z}(s)\mathbf{z}(s)^*) \mathbf{x} \}$$

+ $G(s, \mathbf{x})^{-1} {}^t X \operatorname{Im}(\mathbf{z}(s)\mathbf{z}(s)^*) X.$

Hence we obtain

(17)
$$\operatorname{div}(JH) = G(s, \mathbf{x})^{-2} \{ Q(\operatorname{Im}(\mathbf{z}''(s)\mathbf{z}(s)^*), \mathbf{x}) - \frac{1}{2} Q(\operatorname{Im}(\overline{\mathbf{z}(s)}^t \mathbf{z}(s)\mathbf{z}(s)\mathbf{z}(s)^*), \mathbf{x}) \} - 3G(s, \mathbf{x})^{-3} Q(\operatorname{Re}(\mathbf{z}'(s)\mathbf{z}(s)^*), \mathbf{x}) Q(\operatorname{Im}(\mathbf{z}'(s)\mathbf{z}(s)^*), \mathbf{x}).$$

We consider the case n = 2. Then the curve $\mathbf{z}(s)$ in S^3 given by (9) and a vector \mathbf{x} in S^1 given by (3) are respectively written as

MAKOTO KIMURA

$$\mathbf{z}(s) = \begin{pmatrix} z_1(s) \\ z_2(s) \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix},$$

for some $\theta \in \mathbf{R}/2\pi \mathbf{Z}$. Then by reducing (17) to a common denominator, we see that div JH = 0 is equivalent to a homogeneous algebraic equation of order 4 with variables $\cos \theta$ and $\sin \theta$ whose coefficients are independent to s. Hence

PROPOSITION 4.1. Let $\gamma: I \to \mathcal{M}_2$ be a regular curve and suppose that γ is horizontal with respect to the fibration $\tilde{\pi}: \mathcal{M}_2 \to \mathbb{CP}^2$. Then on the regular points, the first variational formula $\delta \alpha_H = 0$ of the corresponding Lagrangian immersion $\Phi: I \times \mathbf{RP}^1 \to \mathbf{CP}^2$ with respect to Hamiltonian deformations is written as a system of 5 ODE's of second order for curves $\mathbf{z}(s)$ in S^3 .

Let $\gamma: I \to \mathscr{M}_n$ be a unit speed *horizontal* curve with respect to $\mathscr{M}_n \to \mathbb{C}\mathbb{P}^n$. And let g(s) be a horizontal lift of $\gamma(s)$ to U(n+1). Then $\gamma(s)$ is an orbit of a 1-parameter subgroup of U(n+1) if and only if the vector valued function $\mathbf{z}: \mathbf{I} \to S^{2n-1} \subset \mathbf{C}^n$ given by (9) is constant. In this case, for $\mathbf{z} \equiv \mathbf{z}(s)$ we have

(18)
$$g(s) = \exp s \begin{pmatrix} 0 & \mathbf{z} \\ -\mathbf{z}^* & 0 \end{pmatrix}$$

and (17) is written as

$$-2 \operatorname{div}(JH) = G(s, \mathbf{x})^{-2} Q(\operatorname{Im}(\overline{\mathbf{z}}^{t} \mathbf{z} \mathbf{z} \mathbf{z}^{*}), \mathbf{x}).$$

Now we determine Lagrangian submanifolds given by 1-parameter family of totally geodesic \mathbf{RP}^{n-1} in \mathbf{CP}^n satisfying the first variational formula $\delta \alpha_H = 0$, in the case that the corresponding curve γ in \mathcal{M}_n is an orbit of 1-parameter subgroup of U(n + 1).

THEOREM 4.2. For
$$\mathbf{z} \in S^{2n-1} \subset \mathbf{C}^n$$
, let $g(s) = \exp s \begin{pmatrix} 0 & \mathbf{z} \\ -\mathbf{z}^* & 0 \end{pmatrix}$ be a 1-

parameter subgroup of U(n+1), and let $\gamma(s)$ be an orbit of g(s) in \mathcal{M}_n . Then the corresponding Lagrangian immersion $\Phi: I \times \mathbb{RP}^{n-1} \to \mathbb{CP}^n$ is Hamiltonian mininal if and only if \mathbf{z} satisfies one of the following conditions: (i) There exists $\mathbf{x} \in S^{n-1} \subset \mathbf{R}^n$ and $\theta \in \mathbf{R}$ such that $\mathbf{z} = e^{\sqrt{-1}\theta}\mathbf{x}$. In this case,

- $\Phi(I \times \mathbf{RP}^{n-1}) \subset \mathbf{RP}^n$ and Φ is totally geodesic.
- (ii) **z** is an isotopic vector, i.e., ${}^{t}\mathbf{z}\mathbf{z} = 0$.

In fact, $\text{Im}(\bar{\mathbf{z}}'\mathbf{z}\mathbf{z}\mathbf{z}^*) = 0$ implies that either (i) Re z and Im z are linearly dependent, or (ii) $|\text{Re } \mathbf{z}| = |\text{Im } \mathbf{z}|$ and $\text{Re } \mathbf{z} \perp \text{Im } \mathbf{z}$.

In (ii) of Theorem 4.2, when $n \ge 3, \Phi$ always has some singularities and when $n = 2, \Phi$ is everywhere regular and the Lagrangian surface $\Phi(I \times \mathbf{RP}^1)$ has the following properties: (a) flat, i.e., the Gauss curvature K = 0, (b) the mean curvature vector field H is parallel with respect to the normal connection, and $H \neq 0$. Ogata (Chapter 5 in [7]) proved: (i) Let $M^2[K]$ be an oriented 2-

44

dimensional Riemannian manifold of constant Gaussian curvature K and let $x: M^2[K] \to \mathbb{CP}^2$ be an isometric immersion such that the mean curvature vector field H is parallel and not zero. Then x is Lagrangian and K = 0. (ii) Let $x: \mathbb{R}^2 \to \mathbb{CP}^2$ be an isometric immersion with non-zero parallel mean curvature vector field H. Then $x(\mathbb{R}^2)$ is an orbit of the Abelian Lie subgroup G of U(3). So Hamiltonian minimal Lagrangian surfaces in \mathbb{CP}^2 obtained by (ii) of Theorem 4.2 are included in the examples that were given by T. Ogata's paper.

REFERENCES

- A. AMARZAYA AND Y. OHNITA, Hamiltonian stability of certain minimal Lagrangian submanifolds in complex projective spaces, Tohoku. Math. J. 55 (2003), 583–610.
- [2] T. E. CECIL AND P. J. RYAN, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481–499.
- [3] B. Y. CHEN AND K. OGIUE, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257–266.
- [4] M. KIMURA, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137–149.
- [5] M. KIMURA, Curves in SU(n+1)/SO(n+1) and some submanifolds in **CP**ⁿ, Saitama Math. J. 14 (1996), 79–89.
- [6] G. D. LUDDEN, M. OKUMURA AND K. YANO, A totally real surface in CP² that is not totally geodesic, Proc. Amer. Math. Soc. 53 (1975), 186–190.
- [7] T. OGATA, Surfaces with parallel mean curvature vector in $P^2(C)$, Kodai Math. J. 18 (1995), 397–407.
- [8] Y.-G. OH, Volume minimization of Lagrangian submanifolds under Hamiltonian deformations, Math. Z. 212 (1993), 175–192.

Makoto Kimura Department of Mathematics Shimane University Matsue, Shimane 690-8504 Japan E-mail: mkimura@riko.shimane-u.ac.jp