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GROWTH ESTIMATES FOR LOGARITHMIC DERIVATIVES

OF BLASCHKE PRODUCTS AND OF FUNCTIONS

IN THE NEVANLINNA CLASS

Janne Heittokangas

Abstract

We prove growth estimates for logarithmic derivatives of functions in the

Nevanlinna class. Blaschke products with radially restricted zero sequences will be of

particular interest. Our results are sharper in a certain sense than the corresponding

estimates in [2] obtained for meromorphic functions in the unit disc.

1. Introduction

We recall that the order of growth of a meromorphic function f in the unit
disc D ¼ fz : jzj < 1g is given by

r ¼ rð f Þ ¼ lim sup
r!1�

logþ Tðr; f Þ
�logð1� rÞ ;

where logþ x ¼ maxf0; log xg, and where Tðr; f Þ denotes the Nevanlinna char-
acteristic of f .

The following result can be found in [2, Corollary 3.2].

Theorem A. Let f be a meromorphic function in D of finite order r. Let
e > 0, and let k and j be integers satisfying k > jb 0. Assume that f ð jÞ D 0.
Then the following two statements hold.

(a) There exists a set E1 H ½0; 1Þ which satisfiesð
E1

dr

1� r
< y;ð1:1Þ

such that for all z A D satisfying jzj B E1, we have
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f ðkÞðzÞ
f ð jÞðzÞ

����
����a 1

1� jzj

� �ðrþ2þeÞðk�jÞ
:ð1:2Þ

(b) There exists a set E2 H ½0; 2pÞ which has linear measure zero, such that
if y A ½0; 2pÞnE2, then there is a constant R ¼ RðyÞ A ð0; 1Þ such that for all z
satisfying arg z ¼ y and Ra jzj < 1, the estimate in (1.2) holds.

Example 9.3 in [2] shows the sharpness of Theorem A in the following
sense: There exists an analytic function f for which (1.2) cannot be replaced by
‘‘j f 0ðzÞ=f ðzÞj ¼ Oð1=ð1� jzjÞrþ2Þ’’.

The purpose of this paper is to show that the estimate in (1.2) can be further
improved in the case j ¼ 0 for functions in the Nevanlinna class N. The class
N consists of all meromorphic functions f in D for which Tðr; f Þ ¼ Oð1Þ, hence
rð f Þ ¼ 0 for every f A N.

Note that if fzng denotes the sequence of all zeros and poles of a function
f A N, then X

n

ð1� jznjÞ < y:ð1:3Þ

For a A ð0; 1�, we will also make use of the more restrictive condition

S ¼
X
n

ð1� jznjÞa < yð1:4Þ

for the zero/pole sequences fzng. The convergence condition (1.4) is studied, for
example, in [1, 7, 8, 9, 11, 12], which typically deal with the problem of when the
derivatives of a Blaschke product can belong to the Hardy spaces Hp, and hence
to the Nevanlinna class N. See [3] for the basic theory of Hardy spaces. If
fzng is a sequence of nonzero points in D satisfying (1.4) for some a A ð0; 1�, then
the product

BðzÞ ¼
Yy
n¼1

jznj
zn

zn � z

1� znz
;ð1:5Þ

known as the Blaschke product, represents an analytic function in D, and has
zeros precisely at the points zn.

Our first result shows that the estimates in Theorem A can be slightly im-
proved in the case j ¼ 0 for functions in the Nevanlinna class.

Theorem 1.1. Let f D 0 be a meromorphic function in N. Suppose that the
sequence fzng of all zeros and poles of f satisfies (1.4) for some a A ð0; 1�. Let
e > 0 and k A N. Then the following two statements hold.

(a) There exists a set E1 H ½0; 1Þ which satisfies (1.1) such that for all z A D
satisfying jzj B E1, we have
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f ðkÞðzÞ
f ðzÞ

����
���� ¼

O
1

1� jzj

� �2k !
; 0 < a < 1;

O
1

1� jzj

� �2k
log

1

1� jzj

� �ð2þeÞk
 !

; a ¼ 1:

8>>>>><
>>>>>:

ð1:6Þ

(b) There exists a set E2 H ½0; 2pÞ which has linear measure zero, such that
if y A ½0; 2pÞnE2, then there is a constant R ¼ RðyÞ A ð0; 1Þ such that for all z
satisfying arg z ¼ y and Ra jzj < 1, we have

f ðkÞðzÞ
f ðzÞ

����
���� ¼ O

1

1� jzj

� �2k !
; 0 < aa 1:ð1:7Þ

The function f ðzÞ ¼ exp
1þ z

1� z

� �
belongs to the class N, has neither zeros

nor poles, and satisfies

f 0ðzÞ
f ðzÞ ¼ 2

ð1� zÞ2
; z A D:

Therefore, the exponent 2k in (1.6), case 0 < a < 1, cannot be replaced by a
smaller number. In Section 6 we discuss the sharpness of the estimates in (1.6)
in the case when f has infinitely many zeros.

Note that if f A N, then the function f 0 need not belong to N. See [1] for a
counterexample, where a Blaschke product B is constructed such that B 0 B N.
This is roughly the reason why we have to assume j ¼ 0 in Theorem 1.1. These
observations also suggest that we should study the logarithmic derivatives of
Blaschke products in the case j ¼ 0.

Theorem 1.2. Let B be a Blaschke product with zeros fzng, zn 0 0, such that
(1.4) holds for some a A ð0; 1�, and let e > 0 and k A N. Then the following two
statements hold.

(a) There exists a set E1 H ½0; 1Þ which satisfies (1.1) such that for all z A D
satisfying jzj B E1, we have

BðkÞðzÞ
BðzÞ

����
���� ¼ O

1

1� jzj

� �ð1þaÞk
log

1

1� jzj

� �ð2þeÞk
 !

:ð1:8Þ

(b) There exists a set E2 H ½0; 2pÞ which has linear measure zero, such that if
y A ½0; 2pÞnE2, then, for all z satisfying arg z ¼ y and jzj ! 1�, we have

BðkÞðzÞ
BðzÞ

����
���� ¼ o

1

1� jzj

� �ð1þaÞk
 !

:ð1:9Þ

For completeness, we next restate [9, Theorem 1], which can be considered as
an integrated analogue of Theorem 1.2.
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Theorem B. Let k A N, and let B be a Blaschke product with zeros fzng,

zn 0 0, such that (1.4) holds for some a A 0;
1

k þ 1

� �
. Then, if m ¼ 1� a

k
, there is

a constant C ¼ Cða; kÞ > 0 such thatð2p
0

BðkÞðreiyÞ
BðreiyÞ

����
����
m

dyaCS;
1

2
< r < 1:

In particular, BðkÞ A Hp for each p A ð0;m�.

For further motivation, we note that growth estimates for logarithmic
derivatives of Blaschke products have been applied in the theory of complex
di¤erential equations, see [5, 6].

This paper is organized as follows. Theorem 1.1 is proved in Sections 2
and 3, while Theorem 1.2 is proved in Sections 4 and 5. In Section 6 we will
construct a Blaschke product illustrating the sharpness of our estimates. The
proofs of Theorems 1.1(a) and 1.2(a) rely heavily on the reasoning in [2], hence
on the well-known Cartan’s lemma [10, pp. 19–21]. We prove Theorems 1.1(b)
and 1.2(b) using a method which does not rely on Cartan’s lemma. Unfortu-
nately, this method does not seem to work for proving Theorems 1.1(a) and
1.2(a).

In all of the proofs we may suppose that the points zn are listed according to
multiplicities and ordered by increasing moduli.

2. Proof of Theorem 1.1(a)

First, we observe that (1.4) enables us to estimate nðrÞ—the number of the
points zn lying in the disc fz : jzja rg.

Lemma 2.1. Let fzng be a sequence of nonzero points in D such that (1.4)
holds for some a A ð0; 1�. Then

nðrÞa S

ð1� rÞa ; 0a r < 1:

Proof. By (1.4), we have

Sb
X

0<jznj<r

ð1� jznjÞa b
X

0<jznj<r

ð1� rÞa b ð1� rÞanðrÞ;

where r A ½0; 1Þ is arbitrary. r

Second, we denote R ¼ 1þ jzj
2

, and deduce the following estimate by the

proof of [2, Lemma 5.2]: There exist constants R0 A ð0; 1Þ and C > 0 such that
for any z satisfying R0 < jzj < 1 and f ðzÞ0 0;y, we have
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f ðkÞðzÞ
f ðzÞ

����
����aC

1

1� jzj

� �2
þ
X
jznj<R

1

jz� znj
þ nðRÞ
1� r

0
@

1
A
k

:ð2:1Þ

In what follows, the value of the constant C may not be the same at each
occurrence. By Lemma 2.1 and the assumption on the sequence fzng, the
estimate in (2.1) reduces into

f ðkÞðzÞ
f ðzÞ

����
����aC

1

1� jzj

� �2
þ
X
jznj<R

1

jz� znj

0
@

1
A
k

:ð2:2Þ

Let fDjg, Dj ¼ fz : jz� cjj < rjg, be the sequence of discs as defined in the
proof of [2, Theorem 3.1]. Then every disc Dj is contained in the punctured unit
disc Dnf0g, and the union 6

j
Dj contains the points in the sequence fzng. Now,

for some R1 A ½R0; 1Þ and for all e > 0, we haveX
jznj<R

1

jz� znj
a 2

nðRÞ
1� r

log
1

1� r

� �1þe

log nðRÞ;ð2:3Þ

provided that z B 6
j
Dj and R1 a jzj < 1, see formula (6.7) in the proof of [2,

Theorem 3.1]. Again by Lemma 2.1 and the assumption on the sequence fzng,
the estimate in (2.3) reduces into

X
jznj<R

1

jz� znj
¼

O
1

1� jzj

� �2 !
; 0 < a < 1

O
1

1� jzj

� �2
log

1

1� jzj

� �2þe
 !

; a ¼ 1;

8>>>>><
>>>>>:

ð2:4Þ

where z B 6
j
Dj and R1 a jzj < 1.

Putting (2.2) and (2.4) together, we have shown that (1.6) holds, provided
that z B 6

j
Dj and R1 a jzj < 1. Thus it remains to show that the union 6

j
Dj

leads to the exceptional set E1, as indicated in Theorem 1.1(a).
We define a set EH ½0; 1Þ as a union of closed intervals:

E ¼ 6
y

j¼1

½jcjj � rj; jcjj þ rj �:

By formula (6.8) in [2], we obtain

Xy
j¼1

rj

1� jcjj
< y:

Therefore, by the Limit Comparison Test, it follows thatð
E

dr

1� r
a
Xy
j¼1

ðjcj jþrj

jcj j�rj

dr

1� r
a
Xy
j¼1

2rj
1� jcjj � rj

< y:
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Finally, we define E1 ¼ E U ½0;R1�, and conclude that the set E1 so defined
satisfies (1.1).

The proof of Theorem 1.1(a) is now completed.

3. Proof of Theorem 1.1(b)

We begin by surrounding each point zn by a Euclidean disc

Kn ¼ Knðzn; rnÞ ¼ fz : jzn � zja rng;

where rn ¼ að1� jznjÞ and a ¼ min
1

2
;

jz1j
2ð1� jz1jÞ

� �
> 0. For each n, we get

jznj þ rn a jznj þ
1

2
ð1� jznjÞ ¼

1

2
ð1þ jznjÞ < 1

and

jznj � rn b jznj �
jz1j

2ð1� jz1jÞ
ð1� jznjÞb jznj �

jz1j
2

> 0;

so that each of the discs Kn is properly contained in D, and none of them
contains the origin.

Let fn be the angle that the disc Kn subtends at the origin. We have

Xy
n¼1

rn

jznj
a

1

2jz1j
Xy
n¼1

ð1� jznjÞ < y:

Further, there exists an N A N such that if nbN, we have

sin�1 rn

jznj

� �
a 2

rn

jznj
;

so that Xy
n¼N

fn ¼ 2
Xy
n¼N

sin�1 rn

jznj

� �
< y:

Hence, for every e > 0, there exists an M ¼ MðeÞ A N, MbN, such that

Xy
n¼M

fn < e:ð3:1Þ

For the rest of the proof we suppose that z A D is fixed such that

z B 6y
n¼1

Kn. Denote R ¼ 1þ jzj
2

. Lemma 2.1 now yields

X
jznj<R

1

jz� znj
a

X
jznj<R

1

rn
a

nðRÞ
að1� RÞ aC

1

1� jzj

� �1þa

ð3:2Þ
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for some constant C > 0 independent of R. The estimate in (1.7) follows by
(2.2), (3.1) and (3.2).

The proof of Theorem 1.1(b) is now completed.

4. Proof of Theorem 1.2(a)

The following two auxiliary results are restatements of [8, Lemma 2] and [8,
Lemma 3], respectively.

Lemma C. Let J A N, and let fzng be a sequence of nonzero points in D
satisfying (1.4) for some a A ð0; 1�. Then, for any number p satisfying pb a and
Jpþ a > 1, we have

Xy
n¼1

ð1� jznjÞp

ð1� jznzjÞðJþ1Þp�1
¼ o

1

1� jzj

� �Jpþa�1
 !

; jzj ! 1�:

Lemma D. Let B be a Blaschke product with zeros fzng, zn 0 0. Then, for
any J A NU f0g, we have

BðJþ1ÞðzÞ ¼
XJ
m¼0

Xy
n¼1

J!ðmþ 1Þ
ðJ �mÞ! B

ðJ�mÞ
n ðzÞ ðznÞ

mþ1ðjznj2 � 1Þ
jznjð1� znzÞmþ2

;

where

BnðzÞ ¼
Y
j0n

jzjj
zj

zj � z

1� zjz
:ð4:1Þ

Let fDjg, Dj ¼ fz : jz� cjj < rjg, be the sequence of discs as in the proof of
Theorem 1.1(a). For the rest of the proof, we suppose that z A D is fixed such
that z B 6

j
Dj , and that jzj is su‰ciently close to 1. By the proof of Theorem

1.1(a), we know that this assumption leads to an exceptional set E1 satisfying
(1.1). Further, C > 0 denotes a constant (independent of n) the value of which
may not be the same at each occurrence. The proof is by induction.

The case k ¼ 1. Lemma D (or a direct computation) yields

B 0ðzÞ
BðzÞ ¼

Xy
n¼1

jznj2 � 1

ð1� znzÞðzn � zÞ :ð4:2Þ

Denote R ¼ 1þ jzj
2

. Then (4.2) implies

B 0ðzÞ
BðzÞ

����
����a X

jznj<R

1� jznj2

j1� znzj jzn � zj þ
X

jznjbR

1� jznj2

j1� znzj jzn � zj ¼ S1 þ S2;ð4:3Þ
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where S1 may be empty. We proceed to show that both of the series S1 and S2

converge uniformly for all z A D such that jzj B E1.
Estimating S2 in (4.3) is easy:

S2 a
2

R� jzj
X

jznjbR

ð1� jznjÞaþ1�a

j1� znzjaþ1�a
ð4:4Þ

a
4

ð1� jzjÞ1þa

X
jznjbR

ð1� jznjÞa aC
1

1� jzj

� �1þa

;

where we have used the fact that aa 1. To estimate S1 in (4.3) (assuming that it
is non-empty), we use Lemma 2.1 in inequality (2.3) to conclude, for an arbitrary
e > 0, that

S1 a
X
jznj<R

2

jz� znj
aC

1

1� jzj

� �1þa

log
1

1� jzj

� �2þe

; jzj B E1:ð4:5Þ

By combining (4.3), (4.4) and (4.5), it follows that

B 0ðzÞ
BðzÞ

����
����aC

1

1� jzj

� �1þa

log
1

1� jzj

� �2þe

; jzj B E1:ð4:6Þ

This proves Theorem 1.2(a) in the case k ¼ 1.

Remark. Note that the estimate in (4.6) holds for any Blaschke product
whose zeros satisfy (1.4), but possibly for a di¤erent exceptional set. In par-
ticular, the estimate in (4.6) holds for the products BnðzÞ defined in (4.1), for the
same exceptional set E1 as above, since each BnðzÞ has the same zeros as BðzÞ
except for one (or for one multiplicity in case of a multiple zero).

Induction assumption. Suppose then that the estimate

BðkÞðzÞ
BðzÞ

����
����aC

1

1� jzj

� �1þa

log
1

1� jzj

� �2þe
 !k

; jzj B E1;ð4:7Þ

holds for every k ¼ 1; . . . ; J.

The case k ¼ J þ 1. We make use of Lemma D:

BðJþ1ÞðzÞ
BðzÞ ¼

XJ
m¼0

Xy
n¼1

J!ðmþ 1Þ
ðJ �mÞ!

B
ðJ�mÞ
n ðzÞ
BnðzÞ

ðznÞmþ1
zn

jznj2
jznj2 � 1

ð1� znzÞmþ1ðzn � zÞ
:

It follows that

BðJþ1ÞðzÞ
BðzÞ

����
����a XJ

m¼0

Xy
n¼1

J!ðmþ 1Þ
ðJ �mÞ!

B
ðJ�mÞ
n ðzÞ
BnðzÞ

�����
����� 1� jznj2

j1� znzjmþ1jz� znj
:ð4:8Þ
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By Remark following formula (4.6), the induction assumption (4.7) applies to
each of the products BnðzÞ, and so, for every m ¼ 0; . . . ; J � 1, we have

B
ðJ�mÞ
n ðzÞ
BnðzÞ

�����
�����aC

1

1� jzj

� �1þa

log
1

1� jzj

� �2þe
 !J�m

; jzj B E1:ð4:9Þ

Similarly as in proving (4.4) and (4.5), we deduce that

Xy
n¼1

1� jznj2

j1� znzjmþ1jz� znj
aC

1

1� jzj

� �mXy
n¼1

1� jznj2

j1� znzj jz� znj
ð4:10Þ

aC
1

1� jzj

� �mþ1þa

log
1

1� jzj

� �2þe

;

provided that jzj B E1.
By combining (4.8), (4.9) and (4.10), it follows that

BðJþ1ÞðzÞ
BðzÞ

����
����aC

1

1� jzj

� �1þa

log
1

1� jzj

� �2þe
 !Jþ1

; jzj B E1:

This proves Theorem 1.2(a) in the case k ¼ J þ 1.
The proof of Theorem 1.2(a) is now completed.

5. Proof of Theorem 1.2(b)

This proof is by induction and combines the ideas used in proving Theorems
1.1(b) and 1.2(a), see Sections 3 and 4, respectively.

Let fKng be the sequence of discs as in the proof of Theorem 1.1(b). We
suppose that z A DnU is fixed, where U ¼ 6y

n¼1
Kn. By the proof of Theorem

1.1(b), we know that this assumption leads to an exceptional set E2 of linear

measure zero. As earlier, we denote R ¼ 1þ jzj
2

, and C > 0 stands for a constant

(independent of n) the value of which may not be the same at each occurrence.

The case k ¼ 1. By (4.3), it follows that

B 0ðzÞ
BðzÞ

����
����a X

jznj<R

1� jznj2

j1� znzjrn
þ
X

jznjbR

1� jznj2

j1� znzjðjznj � jzjÞð5:1Þ

a
2

að1� RÞ
X
jznj<R

1� jznj
1� jznzj

þ 2

R� jzj
X

jznjbR

1� jznj
1� jznzj

a
C

1� jzj
Xy
n¼1

1� jznj
1� jznzj

; z A DnU :

Lemma C, with p ¼ J ¼ 1, yields
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Xy
n¼1

1� jznj
1� jznzj

¼ o
1

1� jzj

� �1þa
 !

; jzj ! 1�:ð5:2Þ

Now, (3.1), (5.1) and (5.2) prove Theorem 1.2(b) in the case k ¼ 1.

Induction assumption. Suppose then that

BðkÞðzÞ
BðzÞ

����
���� ¼ o

1

1� jzj

� �ð1þaÞk
 !

; jzj ! 1�; z A DnU ;ð5:3Þ

holds for every k ¼ 1; . . . ; J. So, by (3.1), we assume that the assertion of
Theorem 1.2(b) holds for k ¼ 1; . . . ; J.

The case k ¼ J þ 1. Applying Lemma C (with p ¼ 1 and J ¼ mþ 1), we
get, in the spirit of the case k ¼ 1, that the estimate

Xy
n¼1

1� jznj2

j1� znzjmþ1jzn � zj
¼ o

1

1� jzj

� �mþ1þa
 !

; jzj ! 1�;ð5:4Þ

holds for every m ¼ 0; . . . ; J, provided that z A DnU . Just as in Section 4, we
note that the estimate in (5.3) holds for the products BnðzÞ as well. Therefore,
by (4.8), (5.3) and (5.4), we conclude that

BðJþ1ÞðzÞ
BðzÞ

����
���� ¼ o

1

1� jzj

� �ð1þaÞðJþ1Þ
 !

; jzj ! 1�; z A DnU :

This, together with (3.1), proves Theorem 1.2(b) in the case k ¼ J þ 1.
The proof of Theorem 1.2(b) is now completed.

6. Discussion on sharpness

We illustrate the sharpness of Theorem 1.2(a) (and of Theorem 1.1(a)) by
constructing a suitable Blaschke product with infinitely many zeros. An anal-
ogous example for entire functions is constructed in [4, p. 103]. However, the
reasoning in the unit disc seems to be more involved than the corresponding
reasoning in the complex plane.

Let 0 < a < 1, and define a constant

N ¼ NðaÞ ¼ 1þ a

1� a

� �
þ 1b 2;

where ½x� denotes the largest integer not exceeding x. Further, define

zn ¼ 1� 1

n

� �1=a
; nbN:

For every e > 0, we clearly have
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Xy
n¼N

ð1� znÞa ¼ y and
Xy
n¼N

ð1� znÞaþe < y:

The Blaschke product having zeros at the points zn, nbN, is simply

BðzÞ ¼
Yy
n¼N

zn � z

1� znz
:ð6:1Þ

Theorem 1.2(a) implies, for any e > 0, that there is an exceptional set E1 H ½0; 1Þ
satisfying (1.1) such that

B 0ðzÞ
BðzÞ

����
���� ¼ O

1

1� jzj

� �1þaþe
 !

; jzj B E1:ð6:2Þ

To illustrate the sharpness of (6.2), we prove the following result.

Proposition 6.1. Let B be the Blaschke product defined in (6.1), and let
E1 be the exceptional set in (6.2). Then there exist a set F1 A ½0; 1Þ, satisfyingÐ
F1

dr

1� r
¼ y, and a constant C ¼ CðaÞ > 0 such that

B 0ðxÞ
BðxÞ

����
����b C

ð1� xÞ1þa
log

1

1� x
; x A F1nE1:ð6:3Þ

The remaining part of the present section is devoted to proving Proposition
6.1. To begin with, we define the sequences

bn ¼ ð1� znÞ1þa ¼ 1

n

� �1þ1=a

; nbN;

and

gn ¼
ð1� znÞ1þa

ad log
1

1� zn

¼ bn
d log n

ða bnÞ; nbN;ð6:4Þ

where db
1

log 2
is a constant to be fixed later on. Also, we define an auxiliary

function

gðxÞ ¼ x

x� 1

x

xþ 1

� �1=a
; x > 1:

Obviously, g is di¤erentiable and limx!y gðxÞ ¼ 1. Further,

g 0ðxÞ ¼ x1=aðxþ 1Þ1=a
1þ 1

a

� �
ðx� 1Þ � x 1þ 1

a
� x� 1

xþ 1

� �
ðx� 1Þ2ðxþ 1Þ2=a

;

so that g 0ðxÞ > 0 if and only if
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1þ 1

a

� �
ðx� 1Þ > x 1þ 1

a
� x� 1

xþ 1

� �
;

which is equivalent to the statement x >
1þ a

1� a
. Hence, we conclude that

gðxÞ < 1 for Na x < y. This property of g will be used to prove the
inequalities

0 < zN < zN þ bN < zn < zn þ bn < znþ1 < � � � < 1; n > N:ð6:5Þ

Namely, we have

n

n� 1

n

nþ 1

� �1=a
¼ gðnÞ < 1; nbN:ð6:6Þ

Multiplying both sides of (6.6) by
n� 1

n

1

n

� �1=a
, we obtain

1

nþ 1

� �1=a
<

1

n

� �1=a
1� 1

n

� �
; nbN;

so that

1� 1

n

� �1=a
þ 1

n

� �1þ1=a

< 1� 1

nþ 1

� �1=a
; nbN:

But this is equivalent to zn þ bn < znþ1, nbN. Note that all the other in-
equalities in (6.5) are trivial. Further, since gn a bn for nbN, the inequalities
(6.5) give us

0 < zN < zN þ gN < zn < zn þ gn < znþ1 < � � � < 1; n > N:ð6:7Þ

Next, we consider the union of open intervals

F ¼ 6
y

n¼N

ðzn; zn þ gnÞ:

By (6.7), F is a subset of ½0; 1Þ, and the intervals ðzn; zn þ gnÞ are pairwise disjoint.
Further,

ð
F

dr

1� r
¼
Xy
n¼N

ð znþgn

zn

dr

1� r
b
Xy
n¼N

gn
1� zn

¼ 1

d

Xy
n¼N

1

n log n
¼ y;

no matter how we choose the constant db
1

log 2
.

A simple computation results in

B 0ðzÞ
BðzÞ ¼

Xy
n¼N

z2n � 1

ð1� znzÞðz� znÞ
:
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Suppose then that z ¼ x A F . Then there exists a unique integer kbN such that
zk < x < zk þ gk. We have

B 0ðxÞ
BðxÞ

����
����b z2k � 1

ð1� zkxÞðx� zkÞ

����
����� X

n0k

z2n � 1

ð1� znxÞðx� znÞ

�����
�����ð6:8Þ

b
1� z2k

ð1� zkxÞðx� zkÞ
�
Xk�1

n¼N

1� z2n
ð1� znxÞðx� znÞ

�
Xy

n¼kþ1

1� z2n
ð1� znxÞðzn � xÞ :

With the notation fixed above, we obtain the following two lemmas, which
are valid for all k large enough. By this we mean that x is close to 1, yet x A F
and zk < x < zk þ gk. The proofs of the lemmas will be given at the end of this
section.

Lemma 6.2. For all k large enough, we have

Xy
n¼kþ1

1� z2n
ð1� znxÞðzn � xÞ a

C1

ð1� zkÞ1þa
log

1

1� zk
;

where C1 ¼ C1ðaÞ > 0 is a constant independent of k.

Lemma 6.3. For all k large enough, we have

Xk�1

n¼N

1� z2n
ð1� znxÞðx� znÞ

a
4a2

ð1� zkÞ1þa
log

1

1� zk
:

We will also make use of the next result, which follows directly from the
assumption zk < x < zk þ gk and the definition of the points gk.

Lemma 6.4. For any kbN, we have

1� z2k
ð1� zkxÞðx� zkÞ

b
ad

ð1� zkÞ1þa
log

1

1� zk
;

where db
1

log 2
is the constant from (6.4).

Suppose for a moment that the assertions in Lemmas 6.2 and 6.3 hold for all

kbMbN. Choose the constant db
1

log 2
such that

C0 ¼ ad� C1 � 4a2 > 0:
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Define

F1 ¼ 6
y

n¼M

ðzn; zn þ gnÞ:

Clearly, F1 HF and
Ð
F1

dr

1� r
¼ y. Suppose that z ¼ x A F1nE1, where E1 is the

exceptional set in (6.2). Then, by (6.8), Lemmas 6.2–6.4, and the inequalities
zk < x < zk þ gk, we conclude that

B 0ðxÞ
BðxÞ

����
����b C0

ð1� zkÞ1þa
log

1

1� zk
b

C02
�ð1þaÞ

ð1� xÞ1þa
log

2�1

1� x
:ð6:9Þ

The estimate in (6.3) follows from (6.9).
To conclude Proposition 6.1, it remains to prove Lemmas 6.2 and 6.3.

Proof of Lemma 6.2. For any nb k þ 1, we have

1� z2n
ð1� znxÞðzn � xÞa

2

1� ðzk þ gkÞ
� 1� zn

zn � ðzk þ gkÞ
ð6:10Þ

a
2

1� ðzk þ bkÞ
� 1� zn

zn � ðzk þ bkÞ

¼ k

k � 1
� 2

1� zk
� k1þ1=a

n1=aðk � 1Þ � k1þ1=a

a
4k1þ1=a

1� zk
� 1

n1=aðk � 1Þ � k1þ1=a
:

Note that inequality (6.6) guarantees that

n1=aðk � 1Þ � k1þ1=a
b ðk þ 1Þ1=aðk � 1Þ � k1þ1=a > 0; nb k þ 1:ð6:11Þ

In fact, by L’Hopital’s rule,

lim
k!y

k 1� k

k þ 1

� �1=a !
¼ 1

a
;ð6:12Þ

so that

lim
k!y

ðk þ 1Þ1=a

ðk þ 1Þ1=aðk � 1Þ � k1þ1=a
¼ lim

k!y

1

k 1� k

k þ 1

� �1=a !
� 1

¼ a

1� a
:ð6:13Þ

We will also make use of the fact that

lim
k!y

k � 1

ðk þ 1Þ1=aðk � 1Þ � k1þ1=a
� ðk þ 1Þ1=a

k � 1
¼ a

1� a
;ð6:14Þ

which clearly follows from (6.13).
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Now, by using (6.14) and integrating by parts, we deduce thatðy
kþ1

dt

t1=aðk � 1Þ � k1þ1=a
¼
ðy
kþ1

t1�1=a � t1=a�1

t1=aðk � 1Þ � k1þ1=a
dt

¼ a

k � 1
t1�1=a log

t1=aðk � 1Þ � k1þ1=a

k � 1

� �� �y
kþ1

þ 1� a

k � 1

ðy
kþ1

t�1=a log
t1=aðk � 1Þ � k1þ1=a

k � 1

� �
dt

a
k þ 1

k � 1

a

ðk þ 1Þ1=a
log

k � 1

ðk þ 1Þ1=aðk � 1Þ � k1þ1=a

 !

þ 1� a

k � 1

ðy
kþ1

t�1=a logðt1=aÞ dt

a
k þ 1

k � 1

a

ðk þ 1Þ1=a
log

2a

1� a
� k � 1

ðk þ 1Þ1=a

 !

� 1

k � 1
t1�1=a a

1� a
þ log t

� �� �y
kþ1

a
2

ðk þ 1Þ1=a
a

1� a
þ logðk þ 1Þ

� �
;

which holds for all k large enough. Hence, by using (6.10), (6.11), and (6.13),
we obtain

Xy
n¼kþ1

1� z2n
ð1� znxÞðzn � xÞ

a
4k1þ1=a

1� zk

1

ðk þ 1Þ1=aðk � 1Þ � k1þ1=a
þ
ðy
kþ1

dt

t1=aðk � 1Þ � k1þ1=a

 !

a
4k1þ1=a

1� zk

a

1� a
� 2

ðk þ 1Þ1=a
þ 2

ðk þ 1Þ1=a
a

1� a
þ logðk þ 1Þ

� � !

a
4k

1� zk

4a

1� a
þ 2 logðk þ 1Þ

� �
;

which holds for all k large enough. The assertion now follows by using the fact

that k ¼ 1

ð1� zkÞa
for every kbN. r

Proof of Lemma 6.3. We assume that kbN þ 1, for otherwise there is
nothing to prove. Then, for any n A fN; . . . ; k � 1g, we have
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1� z2n
ð1� znxÞðx� znÞ

a 2
1� zn

ð1� znðzk þ bkÞÞðzk � znÞ

¼ 2k2=a n1=a

ðn1=a � 1Þ k � 1

k
þ k1=a

� �
ðk1=a � n1=aÞ

a 2k1=a n1=a

k1=a � n1=a
:

Define a continuous function

hðxÞ ¼ x1=a

k1=a � x1=a
; 1a x < k1=a:

Since the function h is strictly increasing, we get

hðnÞ < 2

ð nþ1=2

n

hðtÞ dt; 1a n < nþ 1

2
< k1=a:

Therefore, it follows that

Xk�1

n¼N

1� z2n
ð1� znxÞðx� znÞ

a 2k1=a
Xk�1

n¼N

n1=a

k1=a � n1=a
ð6:15Þ

a 4k1=a

ð k�1=2

1

t1=a

k1=a � t1=a
dt

a 4k1=a k � 1

2

� �ð k�1=2

1

t1=a�1

k1=a � t1=a
dt

¼ 4ak1=a k � 1

2

� �
log

k1=a � 1

k1=a � k � 1
2

� 	1=a
 !

;

which holds for any kbN þ 1. Similarly as in (6.12), we get

lim
k!y

k1=a � 1

k k1=a � k � 1
2

� 	1=a
 � ¼ lim
k!y

1� k�1=a

k 1�
k � 1

2

k

 !1=a0
@

1
A

¼ a:ð6:16Þ

Now, by (6.15) and (6.16), we deduce that

Xk�1

n¼N

1� z2n
ð1� znxÞðx� znÞ

a 4ak1þ1=a log k;

which holds for all k large enough. Finally, since k ¼ 1

ð1� zkÞa
for every kbN,

we conclude the assertion. r
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Remark. The discussion above holds in the case when 0 < a < 1. We note
that if a B ð0; 1Þ, then the sequence fzng is not even a Blaschke sequence.
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