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Abstract

In this paper we will perturb the scalar curvature of compact Kähler manifolds by

incorporating it with higher Chern forms, and then show that the perturbed scalar

curvature has many common properties with the unperturbed scalar curvature. In

particular the perturbed scalar curvature becomes a moment map, with respect to a

perturbed symplectic structure, on the space of all complex structures on a fixed

symplectic manifold, which extends the results of Donaldson and Fujiki on the

unperturbed case.

1. Introduction

Many works have been done on the relationship between the existence of
constant scalar curvature Kähler metrics and stability in the sense of geometric
invariant theory. A way of seeing this relationship is through the moment map
picture of an infinite dimensional set up as done by Donaldson [7] and Fujiki
[9]. They showed that the set of all Kähler metrics with constant scalar cur-
vature becomes the zero set of the moment map for the action of the group of
Hamiltonian symplectomorphisms on the space of all compatible complex
structures on a fixed symplectic manifold. Recall that for a Hamiltonian action
of a compact Lie group K on a compact Kähler manifold, having a zero of the
moment map along an orbit of the complexified group K c-action is equivalent to
the stability of the orbit of the reductive group K c (c.f. [8], section 6.5).
Applying this fact in finite dimensions to the infinite dimensional space of all
compatible complex structures we see a relationship between the existence of
constant scalar curvature Kähler metrics and infinite dimensional symplectic-GIT
stability.

The purpose of this paper is to perturb the scalar curvature by incorporating
it with higher Chern classes, and show that the perturbed scalar curvature shares
many common properties with the unperturbed scalar curvature. Especially the
set of all Kähler metrics with constant perturbed scalar curvature is the zero set
of the moment map with respect to a perturbed symplectic form on the space of
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all compatible complex structures on a fixed symplectic manifold. This extends
the earlier results of Donaldson and Fujiki in the unperturbed case.

Let M be a compact symplectic manifold with a fixed symplectic form o
and of dimension 2m. Let J be the set of all o-compatible integrable complex
structures. Then for each J A J, ðM;o; JÞ becomes a Kähler manifold. For a
pair ðJ; tÞ of a complex structure J and a small real number t, define a smooth
function SðJ; tÞ on M by

SðJ; tÞ
2mp

om ¼ c1ðJÞ5om�1 þ tc2ðJÞ5om�2 þ � � � þ tm�1cmðJÞð1Þ

where ciðJÞ is the i-th Chern form with respect to the Kähler structure ðo; JÞ on
M, i.e. they are defined by

det I þ i

2p
tY

� �
¼ 1þ tc1ðJÞ þ � � � þ tmcmðJÞ;ð2Þ

Y being the curvature matrix of the Levi-Civita connection. Note that SðJ; 0Þ
is equal to the trace of the Ricci curvature gijRij which is one half of the
Riemannian scalar curvature. But since SðJ; 0Þ more often appears in the
computations in Kähler geometry than the Riemannian scalar curvature does, we
will call SðJ; 0Þ the scalar curvature in this paper. We also call SðJ; tÞ the
perturbed scalar curvature. As mentioned above the main result of this paper is
to show that the perturbed scalar curvature becomes a moment map on J with
respect to some symplectic structure (Theorem 2.2 in the next section).

This paper is organized as follows. In section 2, we will prove Theorem 2.2.
We will give two proofs along the lines of [7] and [21]. In section 3, we study
the analogy to extremal Kähler metrics in our perturbed case. We will see that
the perturbed extremal Kähler metrics are critical points of the functional on J
given by the squared L2-norm of the perturbed scalar curvature but not critical
points of the functional on the space of Kähler forms given by the same integral.
In section 4 we will recall Bando’s result [1] on the obstructions to the existence
of Kähler metrics with harmonic higher Chern classes and study the relevant
Mabuchi functional in the perturbed case. In section 5, we will give a de-
formation theory of extremal Kähler metrics to the perturbed extremal Kähler
metrics extending earlier results of LeBrun and Simanca [18], [19].

2. Perturbed symplectic structure on the space of complex structures

Let ðM;oÞ be a compact symplectic manifold of dimension 2m and J
the space of all o-compatible complex structures on M. This means that J A J
if and only if oðJX ; JY Þ ¼ oðX ;YÞ for all vector fields X and Y , and
oðX ; JX Þ > 0 for all non-zero X . For later purposes it is convenient to assume
that J acts on the cotangent bundle rather than the tangent bundle. Fixing
J A J, we decompose the complexified cotangent bundle into holomorphic and
anti-holomorphic parts, i.e. G

ffiffiffiffiffiffiffi
�1

p
-eigenspaces of J:
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T �MnC ¼ T �0
J MlT �00

J M; T �00
J M ¼ T �0

J M:ð3Þ

Taking arbitrary J 0 A J we also have the decomposition with respect to J 0

T �MnC ¼ T�0
J 0MlT�00

J 0 M; T�00
J 0 M ¼ T�0

J 0M:ð4Þ

If J 0 is su‰ciently close to J then T�0
J 0M can be expressed as a graph over T �0

J M
as

T�0
J 0M ¼ faþ mðaÞ j a A T �0

J Mgð5Þ

for some endomorphism m of T �0
J M into T �00

J M:

m A GðEndðT �0
J M;T �00

J MÞÞð6Þ
GGðT 0

JMnT �00
J MÞGGðT 0

JMnT 0
JMÞ

where in the last identification we used the Kähler metric defined by the pair
ðo; JÞ. This can be expressed in the notation of tensor calculus with indices as

m i

k
7! g jkm i

k
¼: m ij

where we chose a local holomorphic coordinate system ðz1; . . . ; zmÞ and wrote o
as o ¼

ffiffiffiffiffiffiffi
�1

p
gij dz

i5dz j .

Lemma 2.1. With the above identification understood, m lies in the symmetric
part GðSymðT 0

JMnT 0
JMÞÞ of GðT 0

JMnT 0
JMÞ.

Proof. The symplectic form o gives a natural identification between the
tangent bundle and the cotangent bundle. This identification then gives a natural
symplectic structure on the cotangent bundle, which we denote by o�1. If o is
J-invariant, then o�1 is also J-invariant. For the complex structure J, o�1 is
expressed in terms of the Kähler metric of the Kähler structure ðo; JÞ as

o�1 ¼ �
ffiffiffiffiffiffiffi
�1

p
gij q

qzi
5

q

qz j
;

where we used the local expression of o as above. Since o�1 is J-invariant and
any 1-forms a and b in T �0

J M are eigenvectors of J belonging to
ffiffiffiffiffiffiffi
�1

p
, we have

o�1ða; bÞ ¼ 0:

Similarly we have

o�1ðma; mbÞ ¼ 0

and, since o�1 is also J 0-invariant, we also have

o�1ðaþ ma; b þ mbÞ ¼ 0:

Thus we obtain

o�1ða; mbÞ ¼ o�1ðb; maÞð7Þ
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which implies that m A GðT 0
JMnT 0

JMÞ is symmetric because in the local
expression,

m jiaibj ¼ m ijaibj;ð8Þ
as desired. r

Considered infinitesimally, the tangent space TJJ to J at J is a subspace of
SymðT 0

JMnT 0
JMÞ.

Then the L2-inner product on SymðT 0
JMnT 0

JMÞ gives J a Kähler
structure. But we perturb this Kähler structure in the following way. Let t be a
small real number. For m and n in the tangent space TJJ, we define

ðn; mÞtð9Þ

¼
ð
M

mcm njkm
i

l

ffiffiffiffiffiffiffi
�1

p

2p
dzk5dzl;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

 !

where cm is the polarization of the determinant viewed as a GLðm;CÞ-
invariant polynomial, i.e. cmðA1; . . . ;AmÞ is the coe‰cient of m!t1 � � � tm in
detðt1A1 þ � � � þ tmAmÞ, where I denotes the identity matrix and Y ¼ qðg�1qgÞ is
the curvature form of the Levi-Civita connection, and where ujkm

i

l
should be

understood as the endomorphism of T 0
JM which sends q=qz j to ujkm

i

l
q=qzi.

Note that

cmðA; . . . ;AÞ ¼ det A:

This is similar to the wedge product

a15� � �5am

for the type ð1; 1Þ-forms a1; . . . ; am. For we have

a5� � �5a ¼ detðaijÞ dz
15dz15� � �5dzm5dzm

when a ¼
P

aij dz
i5dz j. Therefore there is a symmetry between the endo-

morphism part and the form part in the integration of (9). This symmetry will
be used in this work and was used in the work of Bando [1] quoted in the next
section.

When t ¼ 0, ð� ; �Þt gives the standard L2-inner product which is anti-linear
in the first factor n and linear in the second factor m. If the real number t is
su‰ciently small, ð� ; �Þt is still positive definite.

Let G be the group of all Hamiltonian symplectomorphisms of ðM;oÞ. The
Lie algebra of G is isomorphic to the Poison algebra Cy

0 ðMÞ of all smooth
functions on M with average 0:

Cy
0 ðMÞ ¼ u A CyðMÞ

����
ð
M

uom ¼ 0

� �
:

G acts on J as holomorphic isometries.
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Theorem 2.2. For each fixed small real number t, SðJ; tÞ=2mp gives an
equivariant moment map on J if we consider SðJ; tÞ=2mp as an element of the dual
space of Cy

0 ðMÞ by the pairing

SðJ; tÞ
2mp

; u

� �
¼
ð
M

u
SðJ; tÞ
2mp

om:

The case t ¼ 0 is due to Donaldson ([7]) and Fujiki ([9]), and a mildly
di¤erent proof in this case was also given in Tian’s book [21].

To prove the theorem, let us consider two operators

P : Cy
0 ! TJJ;

Q : TJJ ! Cy
0 ðMÞ;

where P represents the infinitesimal action of the Lie algebra Cy
0 on J via

Hamiltonian action and Q represents the derivative of the map which associates

to J A J the perturbed scalar curvature
1

2mp
SðJ; tÞ of the Kähler manifold

ðM;o; JÞ. We need to show

<ðPðuÞ;
ffiffiffiffiffiffiffi
�1

p
mÞt ¼ hQðmÞ; ui

To compute PðuÞ, we have only to compute LXJ for a smooth vector field
X .

Lemma 2.3. For a smooth vector field X ¼ X 0 þ X 00 we have

LXJ ¼ 2
ffiffiffiffiffiffiffi
�1

p
‘ 00
JX

0 � 2
ffiffiffiffiffiffiffi
�1

p
‘ 0
JX

00:

In particular, if Xu is the Hamiltonian vector field of u,

PðuÞ ¼ 2
ffiffiffiffiffiffiffi
�1

p
‘ 00
JX

0
u :

Proof. Since ðLXJÞa ¼ LX ðJaÞ � JLXa, if a is a type ð1; 0Þ-form,

ðLXJÞa ¼
ffiffiffiffiffiffiffi
�1

p
ðLXa� ðLXaÞ1;0 þ ðLXaÞ0;1Þ ¼ 2

ffiffiffiffiffiffiffi
�1

p
ðLXaÞ0;1:ð10Þ

On the other hand

LXa ¼ dðaðX 0ÞÞ þ iðX ÞðqJaþ qJaÞ:ð11Þ
Thus

ðLXaÞ0;1 ¼ qJðaðX 0ÞÞ þ iðX 0ÞqJa:ð12Þ
But

qJðaðX 0ÞÞ ¼ ‘ 00
J ðaðX 0ÞÞ

¼ ð‘ 00
J aÞðX 0Þ þ að‘ 00

JX
0Þ ¼ ðqJaÞðX 0Þ þ að‘ 00

JX
0Þ:

This implies

qJðaðX 0ÞÞ þ iðX 0ÞðqJaÞ ¼ að‘ 00
JX

0Þð13Þ

350 akito futaki



From (10), (12) and (13) we get

ðLXJÞa ¼ að2
ffiffiffiffiffiffiffi
�1

p
‘ 00
JX

0Þ:ð14Þ

Similarly, if a is a ð0; 1Þ-form, then

ðLXJÞa ¼ að�2
ffiffiffiffiffiffiffi
�1

p
‘ 0
JX

00Þ:ð15Þ

From (14) and (15) we get the lemma. This completes the proof. r

From this lemma we get for the real function u

<ðPðuÞ;
ffiffiffiffiffiffiffi
�1

p
mÞt ¼ 2<ð‘ 00

JX
0
u ; mÞtð16Þ

¼ 2<
ð
M

mcm

 
ujkm

i

l

ffiffiffiffiffiffiffi
�1

p

2p
dzk5dzl;

on I þ
ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

!
:

Next we need to compute Q. We will do this in two ways along the lines of
[7] and [21]. First we follow the arguments of [7] just word for word.

If identify T�0
J 0M with T �0

J M through aþ ma 7! a, this identification
induces identifications of di¤erential forms with all degrees, which we denote by
i : Wp;q

J 0 ! W
p;q
J .

Lemma 2.4. With the above identification we have the following.
(a) If a 1-form g ¼ aþ b A T �0

J MlT �00
J M is written also as g ¼ a 0 þ ma 0 þ

b 0 þ mb 0 A T�0
J 0MlT�00

J 0 M then

b 0 ¼ b � ma

up to first order in m. Namely

iðb 0 þ mb 0Þ ¼ b � ma

up to first order in m.
(b) If a fixed 2-form w ¼ w2;0 þ w1;1 þ w0;2 A W2;0

J lW1;1
J lW0;2

J has w 01;1 as a
ð1; 1Þ-component with respect to J 0, then

iðw 01;1Þ ¼ w1;1 � mw2;0 � mw0;2

up to first order in m, where we extended the operation of m to higher
degree tensors in the obvious way.

Hereafter we use the notation1 to mean ‘‘up to first order in m’’.

Proof. (a) From a 0 ¼ a� mb 0 we see

b 0 ¼ b � ma 0 ¼ b � mða� mb 0Þ1 b � ma:
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(b) If a fixed 2-form is written also as w ¼ ð1þ mÞa15ð1þ mÞa2 þ ð1þ mÞa35
ð1þ mÞb1 þ ð1þ mÞb25ð1þ mÞb3 A W2;0

J 0 lW1;1
J 0 lW0;2

J 0 , then a similar computa-
tion as in the proof of (a) shows

a35b1 1 w1;1 � a15ma2 � ma15a2 � mb15b2 � b15mb2

1 w1;1 � mw2;0 � mw0;2:

This completes the proof. r

Corollary 2.5. Let E ! M be a vector bundle. If ‘ is a fixed connection
of E and ‘ ¼ ‘ 0

J þ ‘ 00
J with respect to the complex structure J, then by the

identification above ‘ 00
J 0 is identified with ‘ 00

J � m‘ 0
J up to first order in m.

Proof of Theorem 2.2. The identification i : T�0
J 0M ! T �0

J M is a Hermitian
isometry up to first order in m, and we can consider the Levi-Civita connections
‘J and ‘J 0 as two unitary connections on the same bundle. If J is fixed and ‘ 00

is varied by s A W0;1ðEndðT 0MÞÞ then the connection changes by s� s�. On the
other hand, if a connection ‘ ¼ ‘ 0

J þ ‘ 00
J is fixed and J varies to J 0 by m, then the

new ‘ 00
J 0 is identified with ‘ 00

J � m‘ 0
J up to first order in m by Corollary 2.5.

Now we compute ‘ 00
J 0 for a 1-form a of T �0

J M, which is strictly speaking

equal to i � ‘ 00
J 0 � i�1ðaÞ. But ‘ 00

J 0 � i�1ðaÞ is W0;1
J 0 -part of dðaþ maÞ up to first

order in m. From this and Lemma 2.4, (b), we get

‘ 00
J 0a1‘ 00

J aþ ‘ 0
JðmaÞ � mð‘ 0

JaÞ:ð17Þ
On T �0

J MnT �0
J M, m acts as a derivation. To make the notations clear we will

denote by m1 (resp. m2) the action of m on the first (resp. second) factor. So, on
T �0
J MnT �0

J M, we have m ¼ m1 n 1þ 1n m2. With these notations the right
hand side of (17) is equal to

‘ 00
J aþ m2‘

0
Jaþ ð‘ 0

JmÞa� mð‘ 0aÞ1‘ 00
J a� m1‘

0
Jaþ ð‘ 0

JmÞað18Þ
1 ð‘ 00

J � m‘ 0
JÞaþ ð‘ 0

JmÞa:
By Corollary 2.5, ‘ 00

J � m‘ 0
J is the expression under our identification of

J 0-ð0; 1Þ-component of a fixed connection ‘J . Thus the variation of the Levi-
Civita connection is s� s� where s ¼ ‘ 0

Jm. Notice that s must be a ð0; 1Þ-form
with values in EndðT 0

JMÞ. So, in local expressions

‘ 0
Jm ¼ ð‘jm

i

l
dzlÞ

with i column index, j row index. Since it is convenient to distinguish the
covariant derivative as the endomorphism part from the covariant exterior de-
rivative as the form part, we shall write ‘J to denote the covariant derivative as
the endomorphism part and d‘J to denote the covariant exterior derivative as the
form part. Thus, under the variation dJ ¼ m of the complex structure, the
variation dY of the curvature matrix Y is

dY ¼ d‘J ðs� s�Þ:
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Its ð1; 1Þ-part is

ðdYÞ1;1 ¼ d‘ 0
J ð‘ 0

JmÞ � ðd‘ 0
J ð‘ 0

JmÞÞ
�:

Since the exterior covariant derivative d‘J on I þ
ffiffiffiffiffiffiffi
�1

p

2p
tY

 !
of on I þffiffiffiffiffiffiffi

�1
p

2p
tY vanishes, we have

d

ð
M

u
SðJ; tÞ
2mp

om

¼ 2<
ð
M

umcm

ffiffiffiffiffiffiffi
�1

p

2p
d‘ 0

J ð‘ 0
JmÞ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

 !

¼ �2<
ð
M

mcm

ffiffiffiffiffiffiffi
�1

p

2p
d‘ 00

J u5‘ 0
Jm;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

 !

Now the invariant polynomial cm takes determinant for the endomorphism
part, and therefore we may interchange the roles of the form part and the
endomorphism part in the integration above. Thus by the vanishing of

d‘J on I þ
ffiffiffiffiffiffiffi
�1

p

2p
tY

 !
again we can use integration by parts for the covariant

derivative of the endomorphism part. Hence we have

d

ð
M

u
SðJ; tÞ
2mp

om

¼ 2<
ð
M

mcm

ffiffiffiffiffiffiffi
�1

p

2p
‘ 00
J d

‘ 00
J u5m;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

 !
:

where the term

ffiffiffiffiffiffiffi
�1

p

2p
‘ 00
J d

‘ 00
J u5m is expressed in local coordinatesffiffiffiffiffiffiffi

�1
p

2p
ukj dz

k5m i

l
dzl;

where ukj ¼ ‘j‘ku. This coincides with (16), completing the proof of Theorem
2.2.

Alternate proof of Theorem 2.2. We only need to show that hQðmÞ; ui is

equal to (16). To compute Q we take a local coordinates ðx1; . . . ; x2mÞ with
respect to which o is the standard symplectic form on R2m, by using Darboux’s
theorem. Let Jt be a family of complex structures with J0 ¼ J. Then we have

_JJjt¼0 ¼ 2
ffiffiffiffiffiffiffi
�1

p
m� 2

ffiffiffiffiffiffiffi
�1

p
m:

This follows because, by taking the derivative of
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Jtðaþ mðtÞaÞ ¼
ffiffiffiffiffiffiffi
�1

p
ðaþ mðtÞaÞ

with _mmð0Þ ¼ m, we have

_JJðaÞ ¼ 2
ffiffiffiffiffiffiffi
�1

p
m:

Let gt ¼ oJt be the Riemannian metric induced by Jt. Then the Christo¤el
symbols of gt are written as

G i
t; jk ¼ 1

2
gil
t

qgt;lj

qxk
þ qgt;lk

qx j
� qgt; jk

qxl

� �
:

At p A M we may assume that gijðpÞ ¼ dij, dgijðpÞ ¼ 0, and

JðpÞ ¼ O �I

I O

� �

where g ¼ g0. Then G i
t; jk is of order t, and

Rt; ijkl ¼ gt ‘q=qxi‘q=qx j

q

qxl
� ‘q=qx j‘q=qxi

q

qxl
;
q

qxk

� �

¼ gt; sk
1

2

q2gt;pj

qxiqxl
� q2gt; jl

qxiqxp
� q2gt;pi

qx jqxl
þ q2gt; il

qx jqxp

 !
g
ps
t

þ quadratic terms in the first derivatives of g:

Taking the derivative with respect to t at t ¼ 0,

d

dt

����
t¼0

Rt; ijkl ¼
1

2
ð _ggkj; il � _ggjl; ik � _ggki; jl þ _ggil; jkÞ:

Now we compute the right hand side in terms of local holomorphic
coordinates z1; . . . ; zm. The only terms involved in the integration are _ggil; jk’s
and their complex conjugates, and we also have

_ggil ¼ �
ffiffiffiffiffiffiffi
�1

p
gip2

ffiffiffiffiffiffiffi
�1

p
m
p

l
¼ 2mil:

Thus

1

2
_ggil; jk

ffiffiffiffiffiffiffi
�1

p
dzk5dzl ¼ mil; jk

ffiffiffiffiffiffiffi
�1

p
dzk5dzl:

Hence we get

hQðmÞ; ui

¼ 2<
ð
M

umcm

ffiffiffiffiffiffiffi
�1

p

2p
d‘ 0

J ð‘ 0
JmÞ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

 !
:

As in the last part of the previous proof this last term coincides with (16). This
completes the alternate proof.
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3. Perturbed extremal Kähler metrics

For a real or complex valued smooth function u on a Kähler manifold
ðM; gÞ we put

grad 0 u ¼
Xm
i; j¼1

gij qu

qz j

q

qzi

and call it the gradient vector field of u. Strictly speaking the real part of
grad 0 u is the gradient vector field of u, but we identify a real vector field with its
T 0M-part.

Definition 3.1. A Kähler metric g ¼ ðgijÞ is said to be a perturbed extremal
Kähler metric if the gradient vector field

grad 0 SðJ; tÞ ¼
Xm
i; j¼1

gij qSðJ; tÞ
qz j

q

qzi

of the perturbed scalar curvature SðJ; tÞ is a holomorphic vector field.

Proposition 3.2. Critical points of the functional

J 7!
ð
M

SðJ; tÞ2om

on J are perturbed extremal Kähler metrics.

Proof. Let JðsÞ be a smooth family of complex structures such that
Jð0Þ ¼ J and _JJð0Þ ¼ m. By the proof of Theorem 2.2

d

ds

����
s¼0

ð
M

uSðJðsÞ; tÞom ¼ 2mp<ð‘ 00‘ 00u; mÞt

for all real smooth function u with
Ð
M
uom ¼ 0. We take u to be v :¼

SðJ; tÞ �
Ð
M
SðJ; tÞom=

Ð
M
om and m to be ð�

ffiffiffiffiffiffiffi
�1

p
Þ-times the infinitesimal action

of the Hamiltonian vector field of v at J. Then using the above equality and
Lemma 2.3

d

ds

����
s¼0

ð
M

vSðJðsÞ; tÞ ¼ 2mp<ð‘ 00‘ 00u; mÞt:

From this we get

d

ds

����
s¼0

ð
M

SðJðsÞ; tÞ2om ¼ 2

ð
M

SðJ; tÞ d
ds

����
s¼0

SðJðsÞ; tÞom

¼ 2

ð
M

v
d

ds

����
s¼0

SðJðsÞ; tÞom

¼ 4mp<ð‘ 00‘ 00u; mÞt:
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This shows that J is a critical point if and only if

‘ 00 grad 0 SðJ; tÞ ¼ 0;

i.e. the Kähler metric of ðM;o; JÞ is a perturbed extremal Kähler metric. r

Remark 3.3. In the case of unperturbed extremal Kähler metrics when
t ¼ 0, such Kähler metrics are also the critical points of the functional

o 7!
ð
M

SðoÞ2om

on the space of all Kähler forms o in a fixed Kähler class ½o0� where SðoÞ
denotes the scalar curvature of the Kähler form o, (c.f. [4]). But when t0 0 the
perturbed extremal Kähler metrics are not the critical points of the functional

o 7!
ð
M

Sðo; tÞ2om

on the space of all Kähler forms in a fixed Kähler class where

Sðo; tÞ
2mp

om ¼ c1ðoÞ5om�1 þ tc2ðoÞ5om�2 þ � � � þ tm�1cmðoÞð19Þ

¼ 1

t
det on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

 !
� om

 !
;

cjðoÞ being the j-th Chern form with respect to o:

det 1þ t

ffiffiffiffiffiffiffi
�1

p

2p
Y

 !
¼ 1þ tc1ðoÞ þ � � � þ tm�1cmðoÞ:

Note that we use the notation Sðo; tÞ instead of SðJ; tÞ to emphasize that o is
varied now.

Proof of Remark 3.3. Let oþ do be a variation of the Kähler form in
a fixed Kähler class. Then do ¼

ffiffiffiffiffiffiffi
�1

p
qqj for some real smooth function j. By

(19) the variation dSðo; tÞ of the perturbed scalar curvature is given by

dSðo; tÞ
2mp

om þ Sðo; tÞ
2mp

Djom

¼ 1

t

 
mcm

 ffiffiffiffiffiffiffi
�1

p
qqjn I þ

ffiffiffiffiffiffiffi
�1

p

2p
tdY;

on I þ
ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

!
� Djom

!

¼ mcm

ffiffiffiffiffiffiffi
�1

p

2p
dY;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

 !
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þmcm
ffiffiffiffiffiffiffi
�1

p
qqjn I ;

ffiffiffiffiffiffiffi
�1

p

2p
Y;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

 !

þ � � � þmcm
ffiffiffiffiffiffiffi
�1

p
qqjn I ;

ffiffiffiffiffiffiffi
�1

p

2p
Y;on I ; . . . ;on I

 !
:

Thus

1

2mp
dðSðo; tÞ2omÞ

¼ 2Sðo; tÞmcm

ffiffiffiffiffiffiffi
�1

p

2p
dY;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

 !

þ 2Sðo; tÞmcm
ffiffiffiffiffiffiffi
�1

p
qqjn I ;

ffiffiffiffiffiffiffi
�1

p

2p
Y;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

 !

þ � � � þ 2Sðo; tÞmcm
ffiffiffiffiffiffiffi
�1

p
qqjn I ;

ffiffiffiffiffiffiffi
�1

p

2p
Y;on I ; . . . ;on I

 !

� 1

2mp
Sðo; tÞ2Djom:

Since dY ¼ ‘ 00‘ 0ðj i
j Þ we have

1

2mp
d

ð
M

Sðo; tÞ2omð20Þ

¼ 2

ð
M

Sðo; tÞmcm

 
‘l‘kðj i

j Þ
ffiffiffiffiffiffiffi
�1

p

2p
dzl5dzk;

on I þ
ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

!

þ 2

ð
M

Sðo; tÞmcm

 ffiffiffiffiffiffiffi
�1

p
qqjn I ;

ffiffiffiffiffiffiffi
�1

p

2p
Y;

on I þ
ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

!

þ � � � þ 2

ð
M

Sðo; tÞmcm
ffiffiffiffiffiffiffi
�1

p
qqjn I ;

ffiffiffiffiffiffiffi
�1

p

2p
Y;on I ; . . . ;on I

 !

� 1

2mp

ð
m

Sðo; tÞ2Djom

But
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‘l ‘kj
i
j ¼ ‘l ‘k‘

ijjð21Þ

¼ ‘l ‘
i‘kjj � ‘l ðR

pi
jkjpÞ

¼ ‘l ‘
i‘kjj � ð‘lR

p
jkiÞjp � R

p
jkijpl

¼ ‘l ‘
i‘kjj � ð‘pRl jkiÞjp � R

p
jkijpl

where we used the second Bianchi identity at the last equality. It follows from
(20) and (21) that

1

2mp
d

ð
M

Sðo; tÞ2omð22Þ

¼ �2

ð
M

Sðo; tÞmcm

 
ð‘l ‘

i‘kjj � jp‘
pRi

l jk
� R

pi
jkjplÞ

ffiffiffiffiffiffiffi
�1

p

2p
dzk5dzl;

on I þ
ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

!

þ 2

ð
M

Sðo; tÞmcm

 ffiffiffiffiffiffiffi
�1

p
qqjn I ;

ffiffiffiffiffiffiffi
�1

p

2p
Y;

on I þ
ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

!

þ � � � þ 2

ð
M

Sðo; tÞmcm
ffiffiffiffiffiffiffi
�1

p
qqjn I ;

ffiffiffiffiffiffiffi
�1

p

2p
Y;on I ; . . . ;on I

 !

� 1

2mp

ð
m

Sðo; tÞ2Djom

But

Ri

l jk

ffiffiffiffiffiffiffi
�1

p

2p
dzk5dzl ¼ Ri

klj

ffiffiffiffiffiffiffi
�1

p

2p
dzk5dzl ¼

ffiffiffiffiffiffiffi
�1

p

2p
Y:

From this and integration by parts

2

ð
M

Sðo; tÞmcm

 
jp‘

pRi

l jk

ffiffiffiffiffiffiffi
�1

p

2p
dzk5dzl;ð23Þ

on I þ
ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

!

¼ � 1

2mp

ð
M

Sðo; tÞ2Djom:
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It follows from (22) and (23) that

1

2mp
d

ð
M

Sðo; tÞ2om

¼ �2

ð
M

Sðo; tÞmcm

  
‘l ‘

i‘kjj

ffiffiffiffiffiffiffi
�1

p

2p
dzk5dzl;

on I þ
ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

!

þ 2

ð
M

Sðo; tÞmcm

 
R

pi
jkjpl

ffiffiffiffiffiffiffi
�1

p

2p
dzk5dzl;ð24Þ

on I þ
ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

!

þ 2

ð
M

Sðo; tÞmcm

 ffiffiffiffiffiffiffi
�1

p
qqjn I ;

ffiffiffiffiffiffiffi
�1

p

2p
Y;ð25Þ

on I þ
ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;on I þ

ffiffiffiffiffiffiffi
�1

p

2p
tY

!

þ � � � þ 2

ð
M

Sðo; tÞmcm

 ffiffiffiffiffiffiffi
�1

p
qqjn I ;

ffiffiffiffiffiffiffi
�1

p

2p
Y;on I ; . . . ;on I

!

� 1

mp

ð
m

Sðo; tÞ2Djomð26Þ

When t ¼ 0 this is equal to

1

2mp
d

ð
M

S2om ¼ �2

ð
M

SDjom þ 2

ð
M

S
Xm
i; j¼1

1

2p
Rijj

ijomð27Þ

þ 2

ð
M

S
X
i0j

jii
1

2p
Rjjo

m � 1

mp

ð
m

S2Djom

with D ¼ ‘i‘j‘
i‘ j where S ¼ Sðo; 0Þ is the unperturbed scalar curvature and we

used the normal coordinates such that the complex Hessian ðjijÞ is diagonalized.

The third term on the right hand side can then be computed using

X
i0j

jii
1

2p
Rjj ¼

Xm
i¼1

jii

 ! Xm
j¼1

1

2p
Rjj

 !
� j ij 1

2p
Rij

¼ Dj
1

2mp
S � j ij 1

2p
Rij;
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and we see from this and (27) that

1

2mp
d

ð
M

S2om ¼ �2

ð
M

DSjom:

This proves the fact that the critical points in the unperturbed case are the
extremal Kähler metrics. We have seen that when t ¼ 0, ð24Þ þ ð25Þ þ ð26Þ
vanishes. But when t0 0, this is not the case because we have the term with
tm�1 only in (24)

2

ð
M

Sðo; tÞmcm R
pi
jkjpl

ffiffiffiffiffiffiffi
�1

p

2p
dzk5dzl;

ffiffiffiffiffiffiffi
�1

p

2p
tY; . . . ;

ffiffiffiffiffiffiffi
�1

p

2p
tY

 !
;

which does not always vanish. This completes the proof of Remark 3.3.

4. Kähler metrics of harmonic Chern forms

Let M be a compact Kähler manifold with a fixed Kähler class ½o0� and
hðMÞ the complex Lie algebra of all holomorphic vector fields. For any o A ½o0�,
let ckðoÞ be the k-th Chern form with respect to o as in Remark 3.3. Let
HckðoÞ be the harmonic part of ckðoÞ. Here the harmonic projection H is taken
with respect to the Kähler metric o. Then

ckðoÞ �HckðoÞ ¼
ffiffiffiffiffiffiffi
�1

p
qqFk

for some smooth real ðk � 1; k � 1Þ-form

Fk A Wk�1;k�1ðMÞ:

For a holomorphic vector field X A hðMÞ, define fk : hðMÞ ! C by

fkðX Þ ¼ 1

m� k þ 1

ð
M

LXFk5om�kþ1:

Theorem 4.1 (S. Bando [1]). The functional fk on hðMÞ is independent of the
choice of o A ½o0�, becomes a Lie algebra character and obstructs the existence of
Kähler metrics o in ½o0� of harmonic k-th Chern form.

In [11] the author gave a larger family of integral invariants including fi’s and
obstructions to asymptotic Chow semi-stability.

Here again as in Remark 3.3 we are fixing J and varying o, instead of fixing
o and varying J. So we denote the perturbed scalar curvature by Sðo; tÞ as

in (19). If X ¼ grad 0 u ¼ gij qu

qz j

q

qzi
with

Ð
M
uom ¼ 0 then we see using the

integration by parts that

1

2mp

ð
M

uSðo; tÞom ¼ �f1ðX Þ � tf2ðX Þ � � � � � tm�1fmðXÞ:ð28Þ
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We put

FtðXÞ :¼ f1ðXÞ þ tf2ðXÞ þ � � � þ tm�1fmðX Þ:

and call it total Bando character.

Proposition 4.2. For fixed small t A R, Ft : hðMÞ ! C is an obstruction to
to the existence of Kähler metric o A ½o0� of constant perturbed scalar curvature
Sðo; tÞ. If there exists a perturbed extremal Kähler metric and the total Bando
character vanishes, then the perturbed extremal Kähler metric has constant per-
turbed scalar curvature.

Proof. If there is a Kähler form o A ½o0� such that Sðo; tÞ is constant.
Then the total Bando character has to vanish because of (28) and the nor-
malization

Ð
M
uom ¼ 0. If o is a perturbed extremal metric then grad 0 Sðo; tÞ is

a holomorphic vector field and

Ftðgrad 0 Sðo; tÞÞ ¼ 1

2mp

ð
M

gij qSðo; tÞ
qzi

qSðo; tÞ
qz j

om:

Thus if Ft vanishes then Sðo; tÞ is constant. r

Let sðtÞ be the topological invariant

sðtÞ ¼ ðc1ðMÞ5½o0�m�1 þ tc2ðMÞ½o0�m�2 þ � � � þ tm�1cmðMÞÞ½M�
½o0�m½M� :

This is obviously the average of the perturbed scalar curvature (with respect to
any Kähler form o A ½o0�). For any two Kähler forms o 0 and o 00 we define

Mtðo 0;o 00Þ ¼ �
ð1
0

ds

ð
M

qjs
qs

ðSðos; tÞ � sðtÞÞom
s

where os ¼ oþ
ffiffiffiffiffiffiffi
�1

p
qqjs, 0a sa 1, is a smooth path in ½o0� joining o 0 and o 00.

Bando and Mabuchi ([2]) observed that every coe‰cient of tk in Mtðo 0;o 00Þ, and
thus Mtðo 0;o 00Þ, is independent of the choice of the paths os and satisfies the
cocycle conditions. Putting ntðoÞ :¼ Mtðo0;oÞ, we get a functional on the space
of all Kähler forms in the cohomology class ½o0�. The functional n0 in the
case when t ¼ 0 is the so-called K-energy or Mabuchi energy. We call nt the
perturbed Mabuchi energy. It is obvious that the critical points of the perturbed
Mabuchi energy are the Kähler metrics of constant perturbed scalar curvature.
In the case when t ¼ 0 Chen and Tian [5] proved that the Mabuchi energy is
bounded from below if there exists a Kähler metric of constant scalar curvature,
and that the infimum of the Mabuchi energy is attained exactly on the space of
Kähler metrics of constant scalar curvature, extending earlier result of Bando and
Mabuchi [3] for Kähler-Einstein manifolds of positive first Chern class. We
hope to discuss for the perturbed case in a later paper.
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The proof of the fact that the definition of Mt is independent of the paths
follows from the fact that Sðo; tÞom gives a closed 1-form on the space of Kähler
forms. The closedness comes from the symmetry between the endomorphism
part and the form part in the definition of Sðo; tÞom, as was explained between
the equation (9) and Theorem 2.2. The detailed discussion was given in [10] but
of course the original idea goes back to Bando [1].

For the identity component Aut0ðMÞ of the group of all holomorphic
automorphisms of M, let G denote the maximal linear algebraic subgroup. The
maximal reductive subgroup K c of G is the complexification of a compact Lie
group K . Taking the average of the Kähler metric by the action of K we may
assume that K acts as isometries. We denote by o the Kähler form of the
averaged Kähler metric. Then the elements of the Lie algebra of K are Killing
vector fields of ðM;oÞ and are thus obtained as the real parts of the gradient
vector fields of purely imaginary functions (see e.g. [17]). Therefore as a
complex Lie algebra, the Lie algebra kc is isomorphic to the Lie algebra u
spanned over C by some real functions u1; . . . ; ud with the normalizationÐ
M
uio

m ¼ 0 where the Lie bracket on u is given by the Poisson bracket

fu; vg ¼ uivi � viui ¼ gij qu

qz j

qv

qzi
� gij qv

qz j

qu

qzi
:

Proposition 4.3. Let the situation be as above. If we choose or ¼
oþ

ffiffiffiffiffiffiffi
�1

p
qqjr so that j0 ¼ 0 and that _jjrjr¼0 ¼ u for some real smooth function u in

u, then

d

dr

����
r¼0

ntðorÞ ¼ 2mpFtðgrad 0 uÞ:

Proof. This is immediate from

ntðorÞ ¼ �
ð r
0

dq

ð
M

qjq

qq
ðSðoq; tÞ � sðtÞÞom

q

and

d

dr

����
r¼0

ntðorÞ ¼ �
ð
M

uSðo; tÞom

¼ 2mpFtðgrad 0 uÞ

where the last equality follows because u is a normalized Hamiltonian function
for a holomorphic vector field. r

This proposition shows that the perturbed Mabuchi energy is an integral form
of the total Bando character. A way of computing the unperturbed Mabuchi
energy n0 without using the path integral was given in [14]. It would be in-
teresting if one can give a formula for nt without using path integral. B.
Weinkove [23] related the degree 1 and 2 terms in t of Mt to Donladson’s
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functional which was used in the proof of the existence of Hermitian-Einstein
metrics on stable vector bundles [6].

We also remark that the modified Mabuchi energy to treat the extremal
metrics can be also defined in the perturbed case just as defined in [16] and [20].
One can use the proof given in [15].

The results obtained above may be interesting to compare with a results of
X. Wang [22] (see also [12]) which we summarize below.

Let ðZ;WÞ be a Kähler manifold and suppose a compact Lie group K acts
on Z as holomorphic isometries. Then the complexification K c of K also acts
on Z as biholomorphisms. The actions of K and K c induce homomorphisms of
the Lie algebras k and kc to the real Lie algebra GðTZÞ of all smooth vector fields
on Z, both of which we denote by r. If xþ ih A kc with x, h A k, then

rðxþ ihÞ ¼ rðxÞ þ JrðhÞ;
where J is the complex structure of Z. Suppose ½W� is an integral class and there
is a holomorphic line bundle L ! Z with c1ðLÞ ¼ ½W�. There is an Hermitian
metric h of L�1 such that its Hermitian connection y satisfies

� 1

2p
dy ¼ W:

Suppose we have a lifting of K c to L�1, so that we have a moment map
m : Z ! k� because the lifting of K-action to L is equivalent to defining a moment
map (see [8], section 6.5). Let p : L�1 ! Z be the projection and pðpÞ ¼ x with
p A L�1—zero section, x A Z. Denote by G ¼ K c � x the K c-orbit of x in Z, and
~GG ¼ K c � p be the K c-orbit of p in L�1. We say that x A Z is polystable with
respect to the K c-action if the orbit ~GG is closed in L�1. Consider the function
h : ~GG ! R defined by

hðgÞ ¼ logjgj2:
Fundamental facts are

� h has a critical point if and only if the moment map m : Z ! k� has a zero
along G:

� h is a convex function.
For these facts refer again to [8], section 6.5. These imply the following two
propositions.

Proposition 4.4. A point x A Z is polystable with respect to the action of K c

if and only if the moment map m has a zero along G.

Proposition 4.5. The set fx A G j mðxÞ ¼ 0g has only one component, and
the orbit StabðxÞc � x of the complexification of the stabilizer at x through x is
connected even if StabðxÞc is not connected.

For a given x A Z we extend mðxÞ : k ! R complex linearly to mðxÞ : kc ! C.
For notational convenience we denote by Kx (resp. ðK cÞx) the stabilizer of x in
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K (resp. K c), and by kx and ðkcÞx the Lie algebra of Kx and ðK cÞx. Define
fx : ðkcÞx ! C to be the restriction of mðxÞ : kc ! C to ðkcÞx. Note that ðK cÞgx ¼
gðK cÞxg�1.

Proposition 4.6 (Wang [22]). Fix x0 A Z. Then for x A K c � x0, fx is K c-
equivariant in that fgxðYÞ ¼ fxðAdðg�1ÞY Þ. In particular if fx vanishes at some
x A K c � x0 it vanishes at all x A K c � x0. Moreover fx : ðkcÞx ! C is a Lie algebra
character.

For a proof of this proposition, see [22] and also [12]. Suppose now we are
given a K-invariant inner product on k. Then we can identify kG k�, and k� has
a K-invariant inner product. Consider the function f : K c � x0 ! R defined by
fðxÞ ¼ jmðxÞj2. We say that x A K c � x0 is an extremal point if x is a critical
point of f.

Proposition 4.7 (Wang [22]). Let x A K c � x0 be an extremal point. Then
we have a decomposition

ðkcÞx ¼ ðkxÞc l
X
l>0

kcl

where kcl is l-eigenspace of adðimðxÞÞ, and imðxÞ lies in the center of ðkxÞc. In
particular ðkxÞc ¼ ðkcÞx if and only if mðxÞ ¼ 0.

For a proof of this proposition, see [22] and also [12]. Let ðM;o0; J0Þ be
a compact Kähler manifold with a fixed Kähler form o0. Apply the above
results for finite dimensional manifold Z to the set J of all o-compatible integral
complex structures J with respect to which ðM;o0; JÞ is a Kähler manifold,
where the compact Lie group K is replaced by the group of symplectomorphisms
generated by Hamiltonian di¤eomorphisms. This explains a relationship be-
tween stability and various results about extremal Kähler metrics. For example,
Proposition 4.6 explains the total Bando character and Proposition 4.7 of course
explains Calabi’s decomposition theorem for the Lie algebras of all holomorphic
vector fields on compact extremal Kähler manifolds [4] (see the next section).

5. Deformations of extremal Kähler metrics

Let M be a compact complex manifold carrying a Kähler metric. By a
(t-perturbed) extremal Kähler class we mean a de Rham cohomology class which
contains the Kähler form of a (t-perturbed) extremal Kähler metric. In this
section we prove the following result which extends the results of LeBrun and
Simanca [18], [19].

Theorem 5.1. For an extremal Kähler class ½o0�, there exists a neighborhood
U � ð�e; eÞ of ð½o0�; tÞ in H 1;1

DR ðM;RÞ � R such that all points of U are t-perturbed
extremal Kähler classes for all t A ð�e; eÞ.
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The rest of this section is devoted to the proof of this theorem. We first
review well known facts on Hamiltonian holomorphic vector fields on compact
Kähler manifolds. Let ðM; gÞ be a compact Kähler manifold. We define a
fourth-order elliptic di¤erential operator Lg : C

y
C ðMÞ ! Cy

C ðMÞ by

Lgu ¼ ‘ 00�‘ 00�‘ 00‘ 00u;

where Cy
C ðMÞ denotes the set of all complex valued smooth functions on

M. More precisely
Lgu ¼ ‘ j‘i‘j‘i u

¼ D2uþ Rji‘j‘iuþ ‘ jS‘j u

where S denotes the unperturbed scalar curvature. Then the kernel of Lg

consists of all smooth functions u whose gradient vector fields

grad 0 u :¼ gij‘j u
q

qzi

are holomorphic vector fields. It is well known that such holomorphic vector
fields are exactly those which have zeros (see [18] for a comprehensive proof ).
Since constant functions correspond to the zero vector field, we only consider the
subspace ðker LgÞ0 consisting of all functions u A ker Lg which are orthogonal to
constant functions: ð

M

uom
g ¼ 0:

Now we study the behavior of u A ðker LgÞ0 when the Kähler metric g varies in
the same Kähler class. The following lemma was used in [13], pp. 208–209, but
we will reproduce a proof here for the reader’s convenience.

Lemma 5.2. Let ~ggij ¼ gij þ ‘i‘jj be a Kähler metric in the same Kähler class
as gij. If u A ðker L~ggÞ0, then ~uu :¼ uþ ‘ iu‘ij A ðker L~ggÞ0 and grad~gg ~uu ¼ gradg u.

Proof. We first show the last equation.

grad~gg ~uu ¼ ~ggij q~uu

qz j

q

qzi
¼ ~ggij qu

qz j
þ ‘ku‘k‘jj

� �
q

qzi

¼ ~ggij‘kuðgkj þ ‘k‘jjÞ
q

qzi
¼ ‘ iu

q

qzi
¼ gradg u:

It remains to see ð
M

~uuom
~gg ¼ 0:

Let gtij ¼ gij þ t‘i‘jj be the line segment of Kähler metrics between g and ~gg, and

ut ¼ uþ t‘ iu‘ij be the corresponding functions in ðker L~ggÞ0. It is su‰cient to
prove
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d

dt

ð
M

uto
m
gt
¼ 0:

It is also su‰cient to prove this at t ¼ 0. But

d

dt

����
t¼0

ð
M

uto
m
gt
¼
ð
M

ð‘ iu‘ijþ uðDjÞÞom
g ¼ 0;

where D ¼ ‘ i‘iu denotes the complex Laplacian. This completes the proof.
r

Now let K be the identity component of the isometry group of ðM; gÞ, and
k be its Lie algebra. Hence k consists of all Killing vector fields. On a compact
Kähler manifold k can be embedded into the complex Lie algebra hðMÞ of all
holomorphic vector fields on M by X A k 7! 1

2 ðX �
ffiffiffiffiffiffiffi
�1

p
JXÞ A hðMÞ. By this k

is often identified with the image in hðMÞ of this embedding. As was explained
in the previous section when a holomorphic vector field X is written as a gradient
vector field of a complex valued smooth function, X is a Killing vector field if and
only if the function is a purely imaginary valued function. We choose real valued
smooth functions u1; . . . ; ud so that the gradient vector fields of iu1; . . . ; iud form a
basis of knC. We also assume that 1; u1; . . . ; ud form an L2-orthonormal system
(under the normalization

Ð
M
uio

m ¼ 0). Let us denote by Jg the linear span over
C of 1; u1; . . . ; ud .

Remark 5.3. Since the imaginary part of grad 0 uj is a Killing vector field,
ðgrad 0 ujÞj is a real function for a K-invariant real function j.

Remark 5.4. If ~ggij ¼ gij þ ‘i‘jj is a K-invariant Kähler metric in the same
Kähler class as g, then the corresponding basis of J~gg consisting of real functions are

1; ~uu1 ¼ u1 þ ðgrad 0 u1Þj:; . . . ; ~uud ¼ ud þ ðgrad 0 udÞj:
It is easy to see that they form an L2-orthonormal system with respect to ~gg (see
[13], Appendix 2).

Since we assume that there is an extremal Kähler metric, the Lie algebra
hðMÞ has the following structure by a theorem of Calabi [4]. Namely there is a
decomposition

hðMÞ ¼ h0 þ
X
l00

hl;

where hl is a l-eigenspace of the adjoint action of the extremal vector field

adðgrad 0 SÞ : hðMÞ ! hðMÞ;

and further h0 is the complexification of the Lie algebra k consisting of all Killing
vector fields on ðM; gÞ. In particular, it turns out that grad 0 S lies in the center
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of h0. that ½hl; hm�H hlþm, and that h0 is a maximal reductive Lie subalgebra of
hðMÞ.

Now we consider the set of all Kähler metrics invariant under the identity
component of the isometry group K of ðM; gÞ of the form

oða; jÞ ¼ oþ aþ
ffiffiffiffiffiffiffi
�1

p
qqj

where a is a K-invariant real harmonic ð1; 1Þ-form on ðM; gÞ and j is a
K-invariant real-valued L2

kþ4-function. Hence the space of such K-invariant
Kähler metrics is identified with an open subset of H 1;1ðM;RÞ � L2

kþ4;K where
H 1;1ðM;RÞ denotes the vector space of all real harmonic ð1; 1Þ-forms on M and

L2
kþ4;K is the vector space of all real valued K-invariant L2

kþ4 functions on M.

Let Ikþ4 be the orthogonal complement to the subspace spanned by 1; u1; . . . ; ud
in L2

kþ4;K .

Let ~gg be the Kähler metric corresponding to oða; jÞ: Then we obtain, as in
Remark 5.4, L2

kþ3-functions ð1; ~uu1; . . . ; ~uudÞ whose gradient vector fields span the
Lie algebra k. Let ~JJkþ3 be the linear span of ð1; ~uu1; . . . ; ~uudÞ. We put ~uu0 ¼ 1.

Then for a su‰ciently small neighborhood U of g in H 1;1ðM;RÞ � L2
kþ4;K , we

have

detðui; ~uujÞL2 0 0

for all ~gg A U . Then it is easy to see

kerð1�PgÞð1�P~ggÞ ¼ kerð1�P~ggÞ
where Pg and P~gg are respectively the L2 projections of L2

k;K onto Jkþ3 HL2
k;K

and onto ~JJkþ3 HL2
k;K :

Pg : L
2
k;K ! L2

k;K ; Pgð f Þ ¼
Xd
i¼0

ð f ; uiÞui;

P~gg : L
2
k;K ! L2

k;K ; P~ggð f Þ ¼
Xd
i¼0

ð f ; ~uuiÞ~uui:

Put V :¼ U V ðH 1;1ðM;RÞ � Ikþ4Þ, and take a neighborhood W of the origin
in V � R such that for every point ð~gg; tÞ in W (identifying V with the space of
Kähler metrics) the inner product (9) makes sense so that one can consider t-
perturbed scalar curvature. Consider the map S : W ! Ik defined by

Sð~gg; tÞ ¼ ð1�PgÞð1�P~ggÞSð~gg; tÞ:
Note that Sðg; 0Þ ¼ 0 and that S�1ð0Þ is the set of all perturbed extremal Kähler
metrics in W . To complete the proof of Theorem 5.1, it is su‰cient to show, by
the implicit function theorem, that the partial derivative

DSðg;0Þ : Ikþ4 ! Ik

at ðg; 0Þ in the direction of Ikþ4 is an isomorphism. In the direction of c A Ikþ4,
the derivative of the scalar curvature is
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ðDSÞgðcÞ ¼ �D2c� Rji‘j‘ic;

and the derivative of the projection P is

ðDPÞðSðgÞÞgðcÞ ¼
d

dt

����
t¼0

ðS þ ‘ iSt‘icÞ

¼ ‘ iS‘ic ¼ ‘iS‘ic;

where the last equality follows from Remark 5.3. Combining these two
equations, we obtain

ðDSÞgðcÞ ¼ ð1�PgÞð�D2c� Rji‘j‘ic� ‘ jS‘jcÞ

¼ ð1�PgÞð�LgcÞ

If ð1�PgÞðLgcÞ ¼ 0, then Lgc A Jg. But since Lg is self-adjoint, ðImage LgÞ? ¼
ker Lg and hence Lgc ¼ 0. Since c A Ikþ4, this implies c ¼ 0. Thus ðDSÞðg;0Þ
is injective, which also implies that ðDSÞðg;0Þ is surjective since ðDSÞðg;0Þ is self-
adjoint. This completes the proof.
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