J. HATOMOTO KODAI MATH. J. **29** (2006), 211–226

DIFFEOMORPHISMS ADMITTING SRB MEASURES AND THEIR REGULARITY

JIN HATOMOTO

Abstract

We are interested in the stochastic property of some "Anosov-like" system. In this paper we will treat a transitive and partially hyperbolic diffeomorphism f of a 2-dimensional torus with uniformly contracting direction, and show that if f is of C^2 and admits an SRB measure, then f is an Anosov diffeomorphism. In our proof we use the Pujals-Sambarino theorem for C^2 diffeomorphisms with dominated splitting. In the case of $C^{1+\alpha}$ the above statement is not true in general, i.e. we can construct a $C^{1+\alpha}$ counter example of Maneville-Pomeau type.

1. Introduction

We know that if f is a C^2 -Anosov diffeomorphism of a compact manifold M, then f admits an *Sinai-Ruelle-Bowen measure* μ (or *SRB measure*), i.e., μ has absolutely continuous conditional measures on unstable manifolds (Sinai [23]). This measure μ is isomorphic to a Berunulli shift, and it has exponential decay of correlations for Hölder continuous functions, and furthermore satisfies that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j x) = \int \varphi \, d\mu$$

for any continuous function $\varphi: M \to \mathbf{R}$ and for Lebesgue almost every $x \in M$. This result has been extended to Axiom A attractors by Bowen and Ruelle (e.g. [4]).

Let f be a $C^{1+\alpha}$ -diffeomorphism of a 2-dimensional torus \mathbf{T}^2 ($0 < \alpha \le 1$) and Γ be an f-invariant set of \mathbf{T}^2 , i.e. $f(\Gamma) = \Gamma$. We say that f is *partially* hyperbolic with contracting direction on Γ if there exist a norm $\|\cdot\|$ on \mathbf{T}^2 and $0 < \lambda_1 < \lambda_2$ with $\lambda_1 < 1$ so that each $x \in \mathbf{T}^2$ has a $D_x f$ -invariant decomposition $\mathbf{T}_x \mathbf{T}^2 = E_1(x) \oplus E_2(x)$ of subspaces $E_1(x)$ and $E_2(x)$ such that

¹⁹⁹¹ Mathematics Subject Classification. Primary 37C40, 37D20.

Key words and phrases. Anosov diffeomophism, SRB measure, first return map. Received October 7, 2005; revised November 21, 2005.

(1.1)
$$||D_x f|_{E_1(x)}|| \le \lambda_1, \quad ||D_x f|_{E_2(x)}|| \ge \lambda_2$$

(Here $D_x f$ denotes the derivative of f at x). Moreover, when $\lambda_2 > 1$, f is called *hyperbolic* on Γ (or Γ is a *hyperbolic set* for f). We call that f is an *Anosov* diffeomorphism if f is hyperbolic on the entire space \mathbf{T}^2 . f is said to be topologically transitive if there exists a point $x \in \mathbf{T}^2$ such that its orbit $\{f^n(x)\}_{n \in \mathbf{Z}}$ is dense in \mathbf{T}^2 .

The purpose of this paper is to show the following two theorems:

THEOREM A. Let f be a C^2 -diffeomorphism of T^2 . Then f is an Anosov diffeomorphism if and only if the following holds:

- (1) f is partially hyperbolic with contracting direction on \mathbf{T}^2 ,
- (2) f is topologically transitive and
- (3) f admits an SRB measure.

212

Theorem A is false in the case when f is of $C^{1+\alpha}$ ($0 < \alpha < 1$), i.e.

THEOREM B. For $\alpha \in (0, 1)$ there exists a $C^{1+\alpha}$ -diffeomorphism f such that (1) f is partially hyperbolic with contracting direction on \mathbf{T}^2 but not an Anosov diffeomorphism,

- (2) f is topologically transitive and
- (3) f admits an SRB measure.

2. Definitions and preliminaries

Fix $\alpha \in (0, 1]$ and let f be a $C^{1+\alpha}$ -diffeomorphism of \mathbf{T}^2 . Assume that f is partially hyperbolic and has contracting direction. Then f has the decomposition satisfying (1.1). Let μ be an f-invariant probability measure on \mathbf{T}^2 . By Birkhoff's ergodic theorem there exist a set Y_{μ} with full μ -measure and real numbers $\chi_1(x) < \chi_2(x)$ ($x \in Y_{\mu}$) which satisfy the following:

$$\lim_{n \to \pm \infty} \frac{1}{n} \log \|D_x f^n\|_{E_i(x)}\| = \chi_i(x) \quad (i = 1, 2).$$

We call $\chi_i(x)$ (i = 1, 2) the Lyapunov exponents of μ at $x \in Y_{\mu}$. By (1.1) we have

$$\chi_1(x) \le \log \lambda_1 < \log \lambda_2 \le \chi_2(x) \quad (x \in Y_\mu).$$

We say that μ is an *SRB measure* if (i) $\chi_2(x) > 0$ and (ii) μ has the conditional measures which are absolutely continuous w.r.t. the Lebesgue measures on unstable manifolds, which is defined as follows:

If $\chi_2(x) > 0$ for any $x \in Y_{\mu}$, then it is well known (see [16]) that there exists $\varepsilon_0 > 0$ sufficiently small and the *local unstable manifold* $W_{loc}^u(x)$ such that

$$f^{-1}(W_{loc}^{u}(x)) \subset W_{loc}^{u}(f^{-1}(x))$$

for any $y \in W_{loc}^u(x)$ and $n \ge 0$

DIFFEOMORPHISMS ADMITTING SRB MEASURES AND THEIR REGULARITY 213

(2.1)
$$d^{u}(f^{-n}(x), f^{-n}(y)) \le C(x) \exp((-\chi_{2}(x) + \varepsilon_{0})n)d^{u}(x, y)$$

and $E_2(x) = T_x W_{loc}^u(x)$, where d^u denotes the Riemannian metric on $W_{loc}^u(x)$ and C(x) satisfies

(2.2)
$$\lim_{n \to \pm \infty} \frac{1}{n} \log C(f^n(x)) = 0.$$

The unstable manifold $W^{u}(x)$ is defined by

$$W^{u}(x) = \bigcup_{n \ge 0} f^{n}(W^{u}_{loc}(f^{-n}(x))).$$

Since $\chi_1(x) < 0$ for any $x \in Y_{\mu}$, the *local stable manifold* $W^s_{loc}(x)$ exists ([16]) and satisfies

$$f(W_{loc}^{s}(x)) \subset W_{loc}^{s}(f(x)),$$

for any $y \in W_{loc}^s(x)$ and $n \ge 0$

(2.3)
$$d^{s}(f^{n}(x), f^{n}(y)) \leq D(x) \exp((\chi_{1}(x) + \varepsilon_{0})n)d^{s}(x, y)$$

and $E_1(x) = T_x W_{loc}^s(x)$, where d^s denotes the Riemannian metric on $W_{loc}^s(x)$ and D(x) satisfies $\lim_{n\to\pm\infty} (1/n) \log D(f^n(x)) = 0$. The stable manifold $W^s(x)$ is also defined.

Let \mathscr{B} denote the Borel σ algebra of \mathbf{T}^2 . For any measurable partition ξ of \mathbf{T}^2 we denote by \mathscr{B}_{ξ} the set of all Borel subsets which consist of the unions of the elements of ξ . A measurable partition ξ of \mathbf{T}^2 defines a family of measures $\{\mu_x^{\xi}\}$ (μ -a.e.x) such that for μ -a.e.x and $B \in \mathscr{B}$, $\mu_x^{\xi}(B)$ is a \mathscr{B}_{ξ} -measurable function of x and

$$\mu(E \cap B) = \int_E \mu_x^{\xi}(B) \ d\mu(x) \quad (E \in \mathscr{B}_{\xi}).$$

If there exists a sequence $\{\xi_i\}_{i\geq 1}$ of countable measurable partitions such that

$$\xi_1 \leq \xi_2 \leq \cdots \leq \bigvee_{i \geq 1} \xi_i = \xi,$$

then $\mu_x^{\xi}(\xi(x)) = 1$ where $\xi(x)$ denotes an element of ξ containing x. The family of measures $\{\mu_x^{\xi}\}$ (μ -a.e.x) is said to be the *canonical system* of *conditional measures* of μ w.r.t. ξ (see [20]).

We assume that a measurable partition ξ^u of \mathbf{T}^2 is subordinate to the W^u -foliation, i.e., ξ^u satisfies that (1) $\xi^u(x) \subset W^u(x)$ and (2) $\xi^u(x)$ contains an open set in $W^u(x)$ for μ -a.e.x. Let $\{\mu_x^u\}$ (μ -a.e.x) denote a canonical system of conditional measures of μ w.r.t. ξ^u and m_x^u denote the Lebesgue measure on $W^u(x)$. If μ_x^u is absolutely continuous w.r.t. m_x^u for μ -a.e.x ($\mu_x^u \ll m_x^u$), then we say that μ has the conditional measures which are absolutely continuous w.r.t. the Lebesgue measures on unstable manifolds (see [13]). If μ is an SRB measure, then so does every element in the ergodic

decomposition of μ for a set of μ -full measure. If $\mu_x^u \ll m_x^u$ (μ -a.e.x), then we know that $\mu_x^u \sim m_x^u|_{\xi^u(x)}$ (see [13], [14], [7]).

3. Proof of Theorem A

Let f be a C^2 -partially hyperbolic diffeomorphism with contracting di-rection on \mathbf{T}^2 and μ be an f-invariant probability measure on \mathbf{T}^2 . Let us denote $I_{\varepsilon} = [-\varepsilon, \varepsilon]$ for any $0 < \varepsilon \le 1$ and $\operatorname{Emb}^2(I_1, \mathbf{T}^2)$ as the set of C^2 -embeddings of I_1 into \mathbf{T}^2 equipped with the C^2 -metric. We can find (see [9]) two continuous maps $\phi^s: \mathbf{T}^2 \to \operatorname{Emb}^2(I_1, \mathbf{T}^2)$ and $\phi^{cu}: \mathbf{T}^2 \to \operatorname{Emb}^2(I_1, \mathbf{T}^2)$ such that for any $0 < \varepsilon \le 1$ the least stable and events we watch be marked by $\widetilde{W}^{\delta}(\varepsilon) = t^{\delta}(\varepsilon)(L)$ and $\widetilde{W}^{Cl}(\varepsilon)$ the local stable and center unstable manifolds $\tilde{W}^{s}_{\varepsilon}(x) = \phi^{s}(x)(I_{\varepsilon})$ and $\tilde{W}^{cu}_{\varepsilon}(x) =$ $\phi^{cu}(x)(I_{\varepsilon})$ satisfies the following:

- (i) $T_x \tilde{W}_{\varepsilon}^s(x) = E_1(x)$ and $T_x \tilde{W}_{\varepsilon}^{cu}(x) = E_2(x)$, (ii) for any $\varepsilon_1 \in (0, 1)$, $f(\tilde{W}_{\varepsilon_1}^s(x)) \subset \tilde{W}_{\varepsilon_1}^s(f(x))$, (iii) for any $\varepsilon_1 \in (0, 1)$, there exists $\varepsilon_2 \in (0, 1)$ such that $f^{-1}(\tilde{W}_{\varepsilon_2}^{cu}(x)) \subset \tilde{W}_{\varepsilon_1}^{cu}(f^{-1}(x))$.

Thus there exists $\delta > 0$ such that if $d(x, y) < \delta$ (d denotes the Riemannian metric on \mathbf{T}^2), then $\tilde{W}^s_{\varepsilon}(x)$ and $\tilde{W}^{cu}_{\varepsilon}(y)$ have a single transverse intersection point, so we write

(3.1)
$$[x, y] = \tilde{W}_{\varepsilon}^{s}(x) \cap \tilde{W}_{\varepsilon}^{cu}(y) \quad (x, y \in \mathbf{T}^{2} \text{ with } d(x, y) < \delta).$$

We denote by \tilde{d}^s and \tilde{d}^{cu} the Riemannian metric on $\tilde{W}^s_{\varepsilon}(x)$ and $\tilde{W}^{cu}_{\varepsilon}(x)$ respectively. Let B(x,r) be the ball centered at x with radius r. Since $\varepsilon_0 > 0$ is small enough, without loss of generality we can assume that the diameater of $\tilde{W}_{\varepsilon}^{cu}(x)$ (respectively $\tilde{W}_{\varepsilon}^{s}(x)$) is greater than $W_{loc}^{u}(x)$ (respectively $W_{loc}^{s}(x)$) for $x \in Y_{\mu}$.

LEMMA 3.1. For any $x \in Y_{\mu}$, $W_{loc}^{u}(x)$ is contained in $\tilde{W}_{\varepsilon}^{cu}(x)$ and $W_{loc}^{s}(x)$ is contained in $\tilde{W}^{s}_{\varepsilon}(x)$.

Proof. Let C(x) be as in (2.1) and δ be as in (3.1). Firstly we prove that $W_{loc}^{u}(x) \cap B(x, \delta C(x)^{-1}) \subset \tilde{W}_{\varepsilon}^{cu}(x)$ for $x \in Y_{\mu}$. To do so, assume that there exist $x \in Y_{\mu}$ and $y \in W_{loc}^{u}(x) \cap B(x, \delta C(x)^{-1}) \setminus \tilde{W}_{\varepsilon}^{cu}(x)$. By (2.1) we have $d^{u}(f^{-n}(y), f^{-n}(x)) < \delta$ for $n \ge 1$ and then define

$$[f^{-n}(y), f^{-n}(x)] = \tilde{W}^s_{\varepsilon}(f^{-n}(y)) \cap \tilde{W}^{cu}_{\varepsilon}(f^{-n}(x)) \quad (n \ge 1).$$

Since $y \neq x$ and $[f^{-n}(y), f^{-n}(x)] = f^{-n}[y, x]$, we have

$$f^{-n}([y,x]) \in \tilde{W}^{s}_{\varepsilon}(f^{-n}(y)), \quad f^{-n}([y,x]) \neq f^{-n}(y) \quad (n \ge 1).$$

Since f is uniformly contracting along E_1 , we have $||D_z f^{-n}|_{E_1(z)}|| \ge \lambda_1^{-n}$ $(z \in \tilde{W}_{\varepsilon}^{s}(y))$ and then

$$\varepsilon > \tilde{d}^s(f^{-n}([y,x]), f^{-n}(y)) \ge \lambda_1^{-n} \tilde{d}^s([y,x],y) \quad (n \ge 1).$$

This is a contradiction.

(2.1) and (2.2) ensure the existence of $i \ge 1$ such that

$$f^{-i}(W^u_{loc}(x)) \subset W^u_{loc}(f^{-i}(x)) \cap B(f^{-i}(x), \delta C(f^{-i}(x))^{-1}) \subset \tilde{W}^{cu}_{\varepsilon}(f^{-i}(x))$$

for any $x \in Y_{\mu}$. Thus we have that $W_{loc}^{u}(x) \cap B(x,\varepsilon) \subset \tilde{W}_{\varepsilon}^{cu}(x)$ for any $x \in Y_{\mu}$. Next we use the similar argument to prove the last part of the lemma. Assume that $W_{loc}^{s}(x) \cap B(x,\delta D(x)^{-1}) \notin \tilde{W}_{\varepsilon}^{s}(x)$ for some $x \in Y_{\mu}$. Here D(x) be as in (2.3). Then there exists $y \in W_{loc}^{s}(x) \cap B(x,\delta D(x)^{-1}) \setminus \tilde{W}_{\varepsilon}^{s}(x)$. From this, we have $d^{s}(f^{n}(y), f^{n}(x)) < \delta$ for $n \ge 1$ and define

$$[f^n(y), f^n(x)] = \tilde{W}^s_{\varepsilon}(f^n(y)) \cap \tilde{W}^{cu}_{\varepsilon}(f^n(x)) \quad (n \ge 1).$$

Notice that $[y, x] \neq x$ because of $\tilde{W}^{s}_{\varepsilon}(y) \cap \tilde{W}^{s}_{\varepsilon}(x) = \emptyset$, and (2.3) shows that

$$(3.2) \quad \tilde{d}^{u}(f^{n}([y,x]), f^{n}(x)) \leq \tilde{d}^{s}(f^{n}([y,x]), f^{n}(y)) + d^{s}(f^{n}(y), f^{n}(x))$$

$$\leq \lambda_{1}^{n} \tilde{d}^{s}([y,x], y) + D(x) \exp((\chi_{1}(x) + \varepsilon_{0})n) d^{s}(x, y)$$

$$(n \geq 1)$$

$$\rightarrow 0 \quad (n \rightarrow \infty).$$

By the first statement of the lemma, $\tilde{W}_{\varepsilon}^{cu}(f^n(x)) \supset W_{loc}^u(f^n(x)) \cap B(f^n(x),\varepsilon)$ and, since $f^n(W_{loc}^u(x) \cap B(x,\varepsilon))$ is expanding along E_2 , it doesn't happen that $\tilde{d}^u(f^n([y,x]), f^n(x)) \to 0 \ (n \to \infty)$. This contradicts (3.2). So we have $W_{loc}^s(x) \cap B(x, \delta D(x)^{-1}) \subset \tilde{W}_{\varepsilon}^s(x)$ for any $x \in Y_{\mu}$. Then as in the proof of the first statement, we have that $W_{loc}^s(x) \cap B(x,\varepsilon) \subset \tilde{W}_{\varepsilon}^s(x)$ for any $x \in Y_{\mu}$.

We say that $I \subset \tilde{W}_{\varepsilon}^{cu}(x)$ is an *interval* if there exist $y, z \in I_{\varepsilon}$ (y < z) such that $I = \phi^{cu}(x)([y,z])$. For $0 < \varepsilon' < \varepsilon$ we identify $\tilde{W}^{cu}_{\varepsilon'}(x)$ with $I_{\varepsilon'} \subset \mathbf{R}$ if there is no confusion. For any fixed point p, without loss of generality we can assume that all the eigenvalues of $D_p f$ are positive (by replacing f by f^2 if necessary).

LEMMA 3.2 ([11] Lemma 4.1). Let $p \in \mathbf{T}^2$ be a fixed point satisfying

$$\|D_p f|_{E_2(p)}\| = 1, \quad f^{-1}(W^{cu}_{\varepsilon'}(p)) \subset W^{cu}_{\varepsilon'}(p)$$

for some $0 < \varepsilon' < \varepsilon$. Then, for any interval $J \subset \tilde{W}^{cu}_{\varepsilon'}(p)$ containing p,

$$\sum_{i=0}^{\infty} \ell(f^{-i}(J)) = \infty.$$

Here $\ell(I)$ denotes the length of I.

By $||D_p f|_{E_1(x)}|| < \lambda_1$ for any $x \in \mathbf{T}^2$, the following statement is a result of Pujals-Sambarino ([18]).

LEMMA 3.3 ([18] Corollary 3.5). Assume that $p \in \mathbf{T}^2$ is a fixed point such that $f^{-1}(\tilde{W}^{cu}_{sl}(p)) \subset \tilde{W}^{cu}_{sl}(p)$

for some $0 < \varepsilon' < \varepsilon$ and fix an interval $J \subset \tilde{W}^{cu}_{\varepsilon'}(p)$. Then there exists $L = L(J,\varepsilon) > 0$ such that

$$L^{-1}\ell(f^{-n}(J)) \le \ell([f^{-n}(J), q]) \le L\ell(f^{-n}(J))$$

for any $q \in \tilde{W}^{s}_{\varepsilon'}(p)$ and $n \ge 0$.

Remark 3.4. If f is topologically transitive, then any fixed point of f satisfies the condition of Lemma 3.3.

Let Γ be an *f*-invariant compact set. We say that *f* has a *dominated* splitting on Γ if there exist C > 0 and $0 < \lambda < 1$ such that each $x \in \Gamma$ is decomposed $T_x T^2 = E_1(x) \oplus E_2(x)$ into the sum of $D_x f$ -invariant subspaces $E_1(x)$ and $E_2(x)$ which satisfies

$$\|D_{x}f^{n}\|_{E_{1}(x)}\|\|D_{f^{n}(x)}f^{-n}\|_{E_{2}(f^{n}(x))}\| \leq C\lambda^{n} \quad (n \geq 0).$$

Clearly, if f is partially hyperbolic with contracting direction on Γ , then f has a dominated splitting on Γ .

We denote by $\Omega(f)$ the set of points $x \in \mathbf{T}^2$ such that for any neighborhood V of x there exists n > 0 satisfying $f^n(V) \cap V \neq \emptyset$. We say that an *n*-periodic point p is *hyperbolic* if the absolute values of eigenvalues of $D_p f^n$ are different from 1 and is *sink* (respectively *source*) if all the absolute values of eigenvalues of $D_p f^n$ are smaller(respectively larger) than 1. If μ has positive and negative Lyapunov exponents then the set of hyperbolic periodic points is not empty ([12]).

LEMMA 3.5 ([18]). Assume that f has a dominated splitting on $\Omega(f)$ and all the periodic points in $\Omega(f)$ are hyperbolic. Then $\Omega(f)$ is represented as a union $\Omega(f) = \Gamma_1 \cup \Gamma_2$ of Γ_1 and Γ_2 where Γ_1 is a hyperbolic set for f and Γ_2 consists of a finite union of periodic simple closed curves $\mathscr{C}_1, \ldots, \mathscr{C}_n$ such that each \mathscr{C}_i is normally hyperbolic and $f^{m_i} : \mathscr{C}_i \to \mathscr{C}_i$ is conjugated to an irrational rotation $(m_i$ denotes the period of \mathscr{C}_i).

In particular, in the case when $\Omega(f) = \mathbf{T}^2$, f is an Anosov diffeomorphism.

Remark 3.6. If f is topologically transitive, then all the periodic points are not sink nor source.

Proof of Theorem A. Assume that f is an Anosov diffeomorphism. Then f satisfies the conditions (1)-(3) of Theorem A. Indeed, the condition (1) is obtained from the definitions of Anosov and partially hyperbolic diffeomorphisms. Since any Anosov diffeomorphism of T^2 is topologically conjugate to some hyperbolic toral automorphism ([6] Theorem 6.3) and hyperbolic toral automorphisms are topologically transitive, we have the condition (2). The condition (3) is the direct consequence of [23] as stated in Introduction. Therefore it remains only to show that the converse statement holds.

To do so we prepare the following claim.

CLAIM. All the periodic points of \mathbf{T}^2 are hyperbolic.

If we have the claim, then f satisfies the assumption of Lemma 3.5. Thus we have the conclusion.

To show the claim, we choose an arbitrary periodic point p with period n. To simplicity we replace f by f^n . Then p is a fixed point of f. Since f is uniformly contracting along E_1 , we have to show that $||D_p f|_{E_2(p)}|| > 1$. Since f is topologically transitive, by Remark 3.6 it doesn't happen that $||D_p f|_{E_2(p)}|| < 1$. Assume that $||D_p f|_{E_2(p)}|| = 1$. Then we lead a contradiction by using the method in the proof of Theorem A in [11].

Fix $0 < \varepsilon_1 < \min\{\varepsilon, \delta/(2\lambda_1)\}$ and define a neighborhood \mathscr{P} of p by

$$\mathscr{P} = \{ [y, x] \mid y \in \tilde{W}_{\varepsilon_1}^{cu}(p), x \in \tilde{W}_{\varepsilon_1}^{s}(p) \}.$$

When we identify $\tilde{W}_{\varepsilon_1}^{cu}(p)$ with an interval $I_{\varepsilon_1} \subset \mathbf{R}$ and p is a fixed point of f, the graph of $f|_{\tilde{W}_{\varepsilon_1}^{cu}(p)}$ satisfies $|f|_{\tilde{W}_{\varepsilon_1}^{cu}(p)}(y)| > |y|$ for any $y \in \tilde{W}_{\varepsilon_1}^{cu}(p) \setminus \{p\}$ (Figure 1) because f is topologically transitive. Since f^{-1} is uniformly expanding along $E_1, f^{-1}(\mathcal{P})$ intersects \mathcal{P} transeversely along stable direction (see Figure 2).

Let ξ^{μ} be a measurable partition subordinate to the W^{u} -foliation and $\{\mu_{x}^{u}\}$ (μ -a.e.x) denote a canonical system of conditional measures of μ w.r.t. ξ^{u} . Since μ is an SRB measure, we can take a measurable function $g: \mathbf{T}^{2} \to \mathbf{R}$ satisfying

$$g(z) = \frac{d\mu_y^u}{dm_y^u}(z)$$

for μ -a.e.y and m_y^u -a.e. $z \in \xi^u(y)$ ([13]). Here m_y^u denotes the Lebesgue measure on $W^u(y)$. Moreover it is known ([14] Corollary 6.1.4) that for μ -a.e.y, g is strictly positive on $\xi^u(y)$ and log g is Lipshitz continuous on $\xi^u(y)$.

By the definition of ξ^{u} , there exist r > 0, $x_0 \in Y_{\mu}$ and a closed set $A \subset Y_{\mu} \cap B(x_0, r)$ with $\mu(A) > 0$ such that for any $y \in A$

- (a) $\xi^{u}(y) \supset B^{u}(y, 2r)$ where $B^{u}(y, 2r)$ denotes the ball centered at y with radius 2r in $W^{u}(y)$,
- (b) $\lim_{n\to\pm\infty} \frac{1}{n} \log \|D_z f^n\|_{E_2(z)}\| = \chi_2(z) > 0$ for m_y^u -a.e. $z \in \xi^u(y)$,

(c) there exists $C_0 > 0$ (independent of y) such that for $z \in B^u(y, 2r)$

(3.3)
$$C_0^{-1} \le g(z) \le C_0.$$

Let $\eta^u(y)$ denote the connected component of $\xi^u(y) \cap B(x_0, r)$ which contains $y \in A$ and write $B^u = \bigcup_{y \in A} \eta^u(y)$. For any $y \in A$, by (b) we have that $l(f^i(\eta^u(y))) \to \infty$ as $i \to \infty$, where l(I) denotes the length of an interval I in the unstable manifold. Since f is topologically transitive, there exists $k_1 > 0$ such that $f^{k_1}(B^u)$ meets transversely one of the components of $f^{-1}(\mathscr{P}) \setminus \mathscr{P}$ along E_2 . This intersection is denoted by $\mathscr{Q}^{(1)}$, and clearly we have $m^u_y(\mathscr{Q}^{(1)}) > 0$ for $y \in \mathscr{Q}^{(1)}$. Furthermore we can show that $\mu(\mathscr{Q}^{(1)}) > 0$. Indeed, since μ is finvariant and is an SRB measure,

FIGURE 1. The graph of $f|_{\tilde{W}_{\varepsilon_1}^{cu}(p)}$

FIGURE 2. A transverse intersection of $f^{-1}(\mathscr{P}) \cap \mathscr{P}$

$$(3.4) \quad \mu(\mathscr{Q}^{(1)}) = \mu(f^{-k_1}(\mathscr{Q}^{(1)})) = \int \mu_x^u (f^{-k_1}(\mathscr{Q}^{(1)})) \, d\mu(x)$$
$$= \int_{B^u} \left(\int_{f^{-k_1}(\mathscr{Q}^{(1)})} g \, dm_x^u \right) \, d\mu(x)$$
$$= \int_{B^u} \left(\int_{\mathscr{Q}^{(1)}} g(f^{-k_1}(z)) \| D_z f^{-k_1}|_{E_2(z)} \| \, dm_{f^{k_1}(y)}^u(z) \right) \, d\mu(y)$$
$$\geq C_0^{-1} \inf_{z \in \mathscr{Q}^{(1)}} \{ \| D_z f^{-k_1}|_{E_2(z)} \| \} \int_{B^u} m_{f^{k_1}(y)}^u(\mathscr{Q}^{(1)}) \, d\mu(y) \quad (\because (3.3))$$
$$= C_1 \int m_x^u (\mathscr{Q}^{(1)}) \, d\mu(x)$$
where $C_1 = C_1^{-1} \inf_{z \in \mathscr{Q}^{(1)}} f^{-k_1}|_{E_2(z)} \|$ The last term of (3.4) is positive.

where $C_1 = C_0^{-1} \inf_{z \in \mathscr{Q}^{(1)}} \{ \|D_z f^{-k_1}|_{E_2(z)} \| \}$. The last term of (3.4) is positive because $\mu(B^u) > 0$ and $m^u_{f^{k_1}(y)}(\mathscr{Q}^{(1)}) > 0$ for $y \in B^u$.

Define

$$\mathcal{Q}^{(i)} = \{ z \in \mathcal{Q}^{(1)} \mid f^j(z) \in \mathcal{P}, (1 \le j \le i) \} \quad (i \ge 2)$$

and remark that $\mathscr{Q}^{(i)} \supset \mathscr{Q}^{(j)}$, $f^i(\mathscr{Q}^{(i)}) \cap f^j(\mathscr{Q}^{(j)}) = \emptyset$ for $1 \le i < j$ and $\bigcup_{i\ge 1} f^i(\mathscr{Q}^{(i)}) \subset \mathscr{P}$. Let $\pi : \mathscr{Q}^{(1)} \to \widetilde{W}^{cu}_{\varepsilon}(p)$ be the projection sliding along local stable manifolds. Since the fixed point p satisfies the condition of Lemma 3.3, there exists $L_1 > 0$ such that

(3.5) $m_x^u(\mathcal{Q}^{(i)}) \ge L_1 m_p^u(\pi(\mathcal{Q}^{(i)}))$

FIGURE 3. The figure of $\mathcal{Q}^{(i)}$

for any $x \in \mathcal{Q}^{(1)}$ (see Figure 3). In (3.4), replacing $\mathcal{Q}^{(1)}$ by $\mathcal{Q}^{(i)}$, we have

(3.6)
$$\mu(\mathcal{Q}^{(i)}) \ge C_1 \int m_x^u(\mathcal{Q}^{(i)}) \, d\mu(x) \quad (i \ge 1).$$

By (3.5), (3.6) and
$$m_p^u(\pi(\mathcal{Q}^{(i)})) = m_p^u(f^{-i}(\pi(\mathcal{Q}^{(1)}))),$$

 $\mu(\mathcal{Q}^{(i)}) \ge C_1 L_1 m_p^u(f^{-i}(\pi(\mathcal{Q}^{(1)}))).$

Then, since μ is *f*-invariant,

$$\mu\left(\sum_{i=1}^{\infty} f^{i}(\mathcal{Q}^{(i)})\right) = \sum_{i=1}^{\infty} \mu(f^{i}(\mathcal{Q}^{(i)})) = \sum_{i=1}^{\infty} \mu(\mathcal{Q}^{(i)}) \ge C_{1}L_{1}\sum_{i=1}^{\infty} m_{p}^{u}(f^{-i}(\pi(\mathcal{Q}^{(1)}))).$$

The last expression above goes to ∞ by Lemma 3.2. This is a contradiction with $\mu(\mathbf{T}^2) = 1$. Therefore $\|D_p f|_{E_2(p)}\| > 1$, i.e., *p* is hyperbolic. This completes the proof.

4. Proof of Theorem B

In this section we deal with a $C^{1+\alpha}$ -diffeomorphism f of \mathbf{T}^2 ($0 < \alpha < 1$) which has a non-hyperbolic fixed point p and satisfies the following three assumptions:

Assumption 1. There exist a norm $\|\cdot\|$ on \mathbf{T}^2 , $0 < \lambda < 1$ and a $D_x f$ -invariant decomposition $\mathbf{T}_x \mathbf{T}^2 = E_1(x) \oplus E_2(x)$ into subspaces $E_1(x)$ and $E_2(x)$ which satisfy

$$\|D_x f|_{E_1(x)}\| \le \lambda, \quad \|D_x f|_{E_2(x)}\| \begin{cases} = 1 & (x = p), \\ > 1 & (x \ne p). \end{cases}$$

For any $0 < \varepsilon < 1$, if we denote the local stable and unstable manifolds $\tilde{W}_{\varepsilon}^{s}(x)$ and $\tilde{W}_{\varepsilon}^{u}(x)$ at $x \in \mathbf{T}^{2}$ by

$$\begin{split} \tilde{W}^s_{\varepsilon}(x) &= \{ y \in \mathbf{T}^2 \, | \, d(f^n(y), f^n(x)) \le \varepsilon, (n \ge 0) \} \quad \text{and} \\ \tilde{W}^u_{\varepsilon}(x) &= \{ y \in \mathbf{T}^2 \, | \, d(f^{-n}(y), f^{-n}(x)) \le \varepsilon, (n \ge 0) \} \end{split}$$

respectively, then it follows from Assumption 1 that $\tilde{W}^s_{\varepsilon}(x)$ and $\tilde{W}^u_{\varepsilon}(x)$ are $C^{1+\alpha}$ -manifolds with $T_x \tilde{W}^s_{\varepsilon}(x) = E_1(x)$ and $T_x \tilde{W}^u_{\varepsilon}(x) = E_2(x)$ ([9]). To obtain the Lipschitz continuity of the holonomy map along local stable manifolds (Lemma 4.3), we impose the following assumption.

Assumption 2. (1) For any $x \in \mathbf{T}^2$ and $0 < \varepsilon < 1$, each local unstable manifold $\tilde{W}_{\varepsilon}^{u}(x)$ is a C^{2} -embedding and (2) W^{u} -foliation $\{\tilde{W}_{\varepsilon}^{u}(x) | x \in \mathbf{T}^{2}\}$ is C^{2} -continuous, i.e. the correspondence $x \mapsto \tilde{W}_{\varepsilon}^{u}(x)$ is C^{2} -continuous.

Assumption 3. If we identify $W_{\varepsilon}^{u}(p)$ with $I_{\varepsilon} = [-\varepsilon, \varepsilon]$, then the graph of $f|_{\tilde{W}^{u}(p)}$ can be represented as

$$f|_{\tilde{W}^{u}_{\varepsilon}(p)}(x) = \begin{cases} x + x^{1+\alpha} + o(x^{2}) & (x \ge 0), \\ x - |x|^{1+\alpha} - o(x^{2}) & (x < 0). \end{cases}$$

Assumption 3 implies that f is of $C^{1+\alpha}$ on $\tilde{W}^{u}_{\epsilon}(p)$ and it is crucial in proving the existence of an SRB measure.

Remark 4.1 ([19] Chapter VIII 8.8). We can construct a $C^{1+\alpha}$ diffeomorphism f above as follows: Let f_0 be a hyperbolic toral automorphism of \mathbf{T}^2 with two different eigenvalues $0 < \lambda_1 < 1 < \lambda_2$. We slowly deform f_0 near the origin along only unstable direction until it satisfies Assumptions 1 and 3.

By Assumption 1, f is partially hyperbolic with contracting direction but not an Anosov diffeomorphism and there exists $\delta > 0$ such that if $d(x, y) < \delta$, then $\tilde{W}^s_{\varepsilon}(x)$ and $\tilde{W}^u_{\varepsilon}(y)$ have a single transverse intersection point [x, y] = $\tilde{W}^{s}_{\varepsilon}(x) \cap \tilde{W}^{u}_{\varepsilon}(y)$ ([9] Theorem 5.5). Thus f is *expansive*, i.e. there exists $\eta > 0$ such that if $x, y \in \mathbf{T}^{2}$ and $d(f^{i}(x), f^{i}(y)) < \eta$ ($i \in \mathbf{Z}$) then x = y.

Moreover we can check that f satisfies the uniformly shadowing property

([2] Theorem 5.4, [3] Theorem 2.2.17). A sequence $\{x_i\}_{i \in \mathbb{Z}} \subset \mathbb{T}^2$ is called a β -pseudo orbit for f if $d(f(x_i), x_{i+1}) < \beta$ for all $i \in \mathbb{Z}$. A point $x \in \mathbb{T}^2$ is called an α -shadowing point for a β -pseudo orbit $\{x_i\}_{i \in \mathbb{Z}}$ if $d(f^i(x), x_i) < \alpha$ $(i \in \mathbb{Z})$. We call that f satisfies uniformly shadowing

property if for any $\alpha > 0$ there exists $\beta > 0$ such that for a δ -pseudo orbit there exists at least one α -shadowing point. Since f is expansive and satisfies the uniformly shadowing property, f is topologically conjugate to some hyperbolic toral automorphism ([8] Theorem) and is topologically transitive.

To conclude Theorem B it is enough to show the following:

PROPOSITION 4.2. If $0 < \alpha < 1$, then f admits an SRB measure.

In [11] Hu and Young gave a direct proof of the Lipschitz continuity of the holonomy map along the stable leaves for C^2 -almost Anosov diffeomorphisms. We emphasize that in their proof they use only Assumptions 1 and 2. So the Lipschitz continuity also holds for our case:

LEMMA 4.3 ([1] Proposition 2.5). There exists L > 0 such that for any $y \in \mathbf{T}^2$, interval $J \subset \tilde{W}^u_{\varepsilon}(y)$ and $q \in \tilde{W}^s_{\varepsilon}(y)$ with $d(y,q) < \delta$,

$$L^{-1}\ell(J) \le \ell([J,q]) \le L\ell(J).$$

By Assumption 3, we have the following ([24] p. 180):

LEMMA 4.4 ([11], [24]). For any interval $J \subset \tilde{W}^{u}_{\varepsilon}(p)$

$$\sum_{i=0}^\infty \ell(f^{-i}(J)) < \infty.$$

For any $z \in \mathbf{T}^2$ we denote by

$$\mathscr{R}_{\varepsilon'}(z) = \{ [y, x] \mid y \in \tilde{W}^{u}_{\varepsilon'}(z), x \in \tilde{W}^{s}_{\varepsilon'}(z) \} \quad (0 < \varepsilon' \le \varepsilon)$$

a *rectangle* of z. Combining Lemma 4.3 with the proofs of Proposition 3.1 in [11] and Lemma 5 in [24], we have the following:

LEMMA 4.5 ([11], [24]). For any small rectangle \mathscr{P} of p, there exist $\delta_1 > 0$ and K > 0 such that for any $x \in \mathbf{T}^2$ and any interval $J \subset \tilde{W}^u_{\varepsilon}(x)$ with $l(J) \leq \delta_1$ and $J \cap \mathscr{P} = \emptyset$

$$\frac{1}{K} \le \frac{|\det(D_y f^{-n}|_{E_2(y)})|}{|\det(D_z f^{-n}|_{E_2(z)})|} \le K \quad (y, z \in \gamma, n \ge 1)$$

where $det(D_y f|_{E_2(y)})$ denotes the Jacobian at y of f restricted to $E_2(y)$.

Now we introduce here the notion of a Markov partition. For any rectangle \mathscr{R} and $x \in \mathscr{R}$, let $\gamma^{\sigma}(x)$ be *the stable* ($\sigma = s$) and *unstable* ($\sigma = u$) *leaf* which is the connected component of $\tilde{W}_{\varepsilon}^{\sigma}(x) \cap \mathscr{R}$ containing x. A rectangle $\mathscr{R} \subset \mathbf{T}^2$ is said to be proper if $\operatorname{Cl}(\operatorname{int}(\mathscr{R})) = \mathscr{R}$ where $\operatorname{Cl}(A)$ and $\operatorname{int}(A)$ denote the closure and interior of a set A respectively. We say that $\{\mathscr{R}_i\}_{i=0}^{r-1}$ is a *Markov partition* if (i) each \mathscr{R}_i is proper, (ii) $\{\mathscr{R}_i\}_{i=0}^{r-1}$ is a cover of \mathbf{T}^2 , (iii)

 $\operatorname{int}(\mathscr{R}_i) \cap \operatorname{int}(\mathscr{R}_j) = \emptyset$ for $i \neq j$ and (iv) for any $x \in \operatorname{int}(\mathscr{R}_i) \cap f^{-1}(\operatorname{int}(\mathscr{R}_j))$, $f(\gamma^s(x)) \subset \gamma^s(f(x))$ and $f(\gamma^u(x)) \supset \gamma^u(f(x))$.

Since f is expansive and satisfies uniformly shadowing property, f has a Markov partition $\{\mathscr{R}_i\}_{i=0}^{r-1}$ with arbitrary diameter (see [3]). So we can assume that the diameter of $\{\mathscr{R}_i\}_{i=0}^{r-1}$ is less than $0 < \varepsilon_2 < \delta/2$. Moreover, since f is topologically conjugate to some hyperbolic toral automorphism, each element of $\{\mathscr{R}_i\}_{i=0}^{r-1}$ is homeomorphic to a parallelogram ([22] Theorem 4.1) and its boundary consists of two stable leaves and two unstable leaves. We consider elements of $\{\mathscr{R}_i\}_{i=0}^{r-1}$ containing the fixed point p. Then p is

We consider elements of $\{\mathscr{R}_i\}_{i=0}^{r-1}$ containing the fixed point p. Then p is contained in the interior of some \mathscr{R}_i or, in the boundaries of some \mathscr{R}_i s. If the latter happens, one of the boudary leaves of \mathscr{R}_i is an unstable or stable leaf with p. This implies that the cardinarity of the set of all \mathscr{R}_i containing p is less than 4. Since we can assume that all the eigenvalues of $D_p f$ are positive (by replacing f by f^2 , if necessary), we have

(a) $f(\operatorname{int}(\mathscr{R}_i)) \cap \operatorname{int}(\mathscr{R}_i) \neq \emptyset$ whenever $p \in \mathscr{R}_i$, and

(b) $f(\operatorname{int}(\mathscr{R}_i)) \cap \operatorname{int}(\mathscr{R}_j) = \emptyset$ whenever $p \in \mathscr{R}_i \cap \mathscr{R}_j \ (i \neq j)$.

If we take a neighborhood \mathcal{P} of p where

$$\mathscr{P} = \operatorname{int}\left(\bigcup_{p \in \mathscr{R}_i} \mathscr{R}_i\right),$$

then f is uniformly hyperbolic outside \mathscr{P} (by Assumption 1). By (a) and (b) we have $f(\mathscr{P}) \cap \mathscr{P} = \operatorname{int}(\bigcup_{p \in \mathscr{R}_i} f(\mathscr{R}_i) \cap \mathscr{R}_i)$.

Let R(x) be the smallest positive integer such that $(f^R)(x) = f^{R(x)}(x) \in \mathbf{T}^2 \setminus \mathscr{P}$ for $x \in \mathbf{T}^2 \setminus \mathscr{P}$. By Assumption 1, *the first return map* f^R is defined for *m*-a.e. $x \in \mathbf{T}^2 \setminus \mathscr{P}$ where *m* denotes the Lebesgue measure on \mathbf{T}^2 . We set

$$\Gamma_i = \{ y \in \mathbf{T}^2 \setminus \mathscr{P} \, | \, \mathbf{R}(y) = i \} \quad (i \ge 1),$$

then $f^{R}(x) = f^{i}(x)$ for $x \in \Gamma_{i}$. We define

$$\mathcal{Z}^{(i)} = \{ z \in f^{-1}(\mathscr{P}) \setminus \mathscr{P} \mid f^j(z) \in \mathscr{P}, (1 \le j \le i) \} \quad (i \ge 1).$$

Then $f^{i}(\mathcal{Q}^{(i)}) \cap f^{j}(\mathcal{Q}^{(j)}) = \emptyset$ for $i \neq j$, $\mathscr{P} = \bigcup_{i \geq 1} f^{i}(\mathcal{Q}^{(i)})$ and $\mathcal{Q}^{(i)} = \bigcup_{j \geq i+1} \Gamma_j$. For any rectangle \mathscr{R} , any unstable leaf γ^{u} and any $\rho > 0$, we say that $\mathscr{V}_{\rho} \subset \mathscr{R}$

For any rectangle \mathscr{R} , any unstable leaf γ^{u} and any $\rho > 0$, we say that $\mathscr{V}_{\rho} \subset \mathscr{R}$ is a *u*-subset of γ^{u} with radius ρ if $\mathscr{V}_{\rho} = \bigcup_{y \in \tilde{B}^{s}(x,\rho)} \gamma^{u}(y)$ for $x \in \gamma^{u}$, where $\tilde{B}^{s}(x,\rho)$ denotes the closed ball in $\tilde{W}_{\varepsilon}^{s}(x)$ centered at x with radius ρ . For any interval $\omega \subset \gamma^{u}$, \mathscr{S}_{ω} is an *s*-subset corresponding to ω if $\mathscr{S}_{\omega} = \bigcup_{y \in \omega} \gamma^{s}(y)$. We denote $\partial^{s}(\mathscr{R})$ the two stable leaves which contain the different extreme points of any unstable leaf $\gamma^{u} \subset \mathscr{R}$. $\partial^{u}(\mathscr{R})$ is also defined. The boudary of \mathscr{R} , $\partial(\mathscr{R})$, is represented as $\partial(\mathscr{R}) = \partial^{s}(\mathscr{R}) \cup \partial^{u}(\mathscr{R})$.

Let ξ^u be the measurable partition subordinate to W^u -foliation. For an f^R -invariant probability measure v on $\mathbf{T}^2 \setminus \mathscr{P}$, let $\{v_x^u\}$ (*v*-a.e.*x*) denote the canonical system of conditional measures of v w.r.t. ξ^u and m_x^u denote the Lebesgue measure on $\gamma^u(x)$.

LEMMA 4.6. There exists an f^{R} -invariant Borel probability measure μ such that $\mu_{x}^{u} \ll m_{x}^{u}$ (μ -a.e.x).

Proof. Let γ_0 be an unstable leaf which intersects one of the components of $f^{-1}(\mathscr{P}) \backslash \mathscr{P}$ and m_0^u be the Lebesgue measure on γ_0 . To simplicity we assume that $m_0^u(\gamma_0) = 1$, and so define a probability measure of $\mathbf{T}^2 \backslash \mathscr{P}$ by

$$\mu_n = \frac{1}{n} \sum_{j=0}^{n-1} \sum_{i=1}^{\infty} (f^R)^j_*(m^u_0|_{\Gamma_i}) \quad (n \ge 1).$$

Here $(f^R)^j_*(m_0^u|_{\Gamma_i})$ is the push-forward of $m_0^u|_{\Gamma_i}$ by $(f^R)^j$. Then there exist a probability measure μ on $\mathbb{T}^2 \setminus \mathscr{P}$ and a subsequence $\{\mu_{n_j}\}_{j\geq 1} \subset \{\mu_n\}_{n\geq 1}$ such that $\mu_{n_j} \to \mu$ $(j \to \infty)$. Clearly μ is f^R -invariant.

To obtain the conclusion it is enough to show that there exists $K_1 > 0$ such that for μ -a.e.x and any interval $\omega \subset \gamma^u(x)$

(4.1)
$$\frac{1}{K_1}m_x^u(\omega) \le \mu_x^u(\omega) \le K_1m_x^u(\omega).$$

For any $x \in \mathbf{T}^2$, to simplicity set $\gamma = \gamma^u(x)$ and choose any interval $\omega \subset \gamma$. \mathscr{S}_{ω} denotes the s-subset corresponding to ω and \mathscr{V}_{ρ} the u-subset of γ with radius $0 < \rho < \delta/2$. Firstly we prove that there exists $K_0 > 0$ such that

(4.2)
$$\frac{1}{K_0} \frac{m_x^u(\omega)}{m_x^u(\gamma)} \le \frac{\mu_n(\mathscr{V}_\rho \cap \mathscr{S}_\omega)}{\mu_n(\mathscr{V}_\rho)} \le K_0 \frac{m_x^u(\omega)}{m_x^u(\gamma)}.$$

To see this, we use the arguments in the proof of Lemma 5.2 in [11] and Theorem 1 in [25]. We set $\gamma_i^j = (f^R)^j (\gamma_0 \cap \Gamma_i) \cap \mathscr{V}_p$. Since f is topologically transitive, for n > 0 large enough there exist $i \ge 1$ and $0 \le j \le n-1$ such that $\gamma_i^j \ne \emptyset$. By Lemma 4.3 there exists L > 0 such that for $0 \le j \le n-1$ and $i \ge 1$ with $\gamma_i^j \ne \emptyset$,

(4.3)
$$\frac{1}{L^2} \frac{m_x^u(\omega)}{m_x^u(\gamma)} \le \frac{m_{\gamma_i}^u(\gamma_i^{j+1}S_\omega)}{m_{\gamma_i^j}^u(\gamma_i^j)} \le L^2 \frac{m_x^u(\omega)}{m_x^u(\gamma)}$$

By Lemma 4.5, (4.3) and by using the fact that $(\sum_{i=1}^{\infty} a_i)/(\sum_{i=1}^{\infty} b_i) \le \sup_{1 \le i} \{a_i/b_i\}$ for $a_i, b_i > 0$ $(i \ge 1)$ and $\sum_{i=1}^{\infty} a_i < \infty$, $\sum_{i=1}^{\infty} b_i < \infty$, we can find K > 0 such that

(4.4)
$$\frac{1}{KL^2} \frac{m_x^u(\omega)}{m_x^u(\gamma)} \le \frac{(f^R)^j_*(m_0^u)(\mathscr{V}_\rho \cap \mathscr{S}_\omega)}{(f^R)^j_*(m_0^u)(\mathscr{V}_\rho)} \le KL^2 \frac{m_x^u(\omega)}{m_x^u(\gamma)}.$$

By (4.4) and the fact above again, we have (4.2).

We can choose \mathscr{V}_{ρ} such that their boundary $\partial(\mathscr{V}_{\rho})$ has μ -zero measure. Indeed, it is enough to show that $\mu(\gamma^s) = 0$ for any unstable leaf γ^s . Since there exist at most countable $\rho > 0$ such that $\mu(\partial^u(\mathscr{V}_{\rho})) > 0$, except for such $\rho > 0$, we have that $\mu(\partial^u(\mathscr{V}_{\rho})) = 0$. If we have the claim above, then $\mu(\partial^s(\mathscr{V}_{\rho})) = 0$. Therefore $\mu(\partial(\mathscr{V}_{\rho})) = 0$.

For any stable leaf γ^s and $0 < \eta < \varepsilon_2$ we set

$$U(\gamma^{s},\eta) = \{ [y,z] \in \mathbf{T}^{2} \setminus \mathscr{P} \mid z \in \gamma^{s}, d(z,y) < \eta \}$$

Then

$$U(\gamma^s, \eta) = igcup_{k=1}^l (U(\gamma^s, \eta) \cap \mathscr{R}_{m_k})$$

for $\mathscr{R}_{m_k} \neq \mathscr{R}_0$ (k = 1, ..., l) with $U(\gamma^s, \eta) \cap \mathscr{R}_{m_k} \neq \emptyset$. For any k = 1, ..., l, there exist $y_k \in \mathscr{R}_{m_k}$, an interval $\omega_\eta(y_k) \subset \gamma^u(y_k)$ and $\rho(y_k) > 0$ such that (a) the *u*-subset $\mathscr{V}_{\rho(y_k)}$ of $\gamma^u(y_k)$ and the *s*-subset $\mathscr{S}_{\omega_\eta(y_k)}$ corresponding to $\omega_\eta(y_k)$ satisfy $U(\gamma^s, \eta) \cap \mathscr{R}_{m_k} = \mathscr{V}_{\rho(y_k)} \cap \mathscr{S}_{\omega_\eta(y_k)}$, (b) $m_{y_k}^u(\omega_\eta(y_k)) \to 0$ as $\eta \to 0$. By (4.2), for any $n \ge 1$,

(4.5)
$$\mu_n(U(\gamma^s,\eta)\cap\mathscr{R}_{m_k}) \le K_0 \frac{m_{y_k}^u(\omega_\eta(y_k))}{m_{y_k}^u(\gamma^u(y_k))} \to 0 \quad (\eta \to 0).$$

Since $\bigcup_{k=1}^{l} U(\gamma^{s}, \eta) \cap \mathscr{R}_{m_{k}}$ contains γ^{s} and is open in $\mathbf{T}^{2} \setminus \mathscr{P}$ w.r.t. the relative topology, we have

(4.6)
$$\mu(\gamma^{s}) \leq \mu\left(\bigcup_{k=1}^{l} U(\gamma^{s}, \eta) \cap \mathscr{R}_{m_{k}}\right)$$
$$\leq \limsup_{j \to \infty} \mu_{n_{j}}\left(\bigcup_{k=1}^{l} U(\gamma^{s}, \eta) \cap \mathscr{R}_{m_{k}}\right)$$

By (4.5) and (4.6), we have $\mu(\gamma^{s}) = 0$.

Thus we can choose the finite measurable partition ξ_1 which consists of $\mathscr{V}_{\rho} \cap \mathscr{S}_{\omega_j}$ with $\mu(\partial(\mathscr{V}_{\rho} \cap \mathscr{S}_{\omega_j})) = 0$ $(1 \le i \le q)$ and set $\xi^u = \{\gamma^u(x) \cap \mathscr{V}_{\rho} \cap \mathscr{S}_{\omega_j} | x \in \mathscr{R}_i, \operatorname{int}(\mathscr{R}_i) \cap \mathscr{P} = \emptyset, \mathscr{V}_{\rho} \cap \mathscr{S}_{\omega_j} \in \xi_1\}$. Then we can find the sequence $\{\xi_\ell\}_{\ell \ge 1}$ of finite measurable partition such that

$$\xi_1 \leq \xi_2 \leq \cdots \leq \bigvee_{\ell \geq 1} \xi_\ell = \xi^u.$$

By Doob's theorem we have $\mu_x^{\ell} \to \mu_x^u$ (μ -a.e.x) as $\ell \to \infty$, where $\{\mu_x^{\ell}\}$ (μ -a.e.x) denotes the canonical system of conditional measures w.r.t. ξ_{ℓ} . Here we remark that $\mu_x^{\ell}(A) = \mu(\mathcal{V}_{\rho_{\ell}} \cap \mathcal{S}_{\omega_j} \cap A) / \mu(\mathcal{V}_{\rho_{\ell}} \cap \mathcal{S}_{\omega_j})$ for any $\mathcal{V}_{\rho_{\ell}} \cap \mathcal{S}_{\omega_j} \in \xi_{\ell}$, any Borel set A and $x \in \mathcal{V}_{\rho_{\ell}} \cap \mathcal{S}_{\omega_j} \cap A$.

Since (4.2) holds for $\mathscr{V}_{\rho_{\ell}} \cap \mathscr{G}_{\omega_{j}} \in \xi_{l}$ $(1 \leq j \leq q)$ instead of \mathscr{V}_{ρ} and any interval $\omega \subset \omega_{j}$ with $\mu(\partial(\mathscr{V}_{\rho_{\ell}} \cap \mathscr{G}_{\omega}) = 0$, by taking $n \to \infty$ in (4.2), we have

(4.7)
$$\frac{1}{K_0} \frac{m_x^u(\omega)}{m_x^u(\gamma \cap \mathscr{S}_{\omega_j})} \le \frac{\mu((\mathscr{V}_{\rho_\ell} \cap \mathscr{S}_{\omega_j}) \cap \mathscr{S}_{\omega})}{\mu(\mathscr{V}_{\rho_\ell} \cap \mathscr{S}_{\omega_j})} \le K_0 \frac{m_x^u(\omega)}{m_x^u(\gamma \cap \mathscr{S}_{\omega_j})}.$$

Doob's theorem ensures that we have

(4.8)
$$\frac{1}{K_0} \frac{m_x^u(\omega)}{m_x^u(\gamma^u(x) \cap \mathscr{S}_{\omega_j})} \le \mu_x^u(\omega) \le K_0 \frac{m_x^u(\omega)}{m_x^u(\gamma^u(x) \cap \mathscr{S}_{\omega_j})} \quad (\mu\text{-a.e.}x)$$

DIFFEOMORPHISMS ADMITTING SRB MEASURES AND THEIR REGULARITY 225

as $\ell \to \infty$ in (4.7). Since $\mathscr{R}_i \cap \mathscr{S}_{\omega_j}$ is a rectangle $(0 \le i \le r-1, 1 \le j \le q)$, by Lemma 4.3 there exists $K_1 > 0$ such that for any $x \in \mathscr{R}_i$,

(4.9)
$$\frac{1}{K_1} < m_x^u(\gamma^u(x) \cap \mathscr{S}_{\omega_j}) < K_1.$$

Therefore we have (4.1) by (4.8) and (4.9).

Proof of Proposition 4.2. Let μ be the f^{R} -invariant Borel probability measure on $\mathbf{T}^{2} \backslash \mathscr{P}$ in Lemma 4.6. Then

$$\bar{\mu} = \mu + \sum_{i=1}^{\infty} f^i_*(\mu|_{\mathcal{Q}^{(i)}})$$

is a finite measure. To see this, it is enough to prove that $\overline{\mu}(\mathscr{P}) < \infty$.

Let $\pi : \mathscr{Q}^{(1)} \to \gamma^u(p)$ be the projection sliding along local stable manifolds. As in proof of Theorem A, by Lemma 4.3 there exists L > 0 such that for any $x \in f^{-1}(\mathscr{P}) \setminus \mathscr{P}$,

(4.10)
$$m_x^u(\mathcal{Q}^{(i)}) \le Lm_p^u(\pi(\mathcal{Q}^{(i)})) \quad (i \ge 1).$$

By (4.1) there exists K > 0 such that

(4.11)
$$\mu(\mathscr{Q}^{(i)}) = \int \mu_x^u(\mathscr{Q}^{(i)}) \, d\mu(x) \le K \int m_x^u(\mathscr{Q}^{(i)}) \, d\mu(x) \quad (i \ge 1).$$

By (4.11), (4.10) and $m_p^u(\pi(\mathcal{Q}^{(i)})) = m_p^u(f^{-i}(\pi(\mathcal{Q}^{(1)}))),$

(4.12)
$$\mu(\mathscr{Q}^{(i)}) \le 2KL \cdot m_p^u(f^{-i}(\pi(\mathscr{Q}^{(1)}))) \quad (i \ge 1).$$

By $\mathscr{P} = \bigcup_{i=1}^{\infty} f^i(\mathscr{Q}^{(i)}), \quad f^i(\mathscr{Q}^{(i)}) \cap f^j(\mathscr{Q}^{(j)}) = \emptyset \quad (i \neq j), \quad \overline{\mu}(f^i(\mathscr{Q}^{(i)})) = \mu(\mathscr{Q}^{(i)}) \text{ and}$ (4.12), we have

$$\bar{\mu}(\mathscr{P}) = \sum_{i=1}^{\infty} \mu(\mathscr{Q}^{(i)}) \le 2KL \sum_{i=1}^{\infty} m_p^u(f^{-i}(\pi(\mathscr{Q}^{(1)}))).$$

Lemma 4.4 ensures that the last term above converges.

By Lemma 4.6 the normalized measure of $\bar{\mu}$ is an SRB measure. This concludes the proposition.

References

- [1] N. AOKI, The series of nonlinear analysis (in Japanese) I, II, III and IV, Kyoritu Publ., 2004.
- [2] N. AOKI, Topological dynamics, Topics in general topology, North-Holland Math. Library 41, North-Holland, Amsterdam, 1989, 625–740.
- [3] N. Аокі AND К. HIRAIDE, Topological theory of dynamical systems: recent advances, North-Holland Math. Library 52, Elsevier North-Holland, Amsterdam, 1994.
- [4] R. BOWEN, Equilibrium states and the ergodic theory of anosov diffeomorphisms, Lecture notes in mathematics 470, Springer-Verlag, 1975, 67–76.

- [5] E. CATSIGERAS AND H. ENRICH, SRB measures of certain almost hyperbolic diffeomorphisms with a tangency, Discr. and Conti. Dynam. Syst. 7 (2001), 188–202.
- [6] J. FRANKS, Anosov diffeomorphisms, Global analysis, Proc. Sympos. Pure Math. 14 (1970), 61–93.
- [7] J. HATOMOTO, Ergodic measures of SRB attractors, 2004, preprint.
- [8] K. HIRAIDE, Expansive homeomorphisms with the pseudo-orbit tracing property on compact surfaces, J. Math. Soc. Japan 40 (1994), 123–137.
- [9] M. HIRSCH, C. PUGH AND M. SHUB, Invariant manifolds, Lecture notes in math. 583, 1977.
- [10] H. Hu, Conditions for the existence of SBR measures for "almost Anosov" diffeomorphisms, Discr. and Conti. Dynam. Syst. 5 (1999), 2331–2367.
- [11] H. HU AND L.-S. YOUNG, Nonexistence of SBR measures for some diffeomorphism that are 'Almost Anosov', Ergod. Th. and Dynam. Sys. 15 (1995), 67–76.
- [12] A. KATOK, Lyapunov exponents entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137–173.
- [13] F. LEDRAPPIER AND J. STRELCYN, A proof of the estimation from below in Pesin's entropy formula, Ergod. Th. and Dynam. Sys. 2 (1982), 203–219.
- [14] F. LEDRAPPIER AND L.-S. YOUNG, The metric entropy of diffeomorphisms I and II, Ann. of Math. 122 (1985), 509–574.
- [15] Y. I. OSELEDEC, A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems, Trudy Moskov Mat. Ostc. 19 (1968), 179–210.
- [16] Y. B. PESIN, Characteristic Lyapunov exponents and smooth ergodic theory, Math. Surveys 32 (1977), 55–114.
- [17] Y. B. PESIN AND YA. SINAI, Gibbs measures for partially hyperbolic attractors, Ergod. Th. and Dynam. Sys. 2 (1982), 417–438.
- [18] E. PUJALS AND M. SAMBARINO, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. Math. 151 (2000), 961–1023.
- [19] C. ROBINSON, Dynamical systems: Stability, symbolic dynamics, and chaos, 2nd ed., Stu. in Adv. Math., CRC Press, 1999.
- [20] V. A. ROHLIN, On the fundamental ideas of measure theory, Mat. Sbornik 25 (1949).
- [21] D. RUELLE, A measure associated with axiom A attractors, Amer. J. Math. 98 (1976), 619–654.
- [22] E. RYKKEN, Markov partitions for hyperbolic toral automorphisms T², Rocky Mountain J. Math. 28 (1998), 1103–1124.
- [23] YA. G. SINAI, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), 21-64.
- [24] L.-S. YOUNG, Recurrence times and rates of mixing, Israel. J. Math. 110 (1999), 153-188.
- [25] L.-S. YOUNG, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. 147 (1998), 585–650.

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY O-OKAYAMA, MEGURO-KU TOKYO, 152-8551 JAPAN E-mail: hatoj@math.titech.ac.jp