DIFFEOMORPHISMS ADMITTING SRB MEASURES

 AND THEIR REGULARITYJin Нatomoto

Abstract

We are interested in the stochastic property of some "Anosov-like" system. In this paper we will treat a transitive and partially hyperbolic diffeomorphism f of a 2 dimensional torus with uniformly contracting direction, and show that if f is of C^{2} and admits an SRB measure, then f is an Anosov diffeomorphism. In our proof we use the Pujals-Sambarino theorem for C^{2} diffeomorphisms with dominated splitting. In the case of $C^{1+\alpha}$ the above statement is not true in general, i.e. we can construct a $C^{1+\alpha}$ counter example of Maneville-Pomeau type.

1. Introduction

We know that if f is a C^{2}-Anosov diffeomorphism of a compact manifold M, then f admits an Sinai-Ruelle-Bowen measure μ (or SRB measure), i.e., μ has absolutely continuous conditional measures on unstable manifolds (Sinai [23]). This measure μ is isomorphic to a Berunulli shift, and it has exponential decay of correlations for Hölder continuous functions, and furthermore satisfies that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j} x\right)=\int \varphi d \mu
$$

for any continuous function $\varphi: M \rightarrow \mathbf{R}$ and for Lebesgue almost every $x \in M$. This result has been extended to Axiom A attractors by Bowen and Ruelle (e.g. [4]).

Let f be a $C^{1+\alpha}$-diffeomorphism of a 2 -dimensional torus $\mathbf{T}^{2}(0<\alpha \leq 1)$ and Γ be an f-invariant set of \mathbf{T}^{2}, i.e. $f(\Gamma)=\Gamma$. We say that f is partially hyperbolic with contracting direction on Γ if there exist a norm $\|\cdot\|$ on \mathbf{T}^{2} and $0<\lambda_{1}<\lambda_{2}$ with $\lambda_{1}<1$ so that each $x \in \mathbf{T}^{2}$ has a $D_{x} f$-invariant decomposition $\mathrm{T}_{x} \mathbf{T}^{2}=E_{1}(x) \oplus E_{2}(x)$ of subspaces $E_{1}(x)$ and $E_{2}(x)$ such that

[^0]\[

$$
\begin{equation*}
\left\|\left.D_{x} f\right|_{E_{1}(x)}\right\| \leq \lambda_{1}, \quad\left\|\left.D_{x} f\right|_{E_{2}(x)}\right\| \geq \lambda_{2} \tag{1.1}
\end{equation*}
$$

\]

(Here $D_{x} f$ denotes the derivative of f at x). Moreover, when $\lambda_{2}>1, f$ is called hyperbolic on Γ (or Γ is a hyperbolic set for f). We call that f is an Anosov diffeomorphism if f is hyperbolic on the entire space $\mathbf{T}^{2} . f$ is said to be topologically transitive if there exists a point $x \in \mathbf{T}^{2}$ such that its orbit $\left\{f^{n}(x)\right\}_{n \in \mathbf{Z}}$ is dense in \mathbf{T}^{2}.

The purpose of this paper is to show the following two theorems:
Theorem A. Let f be a C^{2}-diffeomorphism of \mathbf{T}^{2}. Then f is an Anosov diffeomorphism if and only if the following holds:
(1) f is partially hyperbolic with contracting direction on \mathbf{T}^{2},
(2) f is topologically transitive and
(3) f admits an SRB measure.

Theorem A is false in the case when f is of $C^{1+\alpha}(0<\alpha<1)$, i.e.
Theorem B. For $\alpha \in(0,1)$ there exists a $C^{1+\alpha}$-diffeomorphism f such that
(1) f is partially hyperbolic with contracting direction on \mathbf{T}^{2} but not an Anosov diffeomorphism,
(2) f is topologically transitive and
(3) f admits an SRB measure.

2. Definitions and preliminaries

Fix $\alpha \in(0,1]$ and let f be a $C^{1+\alpha}$-diffeomorphism of \mathbf{T}^{2}. Assume that f is partially hyperbolic and has contracting direction. Then f has the decomposition satisfying (1.1). Let μ be an f-invariant probability measure on \mathbf{T}^{2}. By Birkhoff's ergodic theorem there exist a set Y_{μ} with full μ-measure and real numbers $\chi_{1}(x)<\chi_{2}(x)\left(x \in Y_{\mu}\right)$ which satisfy the following:

$$
\lim _{n \rightarrow \pm \infty} \frac{1}{n} \log \left\|\left.D_{x} f^{n}\right|_{E_{i}(x)}\right\|=\chi_{i}(x) \quad(i=1,2)
$$

We call $\chi_{i}(x)(i=1,2)$ the Lyapunov exponents of μ at $x \in Y_{\mu} . \quad$ By (1.1) we have

$$
\chi_{1}(x) \leq \log \lambda_{1}<\log \lambda_{2} \leq \chi_{2}(x) \quad\left(x \in Y_{\mu}\right) .
$$

We say that μ is an SRB measure if (i) $\chi_{2}(x)>0$ and (ii) μ has the conditional measures which are absolutely continuous w.r.t. the Lebesgue measures on unstable manifolds, which is defined as follows:

If $\chi_{2}(x)>0$ for any $x \in Y_{\mu}$, then it is well known (see [16]) that there exists $\varepsilon_{0}>0$ sufficiently small and the local unstable manifold $W_{\text {loc }}^{u}(x)$ such that

$$
f^{-1}\left(W_{l o c}^{u}(x)\right) \subset W_{l o c}^{u}\left(f^{-1}(x)\right),
$$

for any $y \in W_{\text {loc }}^{u}(x)$ and $n \geq 0$

$$
\begin{equation*}
d^{u}\left(f^{-n}(x), f^{-n}(y)\right) \leq C(x) \exp \left(\left(-\chi_{2}(x)+\varepsilon_{0}\right) n\right) d^{u}(x, y) \tag{2.1}
\end{equation*}
$$

and $E_{2}(x)=T_{x} W_{\text {loc }}^{u}(x)$, where d^{u} denotes the Riemannian metric on $W_{\text {loc }}^{u}(x)$ and $C(x)$ satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \pm \infty} \frac{1}{n} \log C\left(f^{n}(x)\right)=0 \tag{2.2}
\end{equation*}
$$

The unstable manifold $W^{u}(x)$ is defined by

$$
W^{u}(x)=\bigcup_{n \geq 0} f^{n}\left(W_{\text {loc }}^{u}\left(f^{-n}(x)\right)\right)
$$

Since $\chi_{1}(x)<0$ for any $x \in Y_{\mu}$, the local stable manifold $W_{\text {loc }}^{s}(x)$ exists ([16]) and satisfies

$$
f\left(W_{l o c}^{s}(x)\right) \subset W_{l o c}^{s}(f(x)),
$$

for any $y \in W_{\text {loc }}^{s}(x)$ and $n \geq 0$

$$
\begin{equation*}
d^{s}\left(f^{n}(x), f^{n}(y)\right) \leq D(x) \exp \left(\left(\chi_{1}(x)+\varepsilon_{0}\right) n\right) d^{s}(x, y) \tag{2.3}
\end{equation*}
$$

and $E_{1}(x)=T_{x} W_{l o c}^{s}(x)$, where d^{s} denotes the Riemannian metric on $W_{l o c}^{s}(x)$ and $D(x)$ satisfies $\lim _{n \rightarrow \pm \infty}(1 / n) \log D\left(f^{n}(x)\right)=0$. The stable manifold $W^{s}(x)$ is also defined.

Let \mathscr{B} denote the Borel σ algebra of \mathbf{T}^{2}. For any measurable partition ξ of \mathbf{T}^{2} we denote by \mathscr{B}_{ξ} the set of all Borel subsets which consist of the unions of the elements of ξ. A measurable partition ξ of \mathbf{T}^{2} defines a family of measures $\left\{\mu_{\hat{x}}^{\xi}\right\}$ (μ-a.e. x) such that for μ-a.e. x and $B \in \mathscr{B}, \mu_{x}^{\xi}(B)$ is a \mathscr{B}_{ξ}-measurable function of x and

$$
\mu(E \cap B)=\int_{E} \mu_{x}^{\xi}(B) d \mu(x) \quad\left(E \in \mathscr{B}_{\xi}\right)
$$

If there exists a sequence $\left\{\xi_{i}\right\}_{i \geq 1}$ of countable measurable partitions such that

$$
\xi_{1} \leq \xi_{2} \leq \cdots \leq \bigvee_{i \geq 1} \xi_{i}=\xi
$$

then $\mu_{x}^{\xi}(\xi(x))=1$ where $\xi(x)$ denotes an element of ξ containing x. The family of measures $\left\{\mu_{x}^{\xi}\right\}$ (μ-a.e. x) is said to be the canonical system of conditional measures of μ w.r.t. ξ (see [20]).

We assume that a measurable partition ξ^{u} of \mathbf{T}^{2} is subordinate to the W^{u}-foliation, i.e., ξ^{u} satisfies that (1) $\xi^{u}(x) \subset W^{u}(x)$ and (2) $\xi^{u}(x)$ contains an open set in $W^{u}(x)$ for μ-a.e. x. Let $\left\{\mu_{x}^{u}\right\}$ (μ-a.e. $\left.x\right)$ denote a canonical system of conditional measures of μ w.r.t. ξ^{u} and m_{x}^{u} denote the Lebesgue measure on $W^{u}(x)$. If μ_{x}^{u} is absolutely continuous w.r.t. m_{x}^{u} for μ-a.e. x $\left(\mu_{x}^{u} \ll m_{x}^{u}\right)$, then we say that μ has the conditional measures which are absolutely continuous w.r.t. the Lebesgue measures on unstable manifolds (see [13]). If μ is an SRB measure, then so does every element in the ergodic
decomposition of μ for a set of μ-full measure. If $\mu_{x}^{u} \ll m_{x}^{u}$ (μ-a.e. x), then we know that $\mu_{x}^{u} \sim m_{x}^{u} \mid \xi^{u}(x)$ (see [13], [14], [7]).

3. Proof of Theorem \mathbf{A}

Let f be a C^{2}-partially hyperbolic diffeomorphism with contracting direction on \mathbf{T}^{2} and μ be an f-invariant probability measure on \mathbf{T}^{2}. Let us denote $I_{\varepsilon}=[-\varepsilon, \varepsilon]$ for any $0<\varepsilon \leq 1$ and $\operatorname{Emb}^{2}\left(I_{1}, \mathbf{T}^{2}\right)$ as the set of C^{2}-embeddings of I_{1} into \mathbf{T}^{2} equipped with the C^{2}-metric. We can find (see [9]) two continuous maps $\phi^{s}: \mathbf{T}^{2} \rightarrow \operatorname{Emb}^{2}\left(I_{1}, \mathbf{T}^{2}\right)$ and $\phi^{c u}: \mathbf{T}^{2} \rightarrow \operatorname{Emb}^{2}\left(I_{1}, \mathbf{T}^{2}\right)$ such that for any $0<\varepsilon \leq 1$ the local stable and center unstable manifolds $\tilde{W}_{\varepsilon}^{s}(x)=\phi^{s}(x)\left(I_{\varepsilon}\right)$ and $\tilde{W}_{\varepsilon}^{\text {cu }}(x)=$ $\phi^{c u}(x)\left(I_{\varepsilon}\right)$ satisfies the following:
(i) $T_{x} \tilde{W}_{\varepsilon}^{s}(x)=E_{1}(x)$ and $T_{x} \tilde{W}_{\varepsilon}^{c u}(x)=E_{2}(x)$,
(ii) for any $\varepsilon_{1} \in(0,1), f\left(\tilde{W}_{\varepsilon_{1}}^{s}(x)\right) \subset \tilde{W}_{\varepsilon_{1}}^{s}(f(x))$,
(iii) for any $\varepsilon_{1} \in(0,1)$, there exists $\tilde{\varepsilon}_{2} \in(0,1)$ such that $f^{-1}\left(\tilde{W}_{\varepsilon_{2}}^{c u}(x)\right) \subset$ $\tilde{W}_{\varepsilon_{1}}^{c u}\left(f^{-1}(x)\right)$.
Thus there exists $\delta>0$ such that if $d(x, y)<\delta(d$ denotes the Riemannian metric on \mathbf{T}^{2}), then $\tilde{W}_{\varepsilon}^{s}(x)$ and $\tilde{W}_{\varepsilon}^{c u}(y)$ have a single transverse intersection point, so we write

$$
\begin{equation*}
[x, y]=\tilde{W}_{\varepsilon}^{s}(x) \cap \tilde{W}_{\varepsilon}^{c u}(y) \quad\left(x, y \in \mathbf{T}^{2} \text { with } d(x, y)<\delta\right) . \tag{3.1}
\end{equation*}
$$

We denote by \tilde{d}^{s} and $\tilde{d}^{c u}$ the Riemannian metric on $\tilde{W}_{\varepsilon}^{s}(x)$ and $\tilde{W}_{\varepsilon}^{c u}(x)$ respectively. Let $B(x, r)$ be the ball centered at x with radius r. Since $\varepsilon_{0}>0$ is small enough, without loss of generality we can assume that the diameater of $\tilde{W}_{\varepsilon}^{c u}(x)$ (respectively $\left.\tilde{W}_{\varepsilon}^{s}(x)\right)$ is greater than $W_{\text {loc }}^{u}(x)$ (respectively $W_{\text {loc }}^{s}(x)$) for $x \in Y_{\mu}$.

Lemma 3.1. For any $x \in Y_{\mu}, W_{\text {loc }}^{u}(x)$ is contained in $\tilde{W}_{\varepsilon}^{c u}(x)$ and $W_{\text {loc }}^{s}(x)$ is contained in $\tilde{W}_{\varepsilon}^{s}(x)$.

Proof. Let $C(x)$ be as in (2.1) and δ be as in (3.1). Firstly we prove that $W_{\text {loc }}^{u}(x) \cap B\left(x, \delta C(x)^{-1}\right) \subset \tilde{W}_{\varepsilon}^{c u}(x)$ for $x \in Y_{\mu}$. To do so, assume that there exist $x \in Y_{\mu}$ and $y \in W_{\text {loc }}^{u}(x) \cap B\left(x, \delta C(x)^{-1}\right) \backslash \tilde{W}_{\varepsilon}^{c u}(x)$. By (2.1) we have $d^{u}\left(f^{-n}(y), f^{-n}(x)\right)<\delta$ for $n \geq 1$ and then define

$$
\left[f^{-n}(y), f^{-n}(x)\right]=\tilde{W}_{\varepsilon}^{s}\left(f^{-n}(y)\right) \cap \tilde{W}_{\varepsilon}^{c u}\left(f^{-n}(x)\right) \quad(n \geq 1) .
$$

Since $y \neq x$ and $\left[f^{-n}(y), f^{-n}(x)\right]=f^{-n}[y, x]$, we have

$$
f^{-n}([y, x]) \in \tilde{W}_{\varepsilon}^{s}\left(f^{-n}(y)\right), \quad f^{-n}([y, x]) \neq f^{-n}(y) \quad(n \geq 1) .
$$

Since f is uniformly contracting along E_{1}, we have $\left\|\left.D_{z} f^{-n}\right|_{E_{1}(z)}\right\| \geq \lambda_{1}^{-n}$ $\left(z \in \tilde{W}_{\varepsilon}^{s}(y)\right)$ and then

$$
\varepsilon>\tilde{d}^{s}\left(f^{-n}([y, x]), f^{-n}(y)\right) \geq \lambda_{1}^{-n} \tilde{d}^{s}([y, x], y) \quad(n \geq 1) .
$$

This is a contradiction.
(2.1) and (2.2) ensure the existence of $i \geq 1$ such that

$$
f^{-i}\left(W_{\text {loc }}^{u}(x)\right) \subset W_{\text {loc }}^{u}\left(f^{-i}(x)\right) \cap B\left(f^{-i}(x), \delta C\left(f^{-i}(x)\right)^{-1}\right) \subset \tilde{W}_{\varepsilon}^{c u}\left(f^{-i}(x)\right)
$$

for any $x \in Y_{\mu}$. Thus we have that $W_{\text {loc }}^{u}(x) \cap B(x, \varepsilon) \subset \tilde{W}_{\varepsilon}^{c u}(x)$ for any $x \in Y_{\mu}$.
Next we use the similar argument to prove the last part of the lemma. Assume that $W_{\text {loc }}^{s}(x) \cap B\left(x, \delta D(x)^{-1}\right) \notin \tilde{W}_{\varepsilon}^{s}(x)$ for some $x \in Y_{\mu}$. Here $D(x)$ be as in (2.3). Then there exists $y \in W_{\text {loc }}^{s}(x) \cap B\left(x, \delta D(x)^{-1}\right) \backslash \tilde{W}_{\varepsilon}^{s}(x)$. From this, we have $d^{s}\left(f^{n}(y), f^{n}(x)\right)<\delta$ for $n \geq 1$ and define

$$
\left[f^{n}(y), f^{n}(x)\right]=\tilde{W}_{\varepsilon}^{s}\left(f^{n}(y)\right) \cap \tilde{W}_{\varepsilon}^{c u}\left(f^{n}(x)\right) \quad(n \geq 1)
$$

Notice that $[y, x] \neq x$ because of $\tilde{W}_{\varepsilon}^{s}(y) \cap \tilde{W}_{\varepsilon}^{s}(x)=\emptyset$, and (2.3) shows that

$$
\begin{align*}
\tilde{d}^{u}\left(f^{n}([y, x]), f^{n}(x)\right) \leq & \tilde{d}^{s}\left(f^{n}([y, x]), f^{n}(y)\right)+d^{s}\left(f^{n}(y), f^{n}(x)\right) \tag{3.2}\\
\leq & \lambda_{1}^{n} \tilde{d}^{s}([y, x], y)+D(x) \exp \left(\left(\chi_{1}(x)+\varepsilon_{0}\right) n\right) d^{s}(x, y) \\
& (n \geq 1) \\
\rightarrow & 0 \quad(n \rightarrow \infty) .
\end{align*}
$$

By the first statement of the lemma, $\tilde{W}_{\varepsilon}^{c u}\left(f^{n}(x)\right) \supset W_{\text {loc }}^{u}\left(f^{n}(x)\right) \cap B\left(f^{n}(x), \varepsilon\right)$ and, since $f^{n}\left(W_{\text {loc }}^{u}(x) \cap B(x, \varepsilon)\right)$ is expanding along E_{2}, it doesn't happen that $\tilde{d}^{u}\left(f^{n}([y, x]), f^{n}(x)\right) \rightarrow 0(n \rightarrow \infty)$. This contradicts (3.2). So we have $W_{\text {loc }}^{s}(x) \cap B\left(x, \delta D(x)^{-1}\right) \subset \tilde{W}_{\varepsilon}^{s}(x)$ for any $x \in Y_{\mu}$. Then as in the proof of the first statement, we have that $W_{\text {loc }}^{s}(x) \cap B(x, \varepsilon) \subset \tilde{W}_{\varepsilon}^{s}(x)$ for any $x \in Y_{\mu}$.

We say that $I \subset \tilde{W}_{\varepsilon}^{c u}(x)$ is an interval if there exist $y, z \in I_{\varepsilon}(y<z)$ such that $I=\phi^{c u}(x)([y, z])$. For $0<\varepsilon^{\prime}<\varepsilon$ we identify $\tilde{W}_{\varepsilon^{\prime}}^{c u}(x)$ with $I_{\varepsilon^{\prime}} \subset \mathbf{R}$ if there is no confusion. For any fixed point p, without loss of generality we can assume that all the eigenvalues of $D_{p} f$ are positive (by replacing f by f^{2} if necessary).

Lemma 3.2 ([11] Lemma 4.1). Let $p \in \mathbf{T}^{2}$ be a fixed point satisfying

$$
\left\|\left.D_{p} f\right|_{E_{2}(p)}\right\|=1, \quad f^{-1}\left(\tilde{W}_{\varepsilon^{\prime}}^{c u}(p)\right) \subset \tilde{W}_{\varepsilon^{\prime}}^{c u}(p)
$$

for some $0<\varepsilon^{\prime}<\varepsilon$. Then, for any interval $J \subset \tilde{W}_{\varepsilon^{\prime}}^{c u}(p)$ containing p,

$$
\sum_{i=0}^{\infty} \ell\left(f^{-i}(J)\right)=\infty .
$$

Here $\ell(I)$ denotes the length of I.
By $\left\|\left.D_{p} f\right|_{E_{1}(x)}\right\|<\lambda_{1}$ for any $x \in \mathbf{T}^{2}$, the following statement is a result of Pujals-Sambarino ([18]).

Lemma 3.3 ([18] Corollary 3.5). Assume that $p \in \mathbf{T}^{2}$ is a fixed point such that

$$
f^{-1}\left(\tilde{W}_{\varepsilon^{\prime}}^{c u}(p)\right) \subset \tilde{W}_{\varepsilon^{\prime}}^{c u}(p)
$$

for some $0<\varepsilon^{\prime}<\varepsilon$ and $f i x$ an interval $J \subset \tilde{W}_{\varepsilon^{\prime}}^{c u}(p)$. Then there exists $L=$ $L(J, \varepsilon)>0$ such that

$$
L^{-1} \ell\left(f^{-n}(J)\right) \leq \ell\left(\left[f^{-n}(J), q\right]\right) \leq L \ell\left(f^{-n}(J)\right)
$$

for any $q \in \tilde{W}_{\varepsilon^{\prime}}^{s}(p)$ and $n \geq 0$.
Remark 3.4. If f is topologically transitive, then any fixed point of f satisfies the condition of Lemma 3.3.

Let Γ be an f-invariant compact set. We say that f has a dominated splitting on Γ if there exist $C>0$ and $0<\lambda<1$ such that each $x \in \Gamma$ is decomposed $\mathrm{T}_{x} \mathbf{T}^{2}=E_{1}(x) \oplus E_{2}(x)$ into the sum of $D_{x} f$-invariant subspaces $E_{1}(x)$ and $E_{2}(x)$ which satisfies

$$
\left\|\left.D_{x} f^{n}\right|_{E_{1}(x)}\right\|\left\|\left.D_{f^{n}(x)} f^{-n}\right|_{E_{2}\left(f^{n}(x)\right)}\right\| \leq C \lambda^{n} \quad(n \geq 0)
$$

Clearly, if f is partially hyperbolic with contracting direction on Γ, then f has a dominated splitting on Γ.

We denote by $\Omega(f)$ the set of points $x \in \mathbf{T}^{2}$ such that for any neighborhood V of x there exists $n>0$ satisfying $f^{n}(V) \cap V \neq \emptyset$. We say that an n-periodic point p is hyperbolic if the absolute values of eigenvalues of $D_{p} f^{n}$ are different from 1 and is sink (respectively source) if all the absolute values of eigenvalues of $D_{p} f^{n}$ are smaller(respectively larger) than 1 . If μ has positive and negative Lyapunov exponents then the set of hyperbolic periodic points is not empty ([12]).

Lemma 3.5 ([18]). Assume that f has a dominated splitting on $\Omega(f)$ and all the periodic points in $\Omega(f)$ are hyperbolic. Then $\Omega(f)$ is represented as a union $\Omega(f)=\Gamma_{1} \cup \Gamma_{2}$ of Γ_{1} and Γ_{2} where Γ_{1} is a hyperbolic set for f and Γ_{2} consists of a finite union of periodic simple closed curves $\mathscr{C}_{1}, \ldots, \mathscr{C}_{n}$ such that each \mathscr{C}_{i} is normally hyperbolic and $f^{m_{i}}: \mathscr{C}_{i} \rightarrow \mathscr{C}_{i}$ is conjugated to an irrational rotation (m_{i} denotes the period of \mathscr{C}_{i}).

In particular, in the case when $\Omega(f)=\mathbf{T}^{2}, f$ is an Anosov diffeomorphism.
Remark 3.6. If f is topologically transitive, then all the periodic points are not sink nor source.

Proof of Theorem A. Assume that f is an Anosov diffeomorphism. Then f satisfies the conditions (1)-(3) of Theorem A. Indeed, the condition (1) is obtained from the definitions of Anosov and partially hyperbolic diffeomorphisms. Since any Anosov diffeomorphism of \mathbf{T}^{2} is topologically conjugate to some hyperbolic toral automorphism ([6] Theorem 6.3) and hyperbolic toral automorphisms are topologically transitive, we have the condition (2). The condition (3) is the direct consequence of [23] as stated in Introduction. Therefore it remains only to show that the converse statement holds.

To do so we prepare the following claim.

Claim. All the periodic points of \mathbf{T}^{2} are hyperbolic.
If we have the claim, then f satisfies the assumption of Lemma 3.5. Thus we have the conclusion.

To show the claim, we choose an arbitrary periodic point p with period n. To simplicity we replace f by f^{n}. Then p is a fixed point of f. Since f is uniformly contracting along E_{1}, we have to show that $\left\|\left.D_{p} f\right|_{E_{2}(p)}\right\|>1$. Since f is topologically transitive, by Remark 3.6 it doesn't happen that $\left\|\left.D_{p} f\right|_{E_{2}(p)}\right\|<1$. Assume that $\left\|\left.D_{p} f\right|_{E_{2}(p)}\right\|=1$. Then we lead a contradiction by using the method in the proof of Theorem A in [11].

Fix $0<\varepsilon_{1}<\min \left\{\varepsilon, \delta /\left(2 \lambda_{1}\right)\right\}$ and define a neighborhood \mathscr{P} of p by

$$
\mathscr{P}=\left\{[y, x] \mid y \in \tilde{W}_{\varepsilon_{1}}^{c u}(p), x \in \tilde{W}_{\varepsilon_{1}}^{s}(p)\right\} .
$$

When we identify $\tilde{W}_{\varepsilon_{1}}^{c u}(p)$ with an interval $I_{\varepsilon_{1}} \subset \mathbf{R}$ and p is a fixed point of f, the graph of $\left.f\right|_{\tilde{W}_{c_{1}(u)}^{c u}}$ satisfies $|f|_{\tilde{W}_{\varepsilon_{1}}^{c u(p)}}(y)\left|>|y|\right.$ for any $y \in \tilde{W}_{\varepsilon_{1}}^{c u}(p) \backslash\{p\}$ (Figure 1) because f is topologically transitive. Since f^{-1} is uniformly expanding along $E_{1}, f^{-1}(\mathscr{P})$ intersects \mathscr{P} transeversely along stable direction (see Figure 2).

Let ξ^{u} be a measurable partition subordinate to the W^{u}-foliation and $\left\{\mu_{x}^{u}\right\}$ (μ-a.e. x) denote a canonical system of conditional measures of μ w.r.t. ξ^{u}. Since μ is an SRB measure, we can take a measurable function $g: \mathbf{T}^{2} \rightarrow \mathbf{R}$ satisfying

$$
g(z)=\frac{d \mu_{y}^{u}}{d m_{y}^{u}}(z)
$$

for μ-a.e. y and m_{y}^{u}-a.e. $z \in \xi^{u}(y)([13])$. Here m_{y}^{u} denotes the Lebesgue measure on $W^{u}(y)$. Moreover it is known ([14] Corollary 6.1.4) that for μ-a.e.y, g is strictly positive on $\xi^{u}(y)$ and $\log g$ is Lipshitz continuous on $\xi^{u}(y)$.

By the definition of ξ^{u}, there exist $r>0, x_{0} \in Y_{\mu}$ and a closed set $A \subset Y_{\mu} \cap B\left(x_{0}, r\right)$ with $\mu(A)>0$ such that for any $y \in A$
(a) $\xi^{u}(y) \supset B^{u}(y, 2 r)$ where $B^{u}(y, 2 r)$ denotes the ball centered at y with radius $2 r$ in $W^{u}(y)$,
(b) $\lim _{n \rightarrow \pm \infty} \frac{1}{n} \log \left\|\left.D_{z} f^{n}\right|_{E_{2}(z)}\right\|=\chi_{2}(z)>0$ for m_{y}^{u}-a.e. $z \in \xi^{u}(y)$,
(c) there exists $C_{0}>0$ (independent of y) such that for $z \in B^{u}(y, 2 r)$

$$
\begin{equation*}
C_{0}^{-1} \leq g(z) \leq C_{0} \tag{3.3}
\end{equation*}
$$

Let $\eta^{u}(y)$ denote the connected component of $\xi^{u}(y) \cap B\left(x_{0}, r\right)$ which contains $y \in A$ and write $B^{u}=\bigcup_{y \in A} \eta^{u}(y)$. For any $y \in A$, by (b) we have that $l\left(f^{i}\left(\eta^{u}(y)\right)\right) \rightarrow \infty$ as $i \rightarrow \infty$, where $l(I)$ denotes the length of an interval I in the unstable manifold. Since f is topologically transitive, there exists $k_{1}>0$ such that $f^{k_{1}}\left(B^{u}\right)$ meets transversely one of the components of $f^{-1}(\mathscr{P}) \backslash \mathscr{P}$ along E_{2}. This intersection is denoted by $\mathscr{Q}^{(1)}$, and clearly we have $m_{y}^{u}\left(\mathscr{Q}^{(1)}\right)>0$ for $y \in \mathscr{Q}^{(1)}$. Furthermore we can show that $\mu\left(\mathscr{Q}^{(1)}\right)>0$. Indeed, since μ is f invariant and is an SRB measure,

Figure 1. The graph of $\left.f\right|_{\tilde{W}_{\varepsilon_{1}}^{c u}(p)}$

Figure 2. A transverse intersection of $f^{-1}(\mathscr{P}) \cap \mathscr{P}$

$$
\begin{align*}
\mu\left(\mathscr{Q}^{(1)}\right) & =\mu\left(f^{-k_{1}}\left(\mathscr{Q}^{(1)}\right)\right)=\int \mu_{x}^{u}\left(f^{-k_{1}}\left(\mathscr{Q}^{(1)}\right)\right) d \mu(x) \tag{3.4}\\
& =\int_{B^{u}}\left(\int_{f^{-k_{1}}\left(\mathscr{Q}^{(1)}\right)} g d m_{x}^{u}\right) d \mu(x) \\
& =\int_{B^{u}}\left(\int_{\mathscr{Q}^{(1)}} g\left(f^{-k_{1}}(z)\right)\left\|\left.D_{z} f^{-k_{1}}\right|_{E_{2}(z)}\right\| d m_{f^{k_{1}}(y)}^{u}(z)\right) d \mu(y) \\
& \geq C_{0}^{-1} \inf _{z \in \mathscr{Q}^{(1)}}\left\{\left\|\left.D_{z} f^{-k_{1}}\right|_{E_{2}(z)}\right\|\right\} \int_{B^{u}} m_{f^{k_{1}}(y)}^{u}\left(\mathscr{Q}^{(1)}\right) d \mu(y) \quad(\because \\
& =C_{1} \int m_{x}^{u}\left(\mathscr{Q}^{(1)}\right) d \mu(x)
\end{align*}
$$

where $C_{1}=C_{0}^{-1} \inf _{z \in 2^{(1)}}\left\{\left\|\left.D_{z} f^{-k_{1}}\right|_{E_{2}(z)}\right\|\right\}$. The last term of (3.4) is positive because $\mu\left(B^{u}\right)>0$ and $m_{f^{k_{1}}(y)}^{u}\left(\mathscr{2}^{(1)}\right)>0$ for $y \in B^{u}$.

Define

$$
\mathscr{Q}^{(i)}=\left\{z \in \mathscr{Q}^{(1)} \mid f^{j}(z) \in \mathscr{P},(1 \leq j \leq i)\right\} \quad(i \geq 2)
$$

and remark that $\mathscr{Q}^{(i)} \supset \mathscr{Q}^{(j)}, \quad f^{i}\left(\mathscr{Q}^{(i)}\right) \cap f^{j}\left(\mathscr{Q}^{(j)}\right)=\emptyset \quad$ for $\quad 1 \leq i<j \quad$ and $\bigcup_{i \geq 1} f^{i}\left(\mathscr{Q}^{(i)}\right) \subset \mathscr{P}$. Let $\pi: \mathscr{Q}^{(1)} \rightarrow \tilde{W}_{\varepsilon}^{c u}(p)$ be the projection sliding along local stable manifolds. Since the fixed point p satisfies the condition of Lemma 3.3, there exists $L_{1}>0$ such that

$$
\begin{equation*}
m_{x}^{u}\left(\mathscr{Q}^{(i)}\right) \geq L_{1} m_{p}^{u}\left(\pi\left(\mathscr{Q}^{(i)}\right)\right) \tag{3.5}
\end{equation*}
$$

Figure 3. The figure of $2^{(i)}$
for any $x \in \mathscr{2}^{(1)}$ (see Figure 3). In (3.4), replacing $\mathscr{2}^{(1)}$ by $\mathscr{2}^{(i)}$, we have

$$
\begin{equation*}
\mu\left(\mathscr{Q}^{(i)}\right) \geq C_{1} \int m_{x}^{u}\left(\mathscr{Q}^{(i)}\right) d \mu(x) \quad(i \geq 1) \tag{3.6}
\end{equation*}
$$

By (3.5), (3.6) and $m_{p}^{u}\left(\pi\left(\mathscr{2}^{(i)}\right)\right)=m_{p}^{u}\left(f^{-i}\left(\pi\left(\mathscr{P}^{(1)}\right)\right)\right)$,

$$
\mu\left(\mathscr{Q}^{(i)}\right) \geq C_{1} L_{1} m_{p}^{u}\left(f^{-i}\left(\pi\left(\mathscr{Q}^{(1)}\right)\right)\right)
$$

Then, since μ is f-invariant,

$$
\mu\left(\sum_{i=1}^{\infty} f^{i}\left(\mathscr{Q}^{(i)}\right)\right)=\sum_{i=1}^{\infty} \mu\left(f^{i}\left(\mathscr{Q}^{(i)}\right)\right)=\sum_{i=1}^{\infty} \mu\left(\mathscr{Q}^{(i)}\right) \geq C_{1} L_{1} \sum_{i=1}^{\infty} m_{p}^{u}\left(f^{-i}\left(\pi\left(\mathscr{Q}^{(1)}\right)\right)\right) .
$$

The last expression above goes to ∞ by Lemma 3.2. This is a contradiction with $\mu\left(\mathbf{T}^{2}\right)=1$. Therefore $\left\|\left.D_{p} f\right|_{E_{2}(p)}\right\|>1$, i.e., p is hyperbolic. This completes the proof.

4. Proof of Theorem B

In this section we deal with a $C^{1+\alpha}$-diffeomorphism f of $\mathbf{T}^{2}(0<\alpha<1)$ which has a non-hyperbolic fixed point p and satisfies the following three assumptions:

Assumption 1. There exist a norm $\|\cdot\|$ on $\mathbf{T}^{2}, 0<\lambda<1$ and a $D_{x} f$ invariant decomposition $\mathrm{T}_{x} \mathbf{T}^{2}=E_{1}(x) \oplus E_{2}(x)$ into subspaces $E_{1}(x)$ and $E_{2}(x)$ which satisfy

$$
\left\|\left.D_{x} f\right|_{E_{1}(x)}\right\| \leq \lambda, \quad\left\|\left.D_{x} f\right|_{E_{2}(x)}\right\|\left\{\begin{array}{rr}
=1 & (x=p) \\
>1 & (x \neq p)
\end{array}\right.
$$

For any $0<\varepsilon<1$, if we denote the local stable and unstable manifolds $\tilde{W}_{\varepsilon}^{s}(x)$ and $\tilde{W}_{\varepsilon}^{u}(x)$ at $x \in \mathbf{T}^{2}$ by

$$
\begin{aligned}
& \tilde{W}_{\varepsilon}^{s}(x)=\left\{y \in \mathbf{T}^{2} \mid d\left(f^{n}(y), f^{n}(x)\right) \leq \varepsilon,(n \geq 0)\right\} \quad \text { and } \\
& \tilde{W}_{\varepsilon}^{u}(x)=\left\{y \in \mathbf{T}^{2} \mid d\left(f^{-n}(y), f^{-n}(x)\right) \leq \varepsilon,(n \geq 0)\right\}
\end{aligned}
$$

respectively, then it follows from Assumption 1 that $\tilde{W}_{\varepsilon}^{s}(x)$ and $\tilde{W}_{\varepsilon}^{u}(x)$ are $C^{1+\alpha}-$ manifolds with $T_{x} \tilde{W}_{\varepsilon}^{s}(x)=E_{1}(x)$ and $T_{x} \tilde{W}_{\varepsilon}^{u}(x)=E_{2}^{\varepsilon}(x)$ ([9]). To obtain the Lipschitz continuity of the holonomy map along local stable manifolds (Lemma 4.3), we impose the following assumption.

Assumption 2. (1) For any $x \in \mathbf{T}^{2}$ and $0<\varepsilon<1$, each local unstable manifold $\tilde{W}_{\varepsilon}^{u}(x)$ is a C^{2}-embedding and (2) W^{u}-foliation $\left\{\tilde{W}_{\varepsilon}^{u}(x) \mid x \in \mathbf{T}^{2}\right\}$ is C^{2}-continuous, i.e. the correspondence $x \mapsto \tilde{W}_{\varepsilon}^{u}(x)$ is C^{2}-continuous.

Assumption 3. If we identify $\tilde{W}_{\varepsilon}^{u}(p)$ with $I_{\varepsilon}=[-\varepsilon, \varepsilon]$, then the graph of $\left.f\right|_{\tilde{W}_{e}^{u}(p)}$ can be represented as

$$
\left.f\right|_{\tilde{W}_{e}^{u}(p)}(x)= \begin{cases}x+x^{1+\alpha}+o\left(x^{2}\right) & (x \geq 0) \\ x-|x|^{1+\alpha}-o\left(x^{2}\right) & (x<0)\end{cases}
$$

Assumption 3 implies that f is of $C^{1+\alpha}$ on $\tilde{W}_{\varepsilon}^{u}(p)$ and it is crucial in proving the existence of an SRB measure.

Remark 4.1 ([19] Chapter VIII 8.8). We can construct a $C^{1+\alpha_{-}}$ diffeomorphism f above as follows: Let f_{0} be a hyperbolic toral automorphism of \mathbf{T}^{2} with two different eigenvalues $0<\lambda_{1}<1<\lambda_{2}$. We slowly deform f_{0} near the origin along only unstable direction until it satisfies Assumptions 1 and 3.

By Assumption 1, f is partially hyperbolic with contracting direction but not an Anosov diffeomorphism and there exists $\delta>0$ such that if $d(x, y)<\delta$, then $\tilde{W}_{\varepsilon}^{s}(x)$ and $\tilde{W}_{\varepsilon}^{u}(y)$ have a single transverse intersection point $[x, y]=$ $\tilde{W}_{\varepsilon}^{s}(x) \cap \tilde{W}_{\varepsilon}^{u}(y)$ ([9] Theorem 5.5). Thus f is expansive, i.e. there exists $\eta>0$ such that if $x, y \in \mathbf{T}^{2}$ and $d\left(f^{i}(x), f^{i}(y)\right)<\eta(i \in \mathbf{Z})$ then $x=y$.

Moreover we can check that f satisfies the uniformly shadowing property ([2] Theorem 5.4, [3] Theorem 2.2.17).

A sequence $\left\{x_{i}\right\}_{i \in \mathbf{Z}} \subset \mathbf{T}^{2}$ is called a β-pseudo orbit for f if $d\left(f\left(x_{i}\right), x_{i+1}\right)<\beta$ for all $i \in \mathbf{Z}$. A point $x \in \mathbf{T}^{2}$ is called an α-shadowing point for a β-pseudo orbit $\left\{x_{i}\right\}_{i \in \mathbf{Z}}$ if $d\left(f^{i}(x), x_{i}\right)<\alpha(i \in \mathbf{Z})$. We call that f satisfies uniformly shadowing
property if for any $\alpha>0$ there exists $\beta>0$ such that for a δ-pseudo orbit there exists at least one α-shadowing point. Since f is expansive and satisfies the uniformly shadowing property, f is topologically conjugate to some hyperbolic toral automorphism ([8] Theorem) and is topologically transitive.

To conclude Theorem B it is enough to show the following:
Proposition 4.2. If $0<\alpha<1$, then f admits an SRB measure.
In [11] Hu and Young gave a direct proof of the Lipschitz continuity of the holonomy map along the stable leaves for C^{2}-almost Anosov diffeomorphisms. We emphasize that in their proof they use only Assumptions 1 and 2. So the Lipschitz continuity also holds for our case:

Lemma 4.3 ([1] Proposition 2.5). There exists $L>0$ such that for any $y \in \mathbf{T}^{2}$, interval $J \subset \tilde{W}_{\varepsilon}^{u}(y)$ and $q \in \dot{W}_{\varepsilon}^{s}(y)$ with $d(y, q)<\delta$,

$$
L^{-1} \ell(J) \leq \ell([J, q]) \leq L \ell(J)
$$

By Assumption 3, we have the following ([24] p. 180):
Lemma 4.4 ([11], [24]). For any interval $J \subset \tilde{W}_{\varepsilon}^{u}(p)$

$$
\sum_{i=0}^{\infty} \ell\left(f^{-i}(J)\right)<\infty
$$

For any $z \in \mathbf{T}^{2}$ we denote by

$$
\mathscr{R}_{\varepsilon^{\prime}}(z)=\left\{[y, x] \mid y \in \tilde{W}_{\varepsilon^{\prime}}^{u}(z), x \in \tilde{W}_{\varepsilon^{\prime}}^{s}(z)\right\} \quad\left(0<\varepsilon^{\prime} \leq \varepsilon\right)
$$

a rectangle of z. Combining Lemma 4.3 with the proofs of Proposition 3.1 in [11] and Lemma 5 in [24], we have the following:

Lemma 4.5 ([11], [24]). For any small rectangle \mathscr{P} of p, there exist $\delta_{1}>0$ and $K>0$ such that for any $x \in \mathbf{T}^{2}$ and any interval $J \subset \tilde{W}_{\varepsilon}^{u}(x)$ with $l(J) \leq \delta_{1}$ and $J \cap \mathscr{P}=\emptyset$

$$
\frac{1}{K} \leq \frac{\left|\operatorname{det}\left(\left.D_{y} f^{-n}\right|_{E_{2}(y)}\right)\right|}{\left|\operatorname{det}\left(\left.D_{z} f^{-n}\right|_{E_{2}(z)}\right)\right|} \leq K \quad(y, z \in \gamma, n \geq 1)
$$

where $\operatorname{det}\left(\left.D_{y} f\right|_{E_{2}(y)}\right)$ denotes the Jacobian at y of f restricted to $E_{2}(y)$.
Now we introduce here the notion of a Markov partition. For any rectangle \mathscr{R} and $x \in \mathscr{R}$, let $\gamma^{\sigma}(x)$ be the stable $(\sigma=s)$ and unstable $(\sigma=u)$ leaf which is the connected component of $\tilde{W}_{\varepsilon}^{\sigma}(x) \cap \mathscr{R}$ containing x. A rectangle $\mathscr{R} \subset \mathbf{T}^{2}$ is said to be proper if $\mathrm{Cl}(\operatorname{int}(\mathscr{R}))=\mathscr{R}$ where $\mathrm{Cl}(A)$ and $\operatorname{int}(A)$ denote the closure and interior of a set A respectively. We say that $\left\{\mathscr{R}_{i}\right\}_{i=0}^{r-1}$ is a Markov partition if (i) each \mathscr{R}_{i} is proper, (ii) $\left\{\mathscr{R}_{i}\right\}_{i=0}^{r-1}$ is a cover of \mathbf{T}^{2}, (iii)
$\operatorname{int}\left(\mathscr{R}_{i}\right) \cap \operatorname{int}\left(\mathscr{R}_{j}\right)=\emptyset \quad$ for $i \neq j$ and (iv) for any $x \in \operatorname{int}\left(\mathscr{R}_{i}\right) \cap f^{-1}\left(\operatorname{int}\left(\mathscr{R}_{j}\right)\right)$, $f\left(\gamma^{s}(x)\right) \subset \gamma^{s}(f(x))$ and $f\left(\gamma^{u}(x)\right) \supset \gamma^{u}(f(x))$.

Since f is expansive and satisfies uniformly shadowing property, f has a Markov partition $\left\{\mathscr{R}_{i}\right\}_{i=0}^{r-1}$ with arbitrary diameter (see [3]). So we can assume that the diameter of $\left\{\mathscr{R}_{i}\right\}_{i=0}^{r-1}$ is less than $0<\varepsilon_{2}<\delta / 2$. Moreover, since f is topologically conjugate to some hyperbolic toral automorphism, each element of $\left\{\mathscr{R}_{i}\right\}_{i=0}^{r-1}$ is homeomorphic to a parallelogram ([22] Theorem 4.1) and its boundary consists of two stable leaves and two unstable leaves.

We consider elements of $\left\{\mathscr{R}_{i}\right\}_{i=0}^{r-1}$ containing the fixed point p. Then p is contained in the interior of some \mathscr{R}_{i} or, in the boundaries of some $\mathscr{R}_{i} \mathrm{~s}$. If the latter happens, one of the boudary leaves of \mathscr{R}_{i} is an unstable or stable leaf with p. This implies that the cardinarity of the set of all \mathscr{R}_{i} containing p is less than 4. Since we can assume that all the eigenvalues of $D_{p} f$ are positive (by replacing f by f^{2}, if necessary), we have
(a) $f\left(\operatorname{int}\left(\mathscr{R}_{i}\right)\right) \cap \operatorname{int}\left(\mathscr{R}_{i}\right) \neq \emptyset$ whenever $p \in \mathscr{R}_{i}$, and
(b) $f\left(\operatorname{int}\left(\mathscr{R}_{i}\right)\right) \cap \operatorname{int}\left(\mathscr{R}_{j}\right)=\emptyset$ whenever $p \in \mathscr{R}_{i} \cap \mathscr{R}_{j}(i \neq j)$.

If we take a neighborhood \mathscr{P} of p where

$$
\mathscr{P}=\operatorname{int}\left(\bigcup_{p \in \mathscr{R}_{i}} \mathscr{R}_{i}\right)
$$

then f is uniformly hyperbolic outside \mathscr{P} (by Assumption 1). By (a) and (b) we have $f(\mathscr{P}) \cap \mathscr{P}=\operatorname{int}\left(\bigcup_{p \in \mathscr{R}_{i}} f\left(\mathscr{R}_{i}\right) \cap \mathscr{R}_{i}\right)$.

Let $R(x)$ be the smallest positive integer such that $\left(f^{R}\right)(x)=f^{R(x)}(x) \in$ $\mathbf{T}^{2} \backslash \mathscr{P}$ for $x \in \mathbf{T}^{2} \backslash \mathscr{P}$. By Assumption 1, the first return map f^{R} is defined for m-a.e. $x \in \mathbf{T}^{2} \backslash \mathscr{P}$ where m denotes the Lebesgue measure on \mathbf{T}^{2}. We set

$$
\Gamma_{i}=\left\{y \in \mathbf{T}^{2} \backslash \mathscr{P} \mid R(y)=i\right\} \quad(i \geq 1),
$$

then $f^{R}(x)=f^{i}(x)$ for $x \in \Gamma_{i}$. We define

$$
\mathscr{2}^{(i)}=\left\{z \in f^{-1}(\mathscr{P}) \backslash \mathscr{P} \mid f^{j}(z) \in \mathscr{P},(1 \leq j \leq i)\right\} \quad(i \geq 1) .
$$

Then $f^{i}\left(\mathscr{Q}^{(i)}\right) \cap f^{j}\left(\mathscr{Q}^{(j)}\right)=\emptyset$ for $i \neq j, \mathscr{P}=\bigcup_{i \geq 1} f^{i}\left(\mathscr{Q}^{(i)}\right)$ and $\mathscr{Q}^{(i)}=\bigcup_{j \geq i+1} \Gamma_{j}$.
For any rectangle \mathscr{R}, any unstable leaf γ^{u} and any $\rho>0$, we say that $\mathscr{V}_{\rho} \subset \mathscr{R}$ is a u-subset of γ^{u} with radius ρ if $\mathscr{V}_{\rho}=\bigcup_{y \in \tilde{B}^{s}(x, \rho)} \gamma^{u}(y)$ for $x \in \gamma^{u}$, where $\tilde{B}^{s}(x, \rho)$ denotes the closed ball in $\tilde{W}_{\varepsilon}^{s}(x)$ centered at x with radius ρ. For any interval $\omega \subset \gamma^{u}, \mathscr{S}_{\omega}$ is an s-subset corresponding to ω if $\mathscr{S}_{\omega}=\bigcup_{y \in \omega} \gamma^{s}(y)$. We denote $\partial^{s}(\mathscr{R})$ the two stable leaves which contain the different extreme points of any unstable leaf $\gamma^{u} \subset \mathscr{R}$. $\partial^{u}(\mathscr{R})$ is also defined. The boudary of $\mathscr{R}, \partial(\mathscr{R})$, is represented as $\partial(\mathscr{R})=\partial^{s}(\mathscr{R}) \cup \partial^{u}(\mathscr{R})$.

Let ξ^{u} be the measurable partition subordinate to W^{u}-foliation. For an f^{R}-invariant probability measure v on $\mathbf{T}^{2} \backslash \mathscr{P}$, let $\left\{v_{x}^{u}\right\}$ (v-a.e. x) denote the canonical system of conditional measures of v w.r.t. ξ^{u} and m_{x}^{u} denote the Lebesgue measure on $\gamma^{u}(x)$.

Lemma 4.6. There exists an f^{R}-invariant Borel probability measure μ such that $\mu_{x}^{u} \ll m_{x}^{u}(\mu$-a.e. $x)$.

Proof. Let γ_{0} be an unstable leaf which intersects one of the components of $f^{-1}(\mathscr{P}) \backslash \mathscr{P}$ and m_{0}^{u} be the Lebesgue measure on γ_{0}. To simplicity we assume that $m_{0}^{u}\left(\gamma_{0}\right)=1$, and so define a probability measure of $\mathbf{T}^{2} \backslash \mathscr{P}$ by

$$
\mu_{n}=\frac{1}{n} \sum_{j=0}^{n-1} \sum_{i=1}^{\infty}\left(f^{R}\right)_{*}^{j}\left(\left.m_{0}^{u}\right|_{\Gamma_{i}}\right) \quad(n \geq 1) .
$$

Here $\left(f^{R}\right)_{*}^{j}\left(\left.m_{0}^{u}\right|_{\Gamma_{i}}\right)$ is the push-forward of $\left.m_{0}^{u}\right|_{\Gamma_{i}}$ by $\left(f^{R}\right)^{j}$. Then there exist a probability measure μ on $\mathbf{T}^{2} \backslash \mathscr{P}$ and a subsequence $\left\{\mu_{n_{j}}\right\}_{j \geq 1} \subset\left\{\mu_{n}\right\}_{n \geq 1}$ such that $\mu_{n_{j}} \rightarrow \mu(j \rightarrow \infty)$. Clearly μ is f^{R}-invariant.

To obtain the conclusion it is enough to show that there exists $K_{1}>0$ such that for μ-a.e. x and any interval $\omega \subset \gamma^{u}(x)$

$$
\begin{equation*}
\frac{1}{K_{1}} m_{x}^{u}(\omega) \leq \mu_{x}^{u}(\omega) \leq K_{1} m_{x}^{u}(\omega) \tag{4.1}
\end{equation*}
$$

For any $x \in \mathbf{T}^{2}$, to simplicity set $\gamma=\gamma^{u}(x)$ and choose any interval $\omega \subset \gamma$. \mathscr{S}_{ω} denotes the s-subset corresponding to ω and \mathscr{V}_{ρ} the u-subset of γ with radius $0<\rho<\delta / 2$. Firstly we prove that there exists $K_{0}>0$ such that

$$
\begin{equation*}
\frac{1}{K_{0}} \frac{m_{x}^{u}(\omega)}{m_{x}^{u}(\gamma)} \leq \frac{\mu_{n}\left(\mathscr{V}_{\rho} \cap \mathscr{S}_{\omega}\right)}{\mu_{n}\left(\mathscr{V}_{\rho}\right)} \leq K_{0} \frac{m_{x}^{u}(\omega)}{m_{x}^{u}(\gamma)} . \tag{4.2}
\end{equation*}
$$

To see this, we use the arguments in the proof of Lemma 5.2 in [11] and Theorem 1 in [25]. We set $\gamma_{i}^{j}=\left(f^{R}\right)^{j}\left(\gamma_{0} \cap \Gamma_{i}\right) \cap \mathscr{V}_{\rho}$. Since f is topologically transitive, for $n>0$ large enough there exist $i \geq 1$ and $0 \leq j \leq n-1$ such that $\gamma_{i}^{j} \neq \emptyset$. By Lemma 4.3 there exists $L>0$ such that for $0 \leq j \leq n-1$ and $i \geq 1$ with $\gamma_{i}^{j} \neq \emptyset$,

$$
\begin{equation*}
\frac{1}{L^{2}} \frac{m_{x}^{u}(\omega)}{m_{x}^{u}(\gamma)} \leq \frac{m_{\gamma_{i}^{j}}^{u}\left(\gamma_{i}^{j} \cap S_{\omega}\right)}{m_{\gamma_{i}^{j}}^{u}\left(\gamma_{i}^{j}\right)} \leq L^{2} \frac{m_{x}^{u}(\omega)}{m_{x}^{u}(\gamma)} \tag{4.3}
\end{equation*}
$$

By Lemma 4.5, (4.3) and by using the fact that $\left(\sum_{i=1}^{\infty} a_{i}\right) /\left(\sum_{i=1}^{\infty} b_{i}\right) \leq$ $\sup _{1 \leq i}\left\{a_{i} / b_{i}\right\}$ for $a_{i}, b_{i}>0(i \geq 1)$ and $\sum_{i=1}^{\infty} a_{i}<\infty, \sum_{i=1}^{\infty} b_{i}<\infty$, we can find $K>0$ such that

$$
\begin{equation*}
\frac{1}{K L^{2}} \frac{m_{x}^{u}(\omega)}{m_{x}^{u}(\gamma)} \leq \frac{\left(f^{R}\right)_{*}^{j}\left(m_{0}^{u}\right)\left(\mathscr{V}_{\rho} \cap \mathscr{S}_{\omega}\right)}{\left(f^{R}\right)_{*}^{j}\left(m_{0}^{u}\right)\left(\mathscr{V}_{\rho}\right)} \leq K L^{2} \frac{m_{x}^{u}(\omega)}{m_{x}^{u}(\gamma)} . \tag{4.4}
\end{equation*}
$$

By (4.4) and the fact above again, we have (4.2).
We can choose \mathscr{V}_{ρ} such that their boundary $\partial\left(\mathscr{V}_{\rho}\right)$ has μ-zero measure. Indeed, it is enough to show that $\mu\left(\gamma^{s}\right)=0$ for any unstable leaf γ^{s}. Since there exist at most countable $\rho>0$ such that $\mu\left(\partial^{u}\left(\mathscr{V}_{\rho}\right)\right)>0$, except for such $\rho>0$, we have that $\mu\left(\partial^{u}\left(\mathscr{V}_{\rho}\right)\right)=0$. If we have the claim above, then $\mu\left(\partial^{s}\left(\mathscr{V}_{\rho}\right)\right)=0$. Therefore $\mu\left(\partial\left(\mathscr{V}_{\rho}\right)\right)=0$.

For any stable leaf γ^{s} and $0<\eta<\varepsilon_{2}$ we set

$$
U\left(\gamma^{s}, \eta\right)=\left\{[y, z] \in \mathbf{T}^{2} \backslash \mathscr{P} \mid z \in \gamma^{s}, d(z, y)<\eta\right\} .
$$

Then

$$
U\left(\gamma^{s}, \eta\right)=\bigcup_{k=1}^{l}\left(U\left(\gamma^{s}, \eta\right) \cap \mathscr{R}_{m_{k}}\right)
$$

for $\mathscr{R}_{m_{k}} \neq \mathscr{R}_{0}(k=1, \ldots, l)$ with $U\left(\gamma^{s}, \eta\right) \cap \mathscr{R}_{m_{k}} \neq \emptyset$. For any $k=1, \ldots, l$, there exist $y_{k} \in \mathscr{R}_{m_{k}}$, an interval $\omega_{\eta}\left(y_{k}\right) \subset \gamma^{u}\left(y_{k}\right)$ and $\rho\left(y_{k}\right)>0$ such that (a) the u-subset $\mathscr{V}_{\rho\left(y_{k}\right)}$ of $\gamma^{u}\left(y_{k}\right)$ and the s-subset $\mathscr{S}_{\omega_{\eta}\left(y_{k}\right)}$ corresponding to $\omega_{\eta}\left(y_{k}\right)$ satisfy $U\left(\gamma^{s}, \eta\right) \cap \mathscr{R}_{m_{k}}=\mathscr{V}_{\rho\left(y_{k}\right)} \cap \mathscr{S}_{\omega_{\eta}\left(y_{k}\right)}$, (b) $m_{y_{k}}^{u}\left(\omega_{\eta}\left(y_{k}\right)\right) \rightarrow 0$ as $\eta \rightarrow 0$. By (4.2), for any $n \geq 1$,

$$
\begin{equation*}
\mu_{n}\left(U\left(\gamma^{s}, \eta\right) \cap \mathscr{R}_{m_{k}}\right) \leq K_{0} \frac{m_{y_{k}}^{u}\left(\omega_{\eta}\left(y_{k}\right)\right)}{m_{y_{k}}^{u}\left(\gamma^{u}\left(y_{k}\right)\right)} \rightarrow 0 \quad(\eta \rightarrow 0) . \tag{4.5}
\end{equation*}
$$

Since $\bigcup_{k=1}^{l} U\left(\gamma^{s}, \eta\right) \cap \mathscr{R}_{m_{k}}$ contains γ^{s} and is open in $\mathbf{T}^{2} \backslash \mathscr{P}$ w.r.t. the relative topology, we have

$$
\begin{align*}
\mu\left(\gamma^{s}\right) & \leq \mu\left(\bigcup_{k=1}^{l} U\left(\gamma^{s}, \eta\right) \cap \mathscr{R}_{m_{k}}\right) \tag{4.6}\\
& \leq \underset{j \rightarrow \infty}{\limsup } \mu_{n_{j}}\left(\bigcup_{k=1}^{l} U\left(\gamma^{s}, \eta\right) \cap \mathscr{R}_{m_{k}}\right) .
\end{align*}
$$

By (4.5) and (4.6), we have $\mu\left(\gamma^{s}\right)=0$.
Thus we can choose the finite measurable partition ξ_{1} which consists of $\mathscr{V}_{\rho} \cap \mathscr{S}_{\omega_{j}}$ with $\mu\left(\partial\left(\mathscr{V}_{\rho} \cap \mathscr{S}_{\omega_{j}}\right)\right)=0(1 \leq i \leq q) \quad$ and \quad set $\xi^{u}=\left\{\gamma^{u}(x) \cap \mathscr{V}_{\rho} \cap \mathscr{S}_{\omega_{j}} \mid\right.$ $\left.x \in \mathscr{R}_{i}, \operatorname{int}\left(\mathscr{R}_{i}\right) \cap \mathscr{P}=\emptyset, \mathscr{V}_{\rho} \cap \mathscr{S}_{\omega_{j}} \in \xi_{1}\right\}$. Then we can find the sequence $\left\{\xi_{\ell}\right\}_{\ell \geq 1}$ of finite measurable partition such that

$$
\xi_{1} \leq \xi_{2} \leq \cdots \leq \bigvee_{\ell \geq 1} \xi_{\ell}=\xi^{u}
$$

By Doob's theorem we have $\mu_{x}^{\ell} \rightarrow \mu_{x}^{u}(\mu$-a.e. $x)$ as $\ell \rightarrow \infty$, where $\left\{\mu_{x}^{\ell}\right\}(\mu$-a.e. $x)$ denotes the canonical system of conditional measures w.r.t. ξ_{ℓ}. Here we remark that $\mu_{x}^{\ell}(A)=\mu\left(\mathscr{V}_{\rho_{\ell}} \cap \mathscr{S}_{\omega_{j}} \cap A\right) / \mu\left(\mathscr{V}_{\rho_{\ell}} \cap \mathscr{S}_{\omega_{j}}\right)$ for any $\mathscr{V}_{\rho_{\ell}} \cap \mathscr{S}_{\omega_{j}} \in \xi_{\ell}$, any Borel set A and $x \in \mathscr{V}_{\rho_{t}} \cap \mathscr{S}_{\omega_{j}} \cap A$.

Since (4.2) holds for $\mathscr{V}_{\rho_{t}} \cap \mathscr{S}_{\omega_{j}} \in \xi_{l}(1 \leq j \leq q)$ instead of \mathscr{V}_{ρ} and any interval $\omega \subset \omega_{j}$ with $\mu\left(\partial\left(\mathscr{V}_{\rho_{t}} \cap \mathscr{S}_{\omega}\right)=0\right.$, by taking $n \rightarrow \infty$ in (4.2), we have

$$
\begin{equation*}
\frac{1}{K_{0}} \frac{m_{x}^{u}(\omega)}{m_{x}^{u}\left(\gamma \cap \mathscr{S}_{\omega_{j}}\right)} \leq \frac{\mu\left(\left(\mathscr{V}_{\rho_{\epsilon}} \cap \mathscr{S}_{\omega_{j}}\right) \cap \mathscr{S}_{\omega}\right)}{\mu\left(\mathscr{V}_{\rho_{\ell}} \cap \mathscr{S}_{\omega_{j}}\right)} \leq K_{0} \frac{m_{x}^{u}(\omega)}{m_{x}^{u}\left(\gamma \cap \mathscr{S}_{\omega_{j}}\right)} . \tag{4.7}
\end{equation*}
$$

Doob's theorem ensures that we have

$$
\begin{equation*}
\frac{1}{K_{0}} \frac{m_{x}^{u}(\omega)}{m_{x}^{u}\left(\gamma^{u}(x) \cap \mathscr{S}_{\omega_{j}}\right)} \leq \mu_{x}^{u}(\omega) \leq K_{0} \frac{m_{x}^{u}(\omega)}{m_{x}^{u}\left(\gamma^{u}(x) \cap \mathscr{S}_{\omega_{j}}\right)} \quad(\mu \text {-a.e. } x) \tag{4.8}
\end{equation*}
$$

as $\ell \rightarrow \infty$ in (4.7). Since $\mathscr{R}_{i} \cap \mathscr{S}_{\omega_{j}}$ is a rectangle ($\left.0 \leq i \leq r-1,1 \leq j \leq q\right)$, by Lemma 4.3 there exists $K_{1}>0$ such that for any $x \in \mathscr{R}_{i}$,

$$
\begin{equation*}
\frac{1}{K_{1}}<m_{x}^{u}\left(\gamma^{u}(x) \cap \mathscr{S}_{\omega_{j}}\right)<K_{1} . \tag{4.9}
\end{equation*}
$$

Therefore we have (4.1) by (4.8) and (4.9).
Proof of Proposition 4.2. Let μ be the f^{R}-invariant Borel probability measure on $\mathbf{T}^{2} \backslash \mathscr{P}$ in Lemma 4.6. Then

$$
\bar{\mu}=\mu+\sum_{i=1}^{\infty} f_{*}^{i}\left(\left.\mu\right|_{Q^{(i)}}\right)
$$

is a finite measure. To see this, it is enough to prove that $\bar{\mu}(\mathscr{P})<\infty$.
Let $\pi: \mathscr{Q}^{(1)} \rightarrow \gamma^{u}(p)$ be the projection sliding along local stable manifolds. As in proof of Theorem A, by Lemma 4.3 there exists $L>0$ such that for any $x \in f^{-1}(\mathscr{P}) \backslash \mathscr{P}$,

$$
\begin{equation*}
m_{x}^{u}\left(\mathscr{Q}^{(i)}\right) \leq L m_{p}^{u}\left(\pi\left(\mathscr{Q}^{(i)}\right)\right) \quad(i \geq 1) . \tag{4.10}
\end{equation*}
$$

By (4.1) there exists $K>0$ such that

$$
\begin{equation*}
\mu\left(\mathscr{Q}^{(i)}\right)=\int \mu_{x}^{u}\left(\mathscr{Q}^{(i)}\right) d \mu(x) \leq K \int m_{x}^{u}\left(\mathscr{Q}^{(i)}\right) d \mu(x) \quad(i \geq 1) \tag{4.11}
\end{equation*}
$$

By (4.11), (4.10) and $m_{p}^{u}\left(\pi\left(\mathscr{Q}^{(i)}\right)\right)=m_{p}^{u}\left(f^{-i}\left(\pi\left(\mathscr{Q}^{(1)}\right)\right)\right)$,

$$
\begin{equation*}
\mu\left(\mathscr{2}^{(i)}\right) \leq 2 K L \cdot m_{p}^{u}\left(f^{-i}\left(\pi\left(\mathscr{Q}^{(1)}\right)\right)\right) \quad(i \geq 1) . \tag{4.12}
\end{equation*}
$$

By $\mathscr{P}=\bigcup_{i=1}^{\infty} f^{i}\left(\mathscr{Q}^{(i)}\right), \quad f^{i}\left(\mathscr{Q}^{(i)}\right) \cap f^{j}\left(\mathscr{Q}^{(j)}\right)=\emptyset(i \neq j), \quad \bar{\mu}\left(f^{i}\left(\mathscr{Q}^{(i)}\right)\right)=\mu\left(\mathscr{Q}^{(i)}\right)$ and (4.12), we have

$$
\bar{\mu}(\mathscr{P})=\sum_{i=1}^{\infty} \mu\left(\mathscr{Q}^{(i)}\right) \leq 2 K L \sum_{i=1}^{\infty} m_{p}^{u}\left(f^{-i}\left(\pi\left(\mathscr{Q}^{(1)}\right)\right)\right) .
$$

Lemma 4.4 ensures that the last term above converges.
By Lemma 4.6 the normalized measure of $\bar{\mu}$ is an SRB measure. This concludes the proposition.

References

[1] N. Aoki, The series of nonlinear analysis (in Japanese) I, II, III and IV, Kyoritu Publ., 2004.
[2] N. Aoki, Topological dynamics, Topics in general topology, North-Holland Math. Library 41, North-Holland, Amsterdam, 1989, 625-740.
[3] N. Aoki and K. Hiraide, Topological theory of dynamical systems: recent advances, NorthHolland Math. Library 52, Elsevier North-Holland, Amsterdam, 1994.
[4] R. Bowen, Equilibrium states and the ergodic theory of anosov diffeomorphisms, Lecture notes in mathematics 470, Springer-Verlag, 1975, 67-76.
[5] E. Catsigeras and H. Enrich, SRB measures of certain almost hyperbolic diffeomorphisms with a tangency, Discr. and Conti. Dynam. Syst. 7 (2001), 188-202.
[6] J. Franks, Anosov diffeomorphisms, Global analysis, Proc. Sympos. Pure Math. 14 (1970), 61-93.
[7] J. Нatомото, Ergodic measures of SRB attractors, 2004, preprint.
[8] K. Hiraide, Expansive homeomorphisms with the pseudo-orbit tracing property on compact surfaces, J. Math. Soc. Japan 40 (1994), 123-137.
[9] M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Lecture notes in math. 583, 1977.
[10] H. Hu, Conditions for the existence of SBR measures for "almost Anosov" diffeomorphisms, Discr. and Conti. Dynam. Syst. 5 (1999), 2331-2367.
[11] H. Hu and L.-S. Young, Nonexistence of SBR measures for some diffeomorphism that are 'Almost Anosov', Ergod. Th. and Dynam. Sys. 15 (1995), 67-76.
[12] A. KАток, Lyapunov exponents entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137-173.
[13] F. Ledrappier and J. Strelcyn, A proof of the estimation from below in Pesin's entropy formula, Ergod. Th. and Dynam. Sys. 2 (1982), 203-219.
[14] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms I and II, Ann. of Math. 122 (1985), 509-574.
[15] Y. I. Oseledec, A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems, Trudy Moskov Mat. Ostc. 19 (1968), 179-210.
[16] Y. B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Math. Surveys 32 (1977), 55-114.
[17] Y. B. Pesin and Ya. Sinai, Gibbs measures for partially hyperbolic attractors, Ergod. Th. and Dynam. Sys. 2 (1982), 417-438.
[18] E. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. Math. 151 (2000), 961-1023.
[19] C. Robinson, Dynamical systems: Stability, symbolic dynamics, and chaos, 2nd ed., Stu. in Adv. Math., CRC Press, 1999.
[20] V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sbornik 25 (1949).
[21] D. Ruelle, A measure associated with axiom A attractors, Amer. J. Math. 98 (1976), 619-654.
[22] E. Rykken, Markov partitions for hyperbolic toral automorphisms T ${ }^{2}$, Rocky Mountain J. Math. 28 (1998), 1103-1124.
[23] Ya. G. SinaI, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), 21-64.
[24] L.-S. Young, Recurrence times and rates of mixing, Israel. J. Math. 110 (1999), 153-188.
[25] L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. 147 (1998), 585-650.

Department of Mathematics
Tokyo Institute of Technology
O-okayama, Meguro-ku
Токуо, 152-8551
Japan
E-mail: hatoj@math.titech.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 37C40, 37D20.
 Key words and phrases. Anosov diffeomophism, SRB measure, first return map. Received October 7, 2005; revised November 21, 2005.

