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ON HYPERSURFACES INTO RIEMANNIAN SPACES OF

CONSTANT SECTIONAL CURVATURE

Antonio Caminha

Abstract

In this paper, we compute LrðSrÞ for an isometric immersion x : Mn ! Mnþ1
c , from

an n-dimensional Riemannian manifold Mn into an ðnþ 1Þ-dimensional Riemannian

manifold Mnþ1
c , of constant sectional curvature c. Here, by Lr we mean the linea-

rization of the second order di¤erential operator associated to the ðrþ 1Þ-th elementary

symmetric function Srþ1 on the eigenvalues of the second fundamental form A of

x. The resulting formulae are then applied to study how the behavior of higher-order

mean curvature functions of Mn influence its geometry.

1. Introduction

In a seminal paper ([15]), J. Simons computed the Laplacian of the second
fundamental form of isometric immersions in spheres, applying the result to get
an integral inequality to be satisfied by the squared norm of the second fun-
damental form A of a minimal oriented hypersurface of the unit sphere Snþ1.
More specifically, he proved thatð

M

jAj2ðn� jAj2Þ dMa 0;

what immediately gives a gap theorem concerning the size of the squared norm of
A for minimal hypersurfaces of the sphere. In fact, if 0a jAj2 a n for such an
immersion, then one has jAj2 ¼ 0 or n.

Following Simons’ approach and working independently, S. S. Chern, M. do
Carmo and S. Kobayashi in [6], and H. B. Lawson in [12], characterized minimal

Cli¤ord tori Sn1
r1
� Sn2

r2
, n1 þ n2 ¼ n, r1 ¼

ffiffiffiffiffiffiffiffiffiffi
n1=n

p
, r2 ¼

ffiffiffiffiffiffiffiffiffiffi
n2=n

p
as the only closed

minimal hypersurfaces of the unit sphere Snþ1 for which jAj2 ¼ n. The natural
immediate generalization, namely, the study of rigidity properties of constant
mean curvature hypersurfaces of the sphere under appropriate constraints on jAj2,
is due to H. Alencar and M. do Carmo, in [1], still working along the same lines
of [15].
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A slight variation of this general method for investigating rigidity properties
of hypersurfaces in Riemannian spaces of constant sectional curvature appeared
in a work of H. Alencar, M. do Carmo and A. G. Colares (see [2]), where the
authors obtained a formula for L1ðS1Þ under the additional hypothesis that M
had scalar curvature identically equal to that of the ambient space. This formula
was later used by H. Alencar, M. do Carmo and W. Santos (see [3]) to prove a
gap theorem for compact orientable hypersurfaces of the unit sphere having
scalar curvature equal to 1. Here, x : Mn ! Mnþ1

c is an n-dimensional oriented
hypersurface of a Riemannian space M, of constant sectional curvature c, and
A denotes the second fundamental form of x with respect to a unit normal vector
field N globally defined on M. For 0a ra n, Sr is the r-th elementary sym-
metric function on the eigenvalues of A, and Pr : TM ! TM is the r-th Newton
transformation on M, recursively defined by P0 ¼ I and Pr ¼ SrI � APr�1; Lr

is the second order di¤erential operator on M, given for a smooth f : M ! R
by

Lrð f Þ ¼ trðPr Hess f Þ
Observe that L0 ¼ D, the Laplacian of M.

In this paper, we compute LrðSrÞ for isometric immersions of Riemannian
manifolds M as hypersurfaces of Riemannian ambient spaces M, of constant
sectional curvature, without additional restrictions (corollary 3.3). We then apply
this formula to study how the behavior of higher order mean curvature func-
tions of M influence its shape. We start generalizing (theorem 4.3) the above-
mentioned gap theorem of Alencar and do Carmo for hypersurfaces of the unit
sphere having constant mean or scalar curvature (not necessarily equal to 1).
Then we prove a result (theorem 4.5) generalizing Simons’ integral inequality for
r-minimal hypersurfaces of the sphere. The above-mentioned results of Chern,
do Carmo, Kobayashi and Lawson, as well as a theorem of J. Hounie and M. L.
Leite, allows us to characterize ðr� 1Þ-minimal Cli¤ord tori Sn1

r1
� Sn2

r2
, with

r21 þ r22 ¼ 1 and n1 þ n2 ¼ n, as the only closed oriented hypersurfaces of the unit
sphere Snþ1 for which Sr ¼ 0, Srþ1 0 0 and

trðA2Pr�1Þ trðPr�1Þb trðA2Pr�1Þ2:
We next apply the formula for LrðSrÞ, together with a theorem of J. L. Barbosa
and A. G. Colares giving su‰cient conditions for the ellipticity of the operator
Lr, to characterize, in theorem 4.9, geodesic hyperspheres as the only closed
orientable hypersurfaces of the standard Riemannian space forms having one
constant nonzero higher order mean curvature. Then we show, for the case of
hypersurfaces of the unit sphere, how much one can relax the condition of M
being contained in an open hemisphere (necessary to apply the theorem of
Barbosa and Colares), obtaining a result (theorem 4.11) that also works as a
sort of analogue to the gap theorem of Alencar and do Carmo for general
1a ra n. We finish our discussion with some remarks on noncompact complete
hypersurfaces of the Euclidean space Rnþ1, giving, in theorem 4.12, a charac-
terization of r-cilinders Sr � Rn�r.
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This paper is organized in the following manner: in section 2 we establish
some notation and recall several results needed for further developments. Then,
in section 3, we obtain the formula for LrðSrÞ as a corollary of the more general
computation of LqðSrÞ. Finally, in section 4, we state and prove the applications
referred to in the above paragraph.

2. Preliminaries

Unless stated otherwise, we mean by Mn, or simply M, an n-dimensional
orientable Riemannian manifold, with Riemannian metric g ¼ h ; i, Levi-Civita
connection ‘ and curvature tensor R; DðMÞ denotes the commutative ring of
smooth real functions on M.

2.1. Tensor fields. Let f ¼ hT � ; �i denote an arbitrary 2-tensor on M, and ‘f
and ‘2f ¼ ‘ð‘fÞ be its first and second covariant di¤erentials. For each
V A XðMÞ, the recipe ð‘VfÞðX ;Y Þ ¼ ð‘fÞðX ;Y ;VÞ defines another 2-tensor on
M, called the covariant derivative of f in the direction of V . If ‘VT denotes the
linear operator associated to ‘Vf, one has

ð‘VTÞðXÞ ¼ ‘V ðTX Þ � Tð‘VX Þ:

Let feig be a moving frame on an open neighborhood U HM, with coframe
foig and connection 1-forms oij . Letting fij , fijk and fijkl denote the components

of f, ‘f e ‘2f with respect to feig, the following relations take place:

X
k

fijkok ¼ dfij �
X
k

fkjoik �
X
k

fikojk;ð1Þ

X
l

fijklol ¼ dfijk �
X
l

fljkoil �
X
l

filkojl �
X
l

fijlokl :ð2Þ

The proof of the following lemma can be found in [5].

Lemma 2.1. Let f be a 2-tensor on M. With respect to an arbitrary moving
frame fekg on M, and letting Rirkl ¼ Rðei; er; ek; elÞ, one has

fijkl � fijlk ¼ �
X
r

frjRirkl �
X
r

firRrjlk:

The following remarks on components of tensors with respect to a given
moving frame will be used in the next section.

Remark 2.2. A moving frame fekg on (an open neighborhood of ) M is
called geodesic at p when ð‘ek eiÞðpÞ ¼ 0 for all 1a i; ka n, which is in turn
equivalent to oijðpÞ ¼ 0 for all 1a i; ja n. The usual way to build frames on
M, geodesic at p A M, is by fixing a normal neighborhood of p and parallel
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transporting the elements of an arbitrary orthonormal basis of TpM along the
geodesic rays issuing from p. Whenever we speak of a frame on M, geodesic at
some point p A M, we will always assume that it has been built this way.

Remark 2.3. Note also that, for fixed 1a ka n, the above recipe gives
ð‘ek eiÞðqÞ ¼ 0, for every 1a ia n and every point q along the geodesic ray
issuing from p with velocity vector ek. Therefore, oijðqÞðekÞ ¼ 0 for all such i, j
and q, and setting fij;k ¼ ekðfijÞ and fij;kk ¼ ekðekðfijÞÞ one has, along the

geodesic ray issuing from p with velocity vector ek,

fijk ¼ fij;k and fijkk ¼ fij;kk:ð3Þ

The first part of (3) follows from (1), while the second one follows from
substituting the first into (2).

Remark 2.4. A 2-tensor f on M is Codazzi when fijk ¼ fikj for all
1a i; j; ka n, and with respect to any moving frame fekg on M. If this is the
case, changing indices j and k in (2) gives

fijkl ¼ fikjl ;ð4Þ

for all 1a i; j; k; la n.

A 2-tensor f on M is symmetric if fðX ;Y Þ ¼ fðY ;X Þ for all X ;Y A XðMÞ,
or equivalently, when its associated linear operator T is self-adjoint. If X A
XðMÞ then ‘Xf is symmetric whenever f is symmetric, so that ‘XT is self-adjoint
whenever T is self-adjoint. With respect to an arbitrary moving frame fekg on
M, the symmetry of f is equivalent to fij ¼ fji, for all 1a i; ja n. We define
the squared norm of a symmetric 2-tensor f on M by setting

jfj2 ¼ trðT 2Þ ¼
X
i; j

f2
ij ;

where tr denotes the trace of its associated linear operator T .

2.2. Isometric immersions. Let x : Mn ! Mnþ1 denote an isometric immersion
from Mn into an ðnþ 1Þ-dimensional, oriented Riemannian manifold Mnþ1.
Also, suppose M oriented by the choice of a unit normal vetor field N, and
denote by A the corresponding second fundamental form. When Mnþ1 has
constant sectional curvature c, we recall Gauss’ and Codazzi’s equations: for
W ;X ;Y ;Z A XðMÞ, one has

hRðW ;XÞY ;Zi ¼ c½hW ;YihX ;Zi� hW ;ZihX ;Yi�ð5Þ
þ ½hAW ;YihAX ;Zi� hAW ;ZihAX ;Yi�

and
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ð‘XAÞY ¼ ð‘YAÞX :ð6Þ

Note that in this case Codazzi’s equation (6) is exactly what it means for the
second fundamental form A to be a Codazzi tensor.

Associated to the second fundamental form A of a general isometric im-
mersion x : Mn ! Mnþ1 one has n invariants Sr, 1a ra n, given by the equality

detðtI � AÞ ¼
Xn

k¼0

ð�1ÞkSkt
n�k;

where S0 ¼ 1 by definition. If p A M and fekg is a basis of TpM formed by
eigenvectors of Ap, with corresponding eigenvalues flkg, one immediately sees
that

Sr ¼ srðl1; . . . ; lnÞ;

where sr A R½X1; . . . ;Xn� is the r-th elementary symmetric polynomial on the
indeterminates X1; . . . ;Xn. In particular,

jAj2 þ 2S2 ¼ S 2
1 :

The following lemma appears, in a slightly di¤erent form, in [2].

Lemma 2.5. Let x : Mn ! Mnþ1 be an isometric immersion. If S2 is
constant on M, then

S 2
1 ðj‘Aj

2 � j‘S1j2Þb 2S2j‘Aj2:ð7Þ

In particular, if S2 b 0 then j‘Aj2 � j‘S1j2 b 0.

Note also that if R denotes the scalar curvature of M, and M has constant
sectional curvature c, it follows from Gauss’ equation that

2S2 ¼ nðn� 1ÞðR� cÞ;ð8Þ

so that S2 is constant on M if and only if R is constant on M.

2.3. Newton transformations. For 0a ra n, one defines the r-th Newton op-
erator Pr on M by setting P0 ¼ I (the identity operator) and, for 1a ra n, via
the recursion formulae

Pr ¼ SrI � APr�1:

A trivial induction shows that

Pr ¼ SrI � Sr�1Aþ Sr�2A
2 � � � � þ ð�1Þ rAr;

from where Cayley-Hamilton theorem gives Pn ¼ 0. Moreover, since Pr is a
polynomial on A for every r, it is also self-adjoint and commutes with A.
Therefore, all bases of TpM diagonalizing A at p A M also diagonalize all of the
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Pr at p. Hence, denoting by Ai the restriction of A to heii
? HTpM, it is easy to

see that

detðtI � AiÞ ¼
Xn�1

k¼0

ð�1ÞkSkðAiÞt n�1�k;

where

SkðAiÞ ¼
X

1aj1<���<jkan
j1;...; jk0i

lj1 � � � ljk :

With the above notations, one can easily prove that Prei ¼ SrðAiÞei, and also
that

(a) SrðAiÞ ¼ Sr � liSr�1ðAiÞ.
(b) trðPrÞ ¼

Pn
i¼1 SrðAiÞ ¼ ðn� rÞSr.

(c) trðAPrÞ ¼
Pn

i¼1 liSrðAiÞ ¼ ðrþ 1ÞSrþ1.
(d) trðA2PrÞ ¼

Pn
i¼1 l

2
i SrðAiÞ ¼ S1Srþ1 � ðrþ 2ÞSrþ2.

Concerning general bases of TpM, the following lemma is due to R. Reilly
([14]). For the sake of completeness, and also to establish some notation, we
include a short proof of it.

Lemma 2.6. If ðhijÞ denotes the matrix of A with respect to a certain
orthonormal basis b ¼ fekg of TpM, then the matrix ðhr

ijÞ of Pr with respect to the
same basis is given by

hr
ij ¼

1

r!

Xn

ik ; jk¼1

� j1���jr ji1���iri hj1i1 � � � hjrir ;ð9Þ

where

�
j1���jr
i1���ir ¼

sgnðsÞ; if the ik are pairwise distinct and
s ¼ ð jkÞ is a permutation of them;

0; else:

8<
:

Proof. Recall that Pr ¼
Pn

j¼0ð�1Þ jSr�jA
j, with the coe‰cients Sr�j not

depending on the chosen basis of TpM. Therefore, it su‰ces to verify the above
formula when b diagonalizes A at p, with, say, Aek ¼ lkek for 1a ka n. In
this case, the right hand side of (9) sucessively equals

1

r!

Xn

ik ; jk¼1

� j1���jr ji1���iri dj1i1 � � � djrirlj1 � � � ljr

¼ 1

r!

X
ik0i

� i1���ir ji1���iri li1 � � � lir ¼ dij
X

i1<���<ir
ik0i

li1 � � � lir

¼ dijSrðAiÞ ¼ hPrei; eji ¼ hr
ij: r
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We use the above lemma to compute first derivatives of hr
ij :

Lemma 2.7. Let fekg be a moving frame on a neighborhood of p A M,
diagonalizing the second fundamental form A at p, with Aek ¼ lkek for 1a
ka n. Then, for 1a i; j; ka n, i0 j, one has at p

ekðhr
iiÞ ¼

X
l0i

Sr�1ðAilÞhll;kð10Þ

and

ekðhr
ijÞ ¼ �Sr�1ðAijÞhij;k;ð11Þ

where Aij denotes the restriction of A to fei; ejg? HTpM.

Proof. Forgetting for the moment the restriction of being i0 j, it follows
from (9) that

ekðhr
ijÞ ¼

1

r!

Xn

ik ; jk¼1

� j1���jr ji1���iri hj1i1;khj2i2 � � � hjrir þ � � �ð12Þ

þ 1

r!

Xn

ik ; jk¼1

� j1���jr ji1���iri hj1i1 � � � hjr�1ir�1
hjrir;k:

At p, the first summand on the right hand side equals

1

r!

Xn

ik ; jk¼1

�
j1���jr j
i1���iri di2j2 � � � dir jrhj1i1;kli2 � � � lir ¼

1

r!

Xn

ik ; j1¼1

�
j1i2���ir j
i1i2���iri hj1i1;kli2 � � � lir :ð13Þ

Now, consider two separate cases: for i ¼ j,

ð13Þ ¼ 1

r!

Xn

ik ; j1¼1

� j1i2���irii1i2���iri hj1i1;kli2 � � � lir

¼ 1

r!

X
1aikan

� i1i2���irii1i2���iri hi1i1;kli2 � � � lir

¼ 1

r

X
l0i

X
i2<���<ir
ik0i; l

hll;kli2 � � � lir ¼
1

r

X
l0i

Sr�1ðAilÞhll;k:

Since the same is true for all other summands in (12), one gets (10). For i0 j, it
follows from the definition of � j1i2���ir ji1i2���iri that
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ð13Þ ¼ 1

r!

X
ik0i; j

� ii2���ir jji2���iri hij;kli2 � � � lir

¼ � 1

r

X
ik0i; j
i2<���<ir

hij;kli2 � � � lir ¼ � 1

r
Sr�1ðAijÞhij;k;

so that (11) now follows from (12). r

In the sequel, we will need the following proposition. Item (a) is essentially
the content of lemma 1.1 and equation (1.3) in [10], while item (b) is quoted as
proposition 1.5 in [11].

Proposition 2.8. Let x : Mn ! Mnþ1 be an isometric immersion, and
1a r < n, p A M.

(a) If SrðpÞ ¼ 0, then Pr�1 is semi-definite at p.
(b) If SrðpÞ ¼ 0 and Srþ1ðpÞ0 0, then Pr�1 is definite at p.

Finally, for 0a ra n, let Lr : DðMÞ ! DðMÞ be the second order di¤erential
operator given by

Lrð f Þ ¼ trðPr Hess f Þ:
When Mnþ1 has constant seccional curvature, it was proved by H. Rosenberg in
[13] that

Lrð f Þ ¼ divðPr‘f Þ;
where div stands for the divergence of a vector field on M. Thus, for
f ; g A DðMÞ, it follows from the properties of the divergence of vector fields that

Lrð fgÞ ¼ fLrðgÞ þ gLrð f Þ þ 2hPr‘f ;‘gi:

3. The formula for LrðSrÞ

As in the previous section, x : Mn ! Mnþ1
c denotes an isometric immersion

between oriented Riemannian manifolds, and A denotes the corresponding second
fundamental form.

Proposition 3.1. Let x : Mn ! Mnþ1
c be an isometric immersion, and

0a q < n, 0 < r < n. If fekg is any orthonormal frame on M, then

LqðSrÞ ¼ Lr�1ðSqþ1Þð14Þ

þ
X
k

trf½Pqð‘ekPr�1Þ � Pr�1ð‘ekPqÞ�ð‘ekAÞg

þ c½trðAPr�1Þ trðPqÞ � trðPr�1Þ trðAPqÞ�

þ trðA2Pr�1Þ trðAPqÞ � trðAPr�1Þ trðA2PqÞ:
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Proof. First of all, observe that the validity of (14) does not depend on
the particular chosen frame fekg. So, let p A M and fekg be a moving frame
on a neighborhood U HM of p, diagonalizing A at p, with Aek ¼ lkek for
1a ka n. Denote respectively by hij and hr

ij the components of A and Pr with
respect to such a frame. It follows from equation (9) that

hr
ii ¼

1

r!

Xn

ik ; jk¼1

�
j1���jri
i1���iri hj1i1 � � � hjrirð15Þ

¼ 1

r!

X
ik0i;s¼ð jkÞ

sgnðsÞhj1i1 � � � hjrir

¼
X

i1<���<ir
ik0i

X
s¼ð jkÞ

sgnðsÞhj1i1 � � � hjrir

¼
X

i1<���<ir
ik0i

Aðci1 ; . . . ; cirÞ;

where by Aðci1 ; . . . ; cirÞ we mean the r� r determinant minor of A, obtained by
choosing lines and columns of A with indices i1 < � � � < ir. Hence,

Sr ¼
1

n� r
trðPrÞ ¼

1

n� r

X
i

X
i1<���<ir
ik0i

Aðci1 ; . . . ; cirÞ

¼
X

i1<���<ir

Aðci1 ; . . . ; cirÞ

for once one has chosen 1a i1 < � � � < ir a n, there will be left n� r possible
choices for i in f1; . . . ; ng. Since determinants are multilinear functions of their
columns, one gets

ekðSrÞ ¼
X

i1<���<ir

½Aðci1;k; ci2 ; . . . ; cirÞ þ � � � þ Aðci1 ; . . . ; cir�1
; cir;kÞ�ð16Þ

on U . At p, one has

Aðci1;k; ci2 ; . . . ; cirÞ ¼

hi1i1;k 0 � � � 0

hi2i1;k li2 � � � 0

..

. ..
. ..

. ..
.

hiri1;k 0 � � � lir

����������

����������
¼ hi1i1;kli2 � � � lir ;

and analogously for the remaining summands, so that

ekðSrÞ ¼
X

i1<���<ir

ðhi1i1;kli2 � � � lir þ � � � þ li1 � � � lir�1
hirir; kÞð17Þ

¼
Xn

i¼1

hii;kSr�1ðAiÞ:
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The last equality follows from the fact that, for fixed 1a ia n, hii;k appears in
the above sum together with all products lj1 � � � ljr�1

, with j1; . . . ; jr�1 0 i (note
that the above formula for ekðSrÞ could have been obtained directly from (10).
This alternative approach was chosen to ease, in what comes next, the com-
putation of second derivatives).

To compute second derivatives, suppose further fekg geodesic at p. It
follows from (16) that

ekðekðSrÞÞ ¼
X

i1<���<ir

½Aðci1;kk; ci2 ; . . . ; cirÞ þ � � � þ Aðci1 ; . . . ; cir�1
; cir;kkÞ�

þ
X
s0t

X
i1<���<ir

Aðci1 ; . . . ; cis;k; . . . ; cit;k; . . . ; cirÞ;

and one gets at p

ekðekðSrÞÞ ¼
X

i1<���<ir

ðhi1i1;kkli2 � � � lir þ � � � þ li1 � � � lir�1
hirir;kkÞ

þ
X

i1<���<ir
s0t

ðhisis;khitit;k � hisit;khitis;kÞli1 � � � l̂lis � � � l̂lit � � � lir :

Grouping equal occurrences of ðr� 2Þ-tuples i1 < � � � < ir�2 in the last expression
above, ekðekðSrÞÞ equals

X
i

X
i1<���<ir�1

ik0i

hii;kkli1 � � � lir�1
þ
X
i0j

X
i1<���<ir�2
ik0i; j

½hii;khjj;k � h2ij;k�li1 � � � lir�2
;

and finally

ekðekðSrÞÞ ¼
X
i

Sr�1ðAiÞhii;kk þ
X
i0j

Sr�2ðAijÞ½hii;khjj;k � h2ij;k�:

Therefore, we get at p

LqðSrÞ ¼ trðPq HessðSrÞÞ ¼
Xn

k¼1

SqðAkÞekðekðSrÞÞð18Þ

¼
X
i;k

SqðAkÞSr�1ðAiÞhii;kk þ
X
i; j;k
i0j

SqðAkÞSr�2ðAijÞ½hii;khjj;k � h2ij;k�

¼
X
i

Sr�1ðAiÞLqðhiiÞ þ
X
i; j;k
i0j

SqðAkÞSr�2ðAijÞhii;khjj;k

�
X
i; j;k
i0j

SqðAkÞSr�2ðAijÞh2ij;k:

194 antonio caminha



Lemma 2.1, as well as the remarks on commutation of indices in geodesic
frames made right after it, allow one to conclude that, at p,X

i

Sr�1ðAiÞLqðhiiÞð19Þ

¼
X
i;k

Sr�1ðAiÞSqðAkÞhiikk ¼
X
i;k

Sr�1ðAiÞSqðAkÞhikik

¼
X
i;k

Sr�1ðAiÞSqðAkÞðhikik � hikki þ hikki � hkkii þ hkkiiÞ

¼
X
i;k

Sr�1ðAiÞSqðAkÞðhikik � hikkiÞ þ
X
i;k

Sr�1ðAiÞSqðAkÞhkkii

¼ �
X
i; j;k

Sr�1ðAiÞSqðAkÞðhjkRijik þ hijRjkkiÞ þ
X
i;k

Sr�1ðAiÞSqðAkÞhkkii

¼ �
X
i;k

Sr�1ðAiÞSqðAkÞlkRikik �
X
i;k

Sr�1ðAiÞSqðAkÞliRikki

þ
X
k

SqðAkÞLr�1ðhkkÞ:

Now, write r� 1 in place of q and qþ 1 in place of r in relation (18) to get

Lr�1ðSqþ1Þ ¼
X
i

SqðAiÞLr�1ðhiiÞ þ
X
i; j;k
i0j

Sr�1ðAkÞSq�1ðAijÞhii;khjj;kð20Þ

�
X
i; j;k
i0j

Sr�1ðAkÞSq�1ðAijÞh2ij;k:

Substituting the result of (19) into (20), we arrive at

Lr�1ðSqþ1Þ ¼
X
i

Sr�1ðAiÞLqðhiiÞ þ
X
i;k

Sr�1ðAiÞSqðAkÞlkRikikð21Þ

þ
X
i;k

Sr�1ðAiÞSqðAkÞliRikki þ
X
i; j;k
i0j

Sr�1ðAkÞSq�1ðAijÞhii;khjj;k

�
X
i; j;k
i0j

Sr�1ðAkÞSq�1ðAijÞh2ij;k:

Finally, subtracting (21) from (18) gives

LqðSrÞ ¼ Lr�1ðSqþ1Þ �
X
i;k

Sr�1ðAiÞSqðAkÞlkRikikð22Þ

�
X
i;k

Sr�1ðAiÞSqðAkÞliRikki þ
X
i; j;k
i0j

SqðAkÞSr�2ðAijÞhii;khjj;k
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�
X
i; j;k
i0j

SqðAkÞSr�2ðAijÞh2ij;k �
X
i; j;k
i0j

Sr�1ðAkÞSq�1ðAijÞhii;khjj;k

þ
X
i; j;k
i0j

Sr�1ðAkÞSq�1ðAijÞh2ij;k:

In order to better examine the summands at the right hand side of (22), let

I ¼
X
i;k

Sr�1ðAiÞSqðAkÞlkRikik; II ¼
X
i;k

Sr�1ðAiÞSqðAkÞliRikki:

Using Gauss’ equation, one gets

I ¼
X
i;k

hRðPr�1ei;PqekÞei;Aeki

¼ c
X
i;k

½hPr�1ei; eiihPqek;Aeki� hPr�1ei;AekihPqek; eii�

þ
X
i;k

½hAPr�1ei; eiihAPqek;Aeki� hAPr�1ei;AekihAPqek; eii�

¼ c trðPr�1Þ trðAPqÞ �
X
k

hAPr�1ek;Pqeki

" #

þ trðAPr�1Þ trðA2PqÞ �
X
k

hA2Pr�1ek;APqeki

¼ c½trðPr�1Þ trðAPqÞ � trðAPr�1PqÞ� þ trðAPr�1Þ trðA2PqÞ � trðA3Pr�1PqÞ

and

II ¼
X
i;k

hRðAei;PqekÞek;Pr�1eii

¼ c
X
i;k

½hAei; ekihPqek;Pr�1eii� hAei;Pr�1eiihPqek; eki�

þ
X
i;k

½hA2ei; ekihAPqek;Pr�1eii� hA2ei;Pr�1eiihAPqek; eki�

¼ c
X
k

hAek;Pr�1Pqeki� trðAPr�1Þ trðPqÞ
" #

þ
X
k

hA2ek;APr�1Pqeki� trðA2Pr�1Þ trðAPqÞ

¼ c½trðAPr�1PqÞ � trðAPr�1Þ trðPqÞ� þ trðA3Pr�1PqÞ � trðA2Pr�1Þ trðAPqÞ:

On the other hand, letting
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III ¼
X
i; j;k
i0j

SqðAkÞSr�2ðAijÞhii;khjj;k �
X
i; j;k
i0j

SqðAkÞSr�2ðAijÞh2ij;k

and

IV ¼
X
i; j;k
i0j

Sr�1ðAkÞSq�1ðAijÞhii;khjj;k �
X
i; j;k
i0j

Sr�1ðAkÞSq�1ðAijÞh2ij;k;

it follows from lemma 2.7 that, at p,X
i; j;k
i0j

SqðAkÞSr�2ðAijÞhii;khjj;k ¼
X
i;k

SqðAkÞhii;k
X
j0i

Sr�2ðAijÞhjj;k

¼
X
i;k

SqðAkÞhii;kekðhr�1
ii Þ

and

�
X
i; j;k
i0j

SqðAkÞSr�2ðAijÞh2ij;k ¼
X
i; j;k
i0j

SqðAkÞhij;kekðhr�1
ij Þ:

Adding these two relations, one gets

III ¼
X
i; j;k

SqðAkÞekðhr�1
ij Þhij;k ¼

X
k

tr½Pqð‘ekPr�1Þð‘ekAÞ�:

Again from lemma 2.7, one has at pX
i; j;k
i0j

Sr�1ðAkÞSq�1ðAijÞhii;khjj;k ¼
X
i;k

Sr�1ðAkÞhii;k
X
j0i

Sq�1ðAijÞhjj;k

¼
X
i;k

Sr�1ðAkÞhii;kekðhq
iiÞ

and

�
X
i; j;k
i0j

Sr�1ðAkÞSq�1ðAijÞh2ij;k ¼
X
i; j;k
i0j

Sr�1ðAkÞhij;kekðhq
ijÞ;

so that

IV ¼
X
i; j;k

Sr�1ðAkÞekðhq
ijÞhij;k ¼

X
k

tr½Pr�1ð‘ekPqÞð‘ekAÞ�:

It now su‰ces to substitute the expressions for I , II , III and IV into (22).
r
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As a byproduct of the computations in the proof of the previous proposition,
we get a proof for the following well-known

Lemma 3.2. Let x : Mn ! Mnþ1
c be an isometric immersion, and V A XðMÞ.

Then

trðPr�1ð‘VAÞÞ ¼ VðSrÞ:ð23Þ

Proof. Let p A M, and fekg be a moving frame on a neighborhood of
p A M, geodesic at p and such that, at p, Aek ¼ lkek for 1a ka n. Since
both sides of (23) are linear on V , it su‰ces to prove that trðPr�1ð‘ekAÞÞ ¼
ekðSrÞ.

trðPr�1ð‘ekAÞÞ ¼
Xn

i¼1

hPr�1ð‘ekAÞei; eii ¼
Xn

i¼1

Sr�1ðAiÞhð‘ekAÞei; eii

¼
Xn

i¼1

Sr�1ðAiÞhiik:

Since the frame is geodesic at p, we have hiik ¼ hii;k at p, and (17) gives the
desired result. r

Corollary 3.3. Let x : Mn ! Mnþ1
c be an isometric immersion, and

0 < ra n. Then

LrðSrÞ ¼ Lr�1ðSrþ1Þ þ Sr½DSr � Lr�1ðS1Þ�ð24Þ

þ
X
k

jPr�1‘ekAj
2 � j‘Srj2

þ trðAPr�1ÞfSrðjAj2 � cnÞ � ½trðA2PrÞ � c trðPrÞ�g

� trðA2Pr�1Þ½trðA2Pr�1Þ � c trðPr�1Þ�;

where fekg is any orthonormal frame on M, or still

LrðSrÞ ¼ Lr�1ðSrþ1Þ þ Sr½DSr � Lr�1ðS1Þ� þ
X
k

jPr�1‘ekAj
2 � j‘Srj2ð25Þ

þ 1

2

X
i; j

Sr�1ðAiÞSr�1ðAjÞðli � ljÞ2KMðsijÞ;

at p A M, where fekg is an orthonormal frame on M, diagonalizing A at p, with
Aek ¼ lkek at p, and sij denotes the 2-dimensional subspace of TpM generated by
ei and ej.

Proof. It follows from proposition 3.1 that
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LrðSrÞ ¼ Lr�1ðSrþ1Þ þ
X
k

trf½Prð‘ekPr�1Þ � Pr�1ð‘ekPrÞ�ð‘ekAÞgð26Þ

þ c½trðAPr�1Þ trðPrÞ � trðPr�1Þ trðAPrÞ�

þ trðA2Pr�1Þ trðAPrÞ � trðAPr�1Þ trðA2PrÞ;

where fekg is any orthonormal frame on M. Making

Tk ¼ ½Prð‘ekPr�1Þ � Pr�1ð‘ekPrÞ�ð‘ekAÞ;
we get

Tk ¼ ½ðSrI � APr�1Þð‘ekPr�1Þ � Pr�1ð‘ek ðSrI � APr�1Þ�ð‘ekAÞ
¼ Srð‘ekPr�1Þð‘ekAÞ � APr�1ð‘ekPr�1Þð‘ekAÞ

� Pr�1½ekðSrÞI � ð‘ekAÞPr�1 � Að‘ekPr�1Þ�ð‘ekAÞ

¼ Srð‘ekPr�1Þð‘ekAÞ � ekðSrÞPr�1ð‘ekAÞ þ ðPr�1‘ekAÞ
2;

so that X
k

trðTkÞ ¼ Sr

X
k

tr½ð‘ekPr�1Þð‘ekAÞ�ð27Þ

�
X
k

tr½ekðSrÞPr�1ð‘ekAÞ� þ
X
k

jPr�1‘ekAj
2:

Now, lemma 3.2 givesX
k

tr½ekðSrÞPr�1ð‘ekAÞ� ¼ tr½Pr�1ð‘‘Sr
AÞ� ¼ j‘Srj2:ð28Þ

On the other hand, making q ¼ 0 in proposition 3.1 one gets

DSr ¼ Lr�1ðS1Þ þ
X
k

trfð‘ekPr�1Þð‘ekAÞg

¼ þc½trðAPr�1Þn� trðPr�1ÞS1� þ trðA2Pr�1ÞS1 � trðAPr�1ÞjAj2;

so thatX
k

trfð‘ekPr�1Þð‘ekAÞg ¼ DSr � Lr�1ðS1Þ � c½trðAPr�1Þn� trðPr�1ÞS1�ð29Þ

� trðA2Pr�1ÞS1 þ trðAPr�1ÞjAj2;

Substituting (28) and (29) into (27), and then into (26), we finally arrive at

LrðSrÞ ¼ Lr�1ðSrþ1Þ þ Sr½DSr � Lr�1ðS1Þ�

þ
X
k

jPr�1‘ekAj
2 � j‘Srj2 � cSr½trðAPr�1Þn� trðPr�1ÞS1�
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� Sr trðA2Pr�1ÞS1 þ Sr trðAPr�1ÞjAj2

þ c½trðAPr�1Þ trðPrÞ � trðPr�1Þ trðAPrÞ�

þ trðA2Pr�1Þ trðAPrÞ � trðAPr�1Þ trðA2PrÞ;

from where (24) easily follows. In order to get (25), let

T ¼ trðAPr�1ÞfSrðjAj2 � cnÞ � ½trðA2PrÞ � c trðPrÞ�g

� trðA2Pr�1Þ½trðA2Pr�1Þ � c trðPr�1Þ�

and take a basis fekg of TpM as in the statement of the corollary. Then

T ¼
X
i

liSr�1ðAiÞSrðjAj2 � cnÞ þ
X
i; j

liSr�1ðAiÞSrðAjÞðc� l2j Þ

þ
X
i; j

l2i Sr�1ðAiÞSr�1ðAjÞðc� l2j Þ

¼
X
i

liSr�1ðAiÞ � SrðjAj2 � cnÞ

þ
X
i

liSr�1ðAiÞ �
X
j

ðc� l2j Þ½SrðAjÞ þ liSr�1ðAjÞ�:

Observing that

SrðjAj2 � cnÞ þ
X
j

ðc� l2j Þ½SrðAjÞ þ liSr�1ðAjÞ�

¼ SrðjAj2 � cnÞ þ
X
j

ðc� l2j Þ½Sr þ ðli � ljÞSr�1ðAjÞ�

¼
X
j

ðc� l2j Þðli � ljÞSr�1ðAjÞ;

we get

T ¼
X
i; j

Sr�1ðAiÞSr�1ðAjÞliðli � ljÞðc� l2j Þ:

Doing the same computation as the one above, this time changing i by j from the
very beginning, we arrive at

T ¼
X
i; j

Sr�1ðAjÞSr�1ðAiÞljðlj � liÞðc� l2i Þ;

so that
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2T ¼
X
i; j

Sr�1ðAiÞSr�1ðAjÞðli � ljÞ½liðc� l2j Þ � ljðc� l2i Þ�

¼
X
i; j

Sr�1ðAiÞSr�1ðAjÞðli � ljÞ2ðcþ liljÞ;

¼
X
i; j

Sr�1ðAiÞSr�1ðAjÞðli � ljÞ2KMðsijÞ;

where Gauss’ equation was used in the last equality. r

Corollary 3.4. Let x : Mn ! Mnþ1
c be an isometric immersion. Then

L1ðS1Þ ¼ DS2 þ fj‘Aj2 � j‘S1j2g þ trðAP1ÞðjAj2 � cnÞð30Þ

� S1½trðA2P1Þ � c trðP1Þ�:

4. Applications

From now on, all manifolds are supposed to be connected. Let x1 :
Sn1
r1

! Rn1þ1 and x2 : S
n2
r2

! Rn2þ1 be the standard immersions, with second
(vector) fundamental forms a1 and a2. If r21 þ r22 ¼ 1 and n ¼ n1 þ n2, the
product immersion x ¼ ðx1; x2Þ satisfies xðSn1

r1
� Sn2

r2
ÞHSnþ1

1 . The Cli¤ord torus

Sn1
r1

� Sn2
r2

is the induced immersion Sn1
r1
� Sn2

r2
,! Snþ1

1 .

Orient the Cli¤ord torus via N ¼ � r2

r1
x1;

r1

r2
x2

� �
, and let ðp; qÞ A Sn1

r1
� Sn2

r2
,

fe1; . . . ; en1g be any orthonormal basis of TpS
n1
r1

and fen1þ1; . . . ; en1þn2g be any

orthonormal basis of TqS
n2
r2
. Making Ei ¼ ðei; 0Þ for 1a ia n1, and Ei ¼ ð0; eiÞ

for n1 þ 1a ia n1 þ n2, we get an orthonormal basis for Tðp;qÞðSn1
r1
� Sn2

r2
Þ.

Following [3], the matrix of the second fundamental form A ¼ AN of the Cli¤ord
torus with respect to such a basis is given by

A ¼

r2

r1
In1 0

0 � r1

r2
In2

2
6664

3
7775:ð31Þ

Therefore, the fundamental principle of counting allows one to immediately
read from this matrix the following expression for the elementary symmetric
function Sr on the Cli¤ord torus Sn1

r1
� Sn2

r2
in the chosen orientation:

Sr ¼
X

0akar

ð�1Þr�k n1

k

� �
n2

r� k

� �
r2

r1

� �k
r1

r2

� �r�k

;ð32Þ

with the convention that
m

j

� �
¼ 0 whenever j > m. Yet another useful relation

is true, as asserted by the following
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Lemma 4.1. Let r1, r2 be positive real numbers such that r21 þ r22 ¼ 1,
and n1, n2 be positive integers, n ¼ n1 þ n2. Concerning the Cli¤ord torus

Sn1
r1

� Sn2
r2

,! Snþ1 one has, for 1a ra n,

trðAPr�1ÞfSrðjAj2 � nÞ � ½trðA2PrÞ � trðPrÞ�gð33Þ

� trðA2Pr�1Þ½trðA2Pr�1Þ � trðPr�1Þ� ¼ 0:

Proof. Letting A denote the second fundamental form of the standard

immersion Sn1
r1
� Sn2

r2
,! Snþ1, with respect to N ¼ � r2

r1
x1;

r1

r2
x2

� �
, it follows from

(31) that

A2 � I ¼ r2

r1
� r1

r2

� �
A:

Therefore, letting g ¼ r2

r1
� r1

r2
, one has for 0a ra n that

A2Pr � Pr ¼ ðA2 � IÞPr ¼ g � APr;

and thus

trðAPr�1ÞfSrðjAj2 � nÞ � ½trðA2PrÞ � trðPrÞ�g

� trðA2Pr�1Þ½trðA2Pr�1Þ � trðPr�1Þ�

¼ trðAPr�1ÞfSr trðA2P0 � P0Þ � trðA2Pr � PrÞg

� trðA2Pr�1Þ trðA2Pr�1 � Pr�1Þ

¼ trðAPr�1Þ½Srg � trðAP0Þ � g � trðAPrÞ� � trðA2Pr�1Þg � trðAPr�1Þ

¼ g � trðAPr�1Þ½S1Sr � ðrþ 1ÞSrþ1� � g � trðA2Pr�1Þ trðAPr�1Þ

¼ g � trðAPr�1Þ trðA2Pr�1Þ � g � trðA2Pr�1Þ trðAPr�1Þ ¼ 0: r

We now state a slightly modified version of remark 2.1 of [3]:

Lemma 4.2. Let x : Mn ! Mnþ1
c be an isometric immersion. Assume that

the mean curvature H of M does not change sign, and choose the orientation in
such a way that Hb 0.1 If the scalar curvature R of M satisfies Rb c, then
P1 b 0. If R > c, then P1 > 0.

Proof. It follows from equation (8) that Rb c if and only if S2 b 0.
Denoting by l1; . . . ; ln the eigenvalues of the second fundamental form A of x,
one has

1 If M has scalar curvature R > c, then S2 > 0. It then follows from S2
1 ¼ 2S2 þ jAj2 that

H0 0. Therefore, H does not change sign on M.
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S 2
1 ¼ jAj2 þ 2S2 b jAj2 b l2i ;ð34Þ

so that �S1 a li aS1. Hence, S1ðAiÞ ¼ S1 � li b 0, and P1 b 0. If, at some
p A M, one has S1ðAiÞ ¼ 0, it follows that S1 ¼ li, and (34) gives S2 ¼ 0 and
lj ¼ 0 for all j0 i. Therefore, S1 b 0, S2 > 0 ) P1 > 0. r

Our first result generalizes theorem 3.1 of [3].

Theorem 4.3. Let x : Mn ! Snþ1 be a closed orientable hypersurface of the
sphere, with scalar curvature Rb 1. Assume that the mean curvature H of M
does not change sign, and orient M in such a way that Hb 0. If H or R is
constant on M, and

H½trðP1Þ � trðA2P1Þ� þ ðn� 1ÞðR� 1ÞðjAj2 � nÞb 0

on M, then
(a) H½trðP1Þ � trðA2P1Þ� þ ðn� 1ÞðR� 1ÞðjAj2 � nÞ ¼ 0 on M.
(b) M is either totally geodesic or a Cli¤ord torus Sn1

r1
� Sn2

r2
, with r21 þ r22 ¼ 1,

n1; n2 > 0 and b ¼ r2

r1

� �2

b 1 satisfying

n1ðn1 � 1Þb2 � 2n1n2b þ n2ðn2 � 1Þ ¼ nðn� 1ÞðR� 1Þb:ð35Þ

Proof. It follows from (30) that

L1ðS1Þ ¼ DS2 þ j‘Aj2 � j‘S1j2 þ 2S2ðjAj2 � nÞ þ S1½trðP1Þ � trðA2P1Þ�;
and upon integration over M we get

0 ¼
ð
M

fj‘Aj2 � j‘S1j2 þ 2S2ðjAj2 � nÞ þ S1½trðP1Þ � trðA2P1Þ�g dM:

Now, since 2S2 ¼ nðn� 1ÞðR� 1Þb 0, lemma 2.5 gives for the case of
constant R that j‘Aj2 � j‘S1j2 b 0. Since this inequality is obviously true when
H is constant, we thus get

j‘Aj2 � j‘S1j2 ¼ 0ð36Þ
and

H½trðP1Þ � trðA2P1Þ� þ ðn� 1ÞðR� 1ÞðjAj2 � nÞ ¼ 0ð37Þ
on M. Returning to the expression for L1ðS1Þ, it follows that L1ðS1Þ ¼ DS2.
Therefore, whether H or R is constant, we get DS2 ¼ 0, and Hopf ’s strong
maximum principle assures that S2 is constant. This in turn gives us L1ðS1Þ ¼ 0
in both cases, and by using jAj2 ¼ S 2

1 � 2S2 we arrive at

1

2
L1jAj2 ¼ S1L1ðS1Þ þ hP1‘S1;‘S1i� L1ðS2Þ ¼ hP1‘S1;‘S1i:

Integrating again over M gives
Ð
M
hP1‘S1;‘S1i dM ¼ 0, and the previous lemma

gives hP1‘S1;‘S1i ¼ 0 on M.
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If S2 ¼ 0 (or, equivalently, R ¼ 1) on M, it was proved in [3] that M is
either totally geodesic or a Cli¤ord torus. Otherwise, S2 > 0 on M, and
lemma 4.2 gives P1 > 0 on M. Thus, ‘S1 ¼ 0 on M, and it follows from
(36) that ‘A ¼ 0. By theorem 4 of [12], Mn is a Cli¤ord torus Sn1

r1
� Sn2

r2
, with

r21 þ r22 ¼ 1. Finally, lemma 4.1 assures that

nH½trðP1Þ � trðA2P1Þ� þ nðn� 1ÞðR� 1ÞðjAj2 � nÞ ¼ 0

on all of these tori, so that the only algebraic condition to be satisfied by M is

2S2 ¼ nðn� 1ÞðR� 1Þ:

It now su‰ces to refer to expression (32) for S2 on Cli¤ord tori. r

Example 4.4. We construct some families of nontrivial Cli¤ord tori having
constant prescribed scalar curvature 1aR < 2.

When Rb 2, every Cli¤ord torus satisfying (35) also satisfies b > 1. In fact,
otherwise one would have from (32) that

nðn� 1ÞðR� 1Þ ¼ n1ðn1 � 1Þ � 2n1n2 þ n2ðn2 � 1Þ ¼ ðn1 � n2Þ2 � n;

which would give in turn

ðn� 2Þ2 b ðn1 � n2Þ2 ¼ n½ðn� 1ÞðR� 1Þ þ 1�b n2;

a contradiction. For 1aR < 2 there are several families of nontrivial tori
(i.e., non-minimal ones) with b ¼ 1 and satisfying (35). For R ¼ 1, for instance,
relation (35) reduces to ðn1 � n2Þ2 ¼ n1 þ n2. Any solution n1 ¼ a1, n2 ¼ a2
ða1 < a2Þ for this equation generates a whole family n1 ¼ ak, n2 ¼ akþ1 of
solutions, where the sequence ðakÞkb1 satisfies, for kb 1, the recurrence relation

akþ2 ¼ 2akþ1 � ak þ 1. Since a1 ¼ 1, a2 ¼ 3 is one solution, we get in this case
the family

S
k
2ð Þ

1=
ffiffi
2

p � S
kþ1
2ð Þ

1=
ffiffi
2

p ,! S
kþ1
3ð Þþ1

1 :

For R ¼ 3=2, (35) reduces to ðn1 þ n2Þðn1 þ n2 � 1Þ ¼ 8n1n2. Once again, any
solution n1 ¼ a1, n2 ¼ a2 for this equation generates a whole family n1 ¼ ak,
n2 ¼ akþ1 of solutions, where the sequence ðakÞkb1 satisfies, for kb 1, the re-
currence relation akþ2 ¼ 6akþ1 � ak þ 1. Thus, the solution n1 ¼ 1, n2 ¼ 7 gen-
erates a family of Cli¤ord tori having scalar curvature 3=2, the first member of
which is S1

1=
ffiffi
2

p � S7
1=

ffiffi
2

p ,! S9
1 .

From now on we state and prove our main results, the first of which being a
gap theorem that generalizes theorem 5.3.2 of [15] for ðr� 1Þ-minimal hyper-
surfaces of the sphere:

Theorem 4.5. If x : Mn ! Snþ1 is a closed oriented hypersurface of the
sphere for which Sr ¼ 0, then
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ð
M

trðA2Pr�1Þ½trðPr�1Þ � trðA2Pr�1Þ� dMa 0:ð38Þ

Moreover, if Srþ1 0 0 on M, then trðA2Pr�1Þ trðPr�1Þb trðA2Pr�1Þ2 on M if and
only if Mn is a Cli¤ord torus Sn1

r1
� Sn2

r2
, with r21 þ r22 ¼ 1, n1 þ n2 ¼ n and Sr ¼ 0.

Proof. It follows from corollary 3.3 that

0 ¼ Lr�1ðSrþ1Þ þ
X
k

jPr�1‘ekAj
2 þ trðA2Pr�1Þ½trðPr�1Þ � trðA2Pr�1Þ�:ð39Þ

Integrating over M, we get

0 ¼
ð
M

X
k

jPr�1‘ekAj
2
dM þ

ð
M

trðA2Pr�1Þ½trðPr�1Þ � trðA2Pr�1Þ� dM;

and hence the first part of the theorem.
To the second part, note firstly that, by lemma 4.1, all Cli¤ord tori

Sn1
r1

� Sn2
r2

with Sr ¼ 0 do satisfy trðA2Pr�1Þ ¼ trðPr�1Þ. Conversely, suppose that

trðA2Pr�1Þ trðPr�1Þb trðA2Pr�1Þ2 and Srþ1 0 0 on M. Then

trðA2Pr�1Þ trðPr�1Þ ¼ trðA2Pr�1Þ2

and X
k

jPr�1‘ekAj
2 ¼ 0

on M, from where it follows that Pr�1‘ekA ¼ 0 for all 1a ka n. Since Sr ¼ 0
and Srþ1 0 0, item (b) of proposition 2.8 assures that Pr�1 is invertible, so
that ‘ekA ¼ 0 for all 1a ka n, or still ‘A ¼ 0. Hence, by theorem 4 of [12],
M is an open submanifold of a Cli¤ord torus Sn1

r1
� Sn2

r2
, with r21 þ r22 ¼ 1 and

n1 þ n2 ¼ n. Since M is also closed and connected, it follows that M ¼
Sn1
r1

� Sn2
r2
. r

The nonnegativeness of the sectional curvature KM of M su‰ces to
guarantee that trðA2Pr�1Þ trðPr�1Þb trðA2Pr�1Þ2, as asserted by the following

Corollary 4.6. Let x : Mn ! Snþ1 be a closed, oriented hypersurface of the
sphere, with Sr ¼ 0 for some 1a r < n. If Srþ1 0 0 on Mn, and Mn has sec-
tional curvature KM b 0, then Mn is a Cli¤ord torus Sn1

r1
� Sn2

r2
, with r21 þ r22 ¼ 1,

n1 þ n2 ¼ n and Sr ¼ 0.

Proof. The proof of corollary 3.3, together with Sr ¼ 0, guarantee that, for
p A M,
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trðA2Pr�1Þ½trðPr�1Þ � trðA2Pr�1Þ� ¼
1

2

X
i; j

Sr�1ðAiÞSr�1ðAjÞðli � ljÞ2KMðsijÞ;

where fekg is a moving frame on Mn, diagonalizing A at p, with Aek ¼ lkek at
p, and sij denotes the 2-dimensional subspace of TpM generated by ei and ej.

Now, item (b) of proposition 2.8 guarantees that Pr�1 is definite, so that
Sr�1ðAiÞSr�1ðAjÞ > 0 for all 1a i; ja n. Therefore, since KM b 0, we get

X
i; j

Sr�1ðAiÞSr�1ðAjÞðli � ljÞ2KMðsijÞb 0

on Mn, or still trðA2Pr�1Þ½trðPr�1Þ � trðA2Pr�1Þ�b 0 on Mn. r

Remark 4.7. In both results above, condition Srþ1 0 0 eliminates the pos-
sibility of Mn being totally geodesic. Moreover, it follows from (31) that, for all
Cli¤ord tori M ¼ Sn1

r1
� Sn2

r2
, one has

KMðsijÞ ¼ 1þ lilj ¼

1þ r22
r21
; if 1a i; ja n1

0; if 1a ia n1 < ja n

1þ r21
r22
; if n1 < i; ja n

8>>>>>><
>>>>>>:

:

Hence, KM b 0.

For what comes next, we stress that the ellipticity of the operator Lr is
equivalent to the positive definiteness of Pr. In the proof of the next result we
use proposition 3.2 of [4], stated below.

Proposition 4.8. Let Mn be a closed hypersurface of Rnþ1, Hnþ1 or of an
open hemisphere of Snþ1, such that Sr > 0 on Mn for some 2a ra n. Then, for
1a ja r� 1, one has Hj > 0 and Lj elliptic on Mn.

Theorem 4.9. Let x : Mn ! Mnþ1
c be a closed orientable hypersurface of

Mnþ1
c , where Mnþ1

c denotes Hnþ1, Rnþ1 or an open hemisphere of Snþ1, according
to whether c ¼ �1; 0 or 1. If Sr 0 0 is constant on Mn for some 2a r < n, and
Mn has sectional curvature KM b 0, then M is a geodesic hypersphere and x is an
embedding.

Proof. First of all, it follows from the hypotheses on Mn and Mnþ1 the
existence of a point p0 A M where all principal curvatures of x have the same
sign. Orienting Mn in such a way that these curvatures are all positive at p0, we
get Srðp0Þ > 0, and thus Sr > 0 on Mn. On the other hand, since Sr is constant
on Mn, equation (25) gives, at p A M,
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0 ¼ Lr�1ðSrþ1 � S1SrÞ þ
X
k

jPr�1‘ekAj
2ð40Þ

þ 1

2

X
i; j

Sr�1ðAiÞSr�1ðAjÞðli � ljÞ2KMðsijÞ;

where fekg is a moving frame on a neighborhood of p in M, diagonalizing A at
p, with Aek ¼ lkek, and sij denotes the 2-dimensional subspace of TpM generated
by ei and ej.

Now, proposition 4.8 assures the ellipticity of Lr�1, so that Pr�1 is positive
definite, and Sr�1ðAiÞ > 0 for all 1a ia n. Therefore,

X
i; j

Sr�1ðAiÞSr�1ðAjÞðli � ljÞ2KMðsijÞb 0;

and equation (40) gives

Lr�1ðSrþ1 � S1SrÞ þ
X
k

jPr�1‘ekAj
2
a 0:

from where Lr�1ðSrþ1 � S1SrÞa 0. Since M is closed and Lr�1 is elliptic, it
follows from Hopf ’s strong maximum principle ([8]) that Srþ1 � S1Sr is constant
on M, so that

P
k jPr�1‘ekAj

2 ¼ 0. Using again the fact that Pr�1 is positive
definite, we get ‘ekA ¼ 0 for 1a ka n, or still ‘A ¼ 0 on M. Let’s now consider
three separate cases:

For c ¼ 0, theorem 4 of [12] assures that, up to isometries of Rnþ1, M is an
open subset of Sn1

r1
� Rn2 , where n1 þ n2 ¼ n and n1; n2 b 0. Since M is closed

(i.e., compact whithout boundary), we have Mn ¼ Sn
r1
. The reasoning for c ¼ �1

is essentially the same. Suppose now that Mn is contained in an open hemi-
sphere of Snþ1. It follows again from theorem 4 of [12] that, up to isometries
of Snþ1, M is a Cli¤ord torus Sn1

r1
� Sn2

r2
, where n1 þ n2 ¼ n and n1; n2 b 0.

However, were n1; n2 > 0, M would not be contained in an open hemisphere of
Snþ1. Therefore, minfn1; n2g ¼ 0, and the closedness of M gives that it is
isometric to Sn

r1
, for some 0 < r1 < 1.

Finally, since in all of the above cases x : M ! xðMÞ is a covering of the
simply connected space xðMÞ, it follows that x is an embedding. r

The hypothesis of Mn being contained in an open hemisphere of Snþ1 in
the above theorem is somewhat restrictive, but can be relaxed once one imposes
conditions on Mn su‰cient to guarantee the ellipticity of Lr, for some 1a
r < n. The following lemma gives one such set of conditions:

Lemma 4.10. Let Mn be an orientable Riemannian manifold, of Ricci
curvature Ricb c, and x : Mn ! Mnþ1

c be an isometric immersion. Suppose that
the mean curvature H of Mn does not change sign, and orient M in such a way
that Hb 0. If SrðpÞ0 0 for some 2a ra n, then Lr�1 is elliptic at p.
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Proof. Fix p A M and choose a basis fekg of TpM, diagonalizing A at p,
with Aek ¼ lkek for 1a ka n. Gauss’ equation gives

RicpðekÞ ¼
1

n� 1

X
i0k

ðcþ lkliÞ ¼ cþ 1

n� 1
lkðS1 � lkÞ:

Then, RicpðekÞb c and S1ðpÞb 0 give 0a lk aS1ðpÞ for 1a ka n. It follows
that all summands of SrðpÞ are nonnegative, so that SrðpÞb 0. If SrðpÞ0 0
then SrðpÞ > 0, and at least r of the lk are positive, so that, at p, at least one of
the summands in Sr�1ðAiÞ is positive, for each 1a ia n. Hence, Pr�1 is positive
definite at p. r

Theorem 4.11. Let x : Mn ! Snþ1 be a complete orientable hypersurface of
the unit sphere, with Ricci curvature Ricb 1. Assume that the mean curvature H
of M does not change sign, and orient M in such a way that Hb 0. If, for some
2a ra n, Sr 0 0 is constant on M, then

trðAPr�1ÞfSrðjAj2 � nÞ þ ½trðPrÞ � trðA2PrÞ�gð41Þ

þ trðA2Pr�1Þ½trðPr�1Þ � trðA2Pr�1Þ�b 0;

on M if and only if M is a Cli¤ord torus Sn1
r1

� Sn2
r2
, with n1 þ n2 ¼ n, and

r21 þ r22 ¼ 1.

Proof. When M is a Cli¤ord torus, it follows from lemma 4.1 that (41)
becomes an equality. Conversely, suppose that (41) is valid on M. Since Sr is
constant on M, one has once more

Lr�1ðSrþ1 � S1SrÞ þ
X
k

jPr�1‘ekAj
2
a 0:

The condition on the Ricci curvature of M assures, via Bonnet-Myers thorem,
that M is closed. On the other hand, since Sr 0 0 on M, the preceeding lemma
assures the ellipticity of Lr�1, and from this point on the reasoning is identical to
that of the previous result. r

Concerning the non-compact case, we have the following result:

Theorem 4.12. Let x : Mn ! Rnþ1 be a complete, non-compact, oriented
hypersurface of the Euclidean space, with sectional curvature KM b 0. If, for
some 2a r < n, Sr 0 0 is constant on M, and S1Sr � Srþ1 attains a global
maximum on M, then M is isometric to Sn1

r1
� Rn2 for some r1 > 0, where

n1 þ n2 ¼ n and ra n1 < n. In particular, if Srþ1 ¼ 0 on M and H attains a
global maximum on M, then M is isometric to Sr

r1
� Rn�r, for some r1 > 0.

Proof. Since KM b 0, it follows that M has Ricci curvature Ricb 0.
Moreover, letting l1; . . . ; ln denote the eigenvalues of the second fundamental
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form A of M, it also follows from KM b 0 that, at each point of M, one has
either l1; . . . ; ln b 0 or l1; . . . ; ln a 0. Therefore, S1 does not change sign on
M, for otherwise there would exist p A M such that S1ðpÞ ¼ 0, and hence
l1 ¼ � � � ¼ ln ¼ 0 at p; this would contradict SrðpÞ0 0. The ellipticity of Lr�1

now follows from lemma 4.10.
Using equation (25), we get at p A M and for an appropriate frame fekg that

Lr�1ðS1Sr � Srþ1Þ ¼
X
k

jPr�1‘ekAj
2

þ 1

2

X
i; j

Sr�1ðAiÞSr�1ðAjÞðli � ljÞ2KMðsijÞ:

Since both terms on the right hand side are nonnegative, it follows that
Lr�1ðS1Sr � Srþ1Þb 0. The hypothesis of S1Sr � Srþ1 attaining a global max-
imum on M guarantees, via Hopf ’s strong maximum principle, that S1Sr � Srþ1

is constant on M. It then follows from the above relation thatX
k

jPr�1‘ekAj
2 ¼ 0

on M, and thus ‘A ¼ 0 on M, for Pr�1 is positive definite.
Finally, applying once more theorem 4 of [12] we get Mn isometric to

Sn1
r1

� Rn2 , where n1; n2 b 0 and n1 þ n2 ¼ n. However, since M is non-compact
and Sr 0 0 over it, it must happen that ra n1 < n. To finish, note that Srþ1 ¼ 0
gives n1 ¼ r as the only possible option. r
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