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Abstract

We calculate some invariants determined by the spectrum of the Jacobi operator

J of totally complex submanifolds of the quaternionic projective space QPn. We use

these invariants, and the ones determined by the spectrum of the Laplace-Beltrami

operator D, to characterize parallel submanifolds of QPn.

1. Introduction

Let M be a compact (connected and smooth) Riemannian manifold without
boundary, isometrically immersed in a Riemannian manifold M. The Jacobi
operator J of M is a second order elliptic operator, associated to the isometric
immersion of M into M. J is defined on the space of smooth sections of the
normal bundle TM? by the formula

J ¼ Dþ ~RR� ~AA;

where D is the rough Laplacian of the normal connection ‘? on TM?, ~RR and
~AA are linear transformations of TM? defined by means of a partial Ricci tensor
of M and of the second fundamental form A, respectively. J is also called the
second variation operator, because it naturally appears in the formula which gives
the second variation for the area function of a compact minimal submanifold (see
[S]). Its spectrum, denoted by

specðM; JÞ ¼ fl1 a l2 a � � �a lk a � � � þ "yg

is discrete, as a consequence of the compactness of M.
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The problem of characterizing (compact) submanifolds using the spectrum
of the Jacobi operator, has been extensively investigated. Estimates of the first
eigenvalue of J have been introduced to characterize some minimal hypersurfaces
of the standard unit sphere (see for example [Pe]). Other authors applied Gilkey’s
results [G] to the asymptotic expansion of the partition function ZðtÞ associated
to specðM; JÞ, in order to find Riemannian invariants determined by the spectrum
of J and to study spectral geometry of some minimal submanifolds. This kind
of study has been made for minimal submanifolds of the Euclidean sphere ([D],
[H]), Kaehler submanifolds of the complex projective space CPn [H], Sasakian
submanifolds [Sh], and by the author and D. Perrone for totally real minimal
submanifolds of CPn ([CP], [C1]) and QPn [C2].

Moreover, an analogous investigation was made (by Urakawa [Ur] first, and
recently by many other authors), about the spectral geometry determined by the
Jacobi operator associated to the energy of a harmonic map.

Besides totally real submanifolds, another typical class of submanifolds of
the quaternionic projective space QPn is the class of totally complex submanifolds.
They have been first introduced by Funabashi [F] and their Riemannian geometry
has been studied by several authors ([CoGa], [Mr], [Mt], [T1], [T2], [X]). In
particular, totally complex parallel submanifolds of QPn have been completely
classified by Tsukada in [T1].

In this paper, we consider a totally complex submanifold of QPn, of complex
dimension n, and we determine the first three terms of the asymptotic expansion
for the partition function associated to the spectrum of its Jacobi operator. We
then use the Riemannian invariants determined by the spectrum of J, and the
ones determined by the spectrum of the Laplace-Beltrami operator D, to charac-
terize totally complex parallel submanifolds of QPn.

The paper is organized in the following way. In Section 2, we recall some
basic results about QPn and its totally complex submanifolds. In Section 3,
we compute the first three terms of the asymptotic expansion for the partition
function associated to specðM; JÞ, M being an n-dimensional totally complex
submanifold of QPn. Such invariants are used in Section 4 to characterize
totally complex parallel submanifolds of QPn. Further spectral characterizations
of these submanifolds are given in Section 5, making also use of the invariants
determined by the spectrum of the Laplace-Beltrami operator D.

The author wishes to express his gratitude towards the referee for his careful
revision of the paper.

2. Totally complex submanifolds of QPn

Let ðM; gÞ be a 4n-dimensional quaternionic Riemannian manifold and V
the three-dimensional vector bundle of tensors of type ð1; 1Þ with local basis of
almost Hermitian structures I1, I2, I3, satisfying

a) I1I2 ¼ �I2I1 ¼ I3, I2I3 ¼ �I3I2 ¼ I1, I3I1 ¼ �I1I3 ¼ I2, I
2
1 ¼ I 22 ¼ I 23 ¼ �1;

b) for any cross-section x of V , ‘Xx is also a cross-section of V , where X is
a vector field on M and ‘ is the Levi Civita connection of M.
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If X is a unit vector on M, the quaternionic section determined by X is the
4-plane QðXÞ spanned by X , I1X , I2X and I3X . Any 2-plane in a quaternionic
section is called a quaternionic plane and its sectional curvature is called qua-
ternionic sectional curvature. A quaternionic space form is a quaternionic mani-
fold of constant quaternionic sectional curvature. Troughout the paper, by QPn

(or QPnðcÞ) we shall denote the 4n-dimensional quaternionic projective space of
constant quaternionic sectional curvature c > 0. Its curvature tensor R is given
by

RðX ;Y ;Z;WÞ ¼ c

4
fgðY ;ZÞgðX ;WÞ � gðX ;ZÞgðY ;WÞ

þ gðI1Y ;ZÞgðI1X ;WÞ � gðI1X ;ZÞgðI1Y ;WÞ
� 2gðI1X ;YÞgðI1Z;WÞ þ gðI2Y ;ZÞgðI2X ;WÞ
� gðI2X ;ZÞgðI2Y ;WÞ � 2gðI2X ;YÞgðI2Z;WÞ
þ gðI3Y ;ZÞgðI3X ;WÞ � gðI3X ;ZÞgðI3Y ;WÞ
� 2gðI3X ;YÞgðI3Z;WÞg:

By definition, an almost Hermitian submanifold of M is a submanifold, of
even dimension 2m (where ma n), for which there exists a section eI1I1 of the
induced bundle V jM such that eI1I12 ¼ �id and eI1I1TM ¼ TM. An almost Her-
mitian submanifold M of M, together with a section eI1I1 of V jM , is said to be
totally complex if, at each point p A M, we have LðTpMÞ ? TpM for each L A Vp

such that L ? eI1I1 [F]. Alekseevski and Marchiafava [AMa] proved that if M has
nonvanishing scalar curvature, then an almost Hermitian submanifold is Kaheler
if and only it is totally complex.

From now on, let ðM; gÞ be a totally complex submanifold of QPn. We are
interested in the case when M has complex dimension n, since totally complex
submanifolds with such dimension appear to be the most typical parallel sub-
manifolds of QPn (see [T1] and Section 4 of this paper). We shall denote by ‘
and R the Levi Civita connection and the curvature tensor of M, respectively.
The normal connection is given by

‘? : TM � TM? ! TM?

ðX ; xÞ 7! ‘?
Xx;

where ‘?
Xx denotes the normal component of ‘Xx. The second fundamental

form s and the Weingarten operator A are respectively defined by

sðX ;Y Þ ¼ ‘XY � ‘XY ; AxX ¼ �‘Xxþ ‘?
Xx

for all X ;Y A TM and x A TM?. Moreover, gðsðX ;Y Þ; xÞ ¼ gðAxX ;YÞ.
Let R? denote the curvature tensor associated to the normal connection

‘?. The curvature tensors R, R and R? satisfy the Gauss and the Ricci
equations:
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RðX ;Y ;Z;WÞ ¼ gðRðX ;Y ÞZ;WÞ ¼ RðX ;Y ;Z;WÞ
þ gðsðY ;ZÞ; sðX ;WÞÞ � gðsðX ;ZÞ; sðY ;WÞÞ;

R?ðX ;Y ; x; hÞ ¼ gðR?ðX ;Y Þx; hÞ ¼ RðX ;Y ; x; hÞ þ gð½Ax;Ah�X ;Y Þ;

where ½Ax;Ah� ¼ Ax � Ah � Ah � Ax for all X ;Y ;Z;W A TM and x; h A TM?.
Following Funabashi [F], we consider on QPn a local orthonormal frame

fe1; . . . ; en; e1 ¼ I1e1; . . . ; en ¼ I1en; e1 � ¼ I2e1; . . . ; en � ¼ I2en; e1� ¼ I3e1; . . . ; en� ¼
I3eng such that, restricted to M, the vector fields e1; . . . ; en; e1; . . . ; en are tangent
to M. We shall use the following convention for the range of indices:

i; j; k; . . . ¼ 1; . . . ; n;
a; b; c; . . . ¼ 1; . . . ; n; 1; . . . ; n;
a; b; g; . . . ¼ a�; b�; c�; . . . ¼ 1�; . . . ; n�; 1�; . . . ; n�.
We put Aa ¼ Aea , Aaea ¼ ha

abeb. Note that, by definition, ha
ab ¼ ha

ba for all a,
b and a. Moreover, by [F], the following identities hold:

hk �

ij ¼ hk
�

ij
¼ h

j �

ik
¼ �h

j �

ik
¼ h

j �

ik ¼ h
j �

ik
¼ hi

�

jk
¼ �hi

�

jk
;ð2:1Þ

hk
�

ij ¼ �hk �

ij
¼ �h

j �

ik
¼ �h

j �

ik
¼ h

j �

ik ¼ �h
j �

ik
¼ �hi �

jk
¼ �hi

�

jk
:ð2:2Þ

Taking into account (2.1) and (2.2), it is easy to show that tr Aa ¼ 0 for all a.
Then, the mean curvature vector H ¼ traceðsÞ ¼

P
a tr Aaea vanishes, that is, a

totally complex submanifold is always minimal.
M is said to be totally geodesic if s ¼ 0, parallel (or with parallel second

fundamental form) if ‘s ¼ 0, where

ð‘XsÞðY ;ZÞ ¼ ‘?
X ðsðY ;ZÞÞ � sð‘XY ;ZÞ � sðY ;‘XZÞ:

From the Gauss equation, using (2.1) and (2.2), we get (see also [F])

Rijkl ¼ R
ijkl

¼ R
i jkl

¼ c

4
ðdjkdil � dikdjlÞ þ

X
a

ðha
ilh

a
jk � ha

ikh
a
jlÞ;ð2:3Þ

R
ijkl

¼ c

4
ðdjkdil þ dikdjl þ 2dijdklÞ �

X
a

ðha
ilh

a
jk þ ha

ikh
a
jlÞ;ð2:4Þ

R
ijkl

¼
X
r

ðhr�

il h
r�

jk � hr�

jk h
r�

il þ hr�

ik h
r �

jl � hr �

jl h
r �

ik Þ;ð2:5Þ

R
i jkl

¼
X
r

ðhr�

jk h
r�

il � hr�

il h
r�

jk þ hr�

ik h
r �

jl � hr �

jl h
r �

ik Þð2:6Þ

From the Gauss equation it follows that the Ricci tensor % of M is given
by

%ðX ;Y Þ ¼ nþ 1

2
cgðX ;Y Þ �

X
a

gðAaX ;AaY Þð2:7Þ
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and for the scalar curvature t of M, we have

t ¼ nðnþ 1Þc� ksk2;ð2:8Þ
where ksk2 ¼

P
tr A2

a ¼
P

ðha
abÞ

2.
We now prove the following

Lemma 2.1. Let M be a totally complex submanifold of QPn, of complex
dimension n. Then

kRk2 ¼ 2nðnþ 1Þc2 � 4cksk2 �
X
a;b

tr½Aa;Ab�2;ð2:9Þ

k%k2 ¼ n

2
ðnþ 1Þ2c2 � ðnþ 1Þcksk2 þ

X
a

ðtr A2
aÞ

2;ð2:10Þ

1

2
Dksk2 ¼ k‘sk2 � kRk2 � k%k2 � nþ 7

2
cksk2 þ n

2
ðnþ 1Þðnþ 5Þc2:ð2:11Þ

Proof. The components Rabcd of the curvature tensor of M are described by
formulas (2.3)–(2.6). Taking into account thatX

a

X
ðha

bdh
a
cf � ha

bf h
a
cdÞ

� �2

¼ �
X
a;b

tr½Aa;Ab�2

and X
a;b; c

ðha
bbh

a
cc � ðha

bcÞ
2Þ ¼ kHk2 � ksk2 ¼ �ksk2;

we obtain formula (2.9).
Next, from (2.7) we have

%ab ¼
nþ 1

2
cdab �

X
a

gðAaea;AaebÞ;ð2:12Þ

for all a, b. Note that
P

a gðAaea;AaeaÞ ¼ ksk2. Moreover, we haveX
a

ðtr A2
aÞ

2 ¼
X
a;b

ðtr AaAbÞ2 ¼
X
a

gðAaea;AaebÞ2ð2:13Þ

(see also formula (3.28) in [F]). Using (2.12) and (2.13), we get (2.10) for k%k2.
The following formula holds for an n-dimensional totally complex submani-

fold of QPn:

1

2
Dksk2 ¼ k‘sk2 þ

X
a;b

tr½Aa;Ab�2 �
X
a

ðtr A2
aÞ

2 þ nþ 3

2
cksk2ð2:14Þ

(see [F]). Using (2.9) and (2.10) in (2.14), we get (2.11). r
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3. Spectral invariants of the Jacobi operator

Let M be an n-dimensional Riemannian manifold immersed in a Riemannian
manifold M of dimension n ¼ nþ r. The normal bundle TM? is a real r-
dimensional vector bundle on M, with inner product induced by the metric g of
M. We denote by D the rough Laplacian associated to the normal connection
‘? of TM?, that is,

Dx ¼ �‘?
ei
‘?
ei
xþ ‘?

‘ei
ei
x;

where x is a section of TM?. Next, let ~AA be the Simons operator defined
by

gð ~AAx; hÞ ¼ trðAx � AhÞ;
for x; h A TM? [S]. Moreover, we consider the operator ~RR defined by

~RRðxÞ ¼
Xn

i¼1

ðRðei; xÞeiÞ?;

where ðRðei; xÞeiÞ? denotes the normal component of Rðei; xÞeiÞ.
The Jacobi operator (or second variation operator), acting on cross-sections

of TM?, is the second order elliptic di¤erential operator J defined by (see [S])

J : TM? ! TM?

x 7! ðD� ~AAþ ~RRÞx:

When M is compact, we can define an inner product for cross-sections on TM?,
by

hx; hi ¼
ð
M

gðx; hÞ dv

and J is self-adjoint with respect to this product. Moreover, J is strongly elliptic
and it has an infinite sequence of eigenvalues, with finite multiplicities, denoted by

specðM; JÞ ¼ fl1 a l2 a � � �a lk a � � � þ "yg:
The partition function ZðtÞ ¼

Py
i¼1 expð�litÞ has the asymptotic expansion

ZðtÞ@ ð4ptÞ�n=2fa0ðJÞ þ a1ðJÞtþ a2ðJÞt2 þ � � �g:
By Gilkey’s results [G] (see also [D] and [H]), it follows that the coe‰cients a0, a1
and a2 are given by the following

Theorem 3.1 [G]. We have

a0 ¼ r volðMÞ;

a1 ¼
r

6

ð
M

t dvþ
ð
M

tr ~EE dv;
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a2 ¼
r

360

ð
M

f2kRk2 � 2k%k2 þ 5t2g dv

þ 1

360

ð
M

f�30kR?k2 þ trð60t ~EE þ 180 ~EE2Þg dv;

where ~EE ¼ ~AA� ~RR.

We now consider a totally complex submanifold M of QPnðcÞ of complex
dimension n and we compute explicitly the coe‰cients a0, a1 and a2 in terms of
invariants depending on the curvature of M and its isometric immersion in QPn.

Proposition 3.2. Let M be a totally complex submanifold of QPn, of com-
plex dimension n. Then

kR?k2 ¼ kRk2 þ 6cksk2 � 4nc2;ð3:1Þ
tr ~EE ¼ ksk2 þ nðnþ 3Þc;ð3:2Þ

tr ~EE2 ¼ k%k2 þ 2ðnþ 2Þcksk2 þ 2nðnþ 2Þc2:ð3:3Þ

Proof. From the Ricci equation, we get

R?
abc �d � ¼ Rabc �d � � h½Ac �Ad � �ea; ebi

and so,

kR?k2 ¼
X

a;b; c;d

ðR?
abc �d � Þ2 ¼ R1 þ R2 þ R3;ð3:4Þ

with

R1 ¼
X

R2
abc �d � ¼ 4

X
ðR2

ijk �l � þ R2
ijk � l �

Þð3:5Þ

¼ c2

4

X
ððdil djk � djl dikÞ2 þ ðdil djk þ djl dik � dij dklÞ2Þ

¼ 2nðn� 1Þc2;

R2 ¼
X

gð½Ac � ;Ad � �ea; ebÞ2 ¼ �
X

tr½Ac � ;Ad � �2ð3:6Þ

¼ �
X

tr½Aa;Ab�2;
where we used the fact that ½Aa;Ab� is skew-symmetric, and

R3 ¼ �2
X

Rabc �d �gð½Ac � ;Ad � �ea; ebÞð3:7Þ

¼ �2c
X

gðAa �ea;Ab �ebÞ þ 2c
X

gðAb�ea;Aa �ebÞ

¼ �2ckHk2 þ 2cksk2 ¼ 2cksk2:
Using (3.5)–(3.7) in (3.4), we then get (3.1).

From the expression of the curvature tensor of QPn, it easily follows that

~RRðxÞ ¼ � nþ 3

2
cx:
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Hence,

tr ~RR ¼ �nðnþ 3Þc;ð3:8Þ

tr ~RR2 ¼ nðnþ 3Þ2

2
c2;ð3:9Þ

tr ~RR � ~AA ¼ � nþ 3

2
c tr ~AA:ð3:10Þ

Next, by the definition of ~AA, we get

tr ~AA ¼
X
a

gð ~AAea; eaÞ ¼
X
a;a

gðAaea;AaeaÞ ¼
X

ðha
abÞ

2 ¼ ksk2ð3:11Þ

and

tr ~AA2 ¼
X
a

gð ~AAea; ~AAeaÞ ¼
X
a;b

ðgðAa;AbÞÞ2 ¼
X
a;b

ðtrðAaAbÞÞ2:ð3:12Þ

Note that tr ~EE ¼ tr ~AA� tr ~RR and tr ~EE2 ¼ trð ~AA2 � 2 ~RR � ~AAþ ~RR2Þ. So, using (3.8)–
(3.12) and taking into account (2.10) and (2.13), we get (3.2) and (3.3). r

The following result follows from Theorem 3.1 and Proposition 3.2.

Theorem 3.3. On a totally complex submanifold M of QPnðcÞ, of complex
dimension n, the first three coe‰cients of the asymptotic expansion of the partition
function of the Jacobi operator are given by

a0 ¼ 2n volðMÞ;ð3:13Þ

a1 ¼
n� 3

3

ð
M

t dvþ 2nðnþ 2Þc volðMÞ;ð3:14Þ

a2 ¼
2n� 15

180

ð
M

kRk2 dvþ 45� n

90

ð
M

k%k2 dvþ n� 6

36

ð
M

t2 dvð3:15Þ

þ k1ðnÞc
ð
M

t dvþ k2ðnÞc2 volðMÞ;

where k1 ¼
2n2 � 2n� 9

6
and k2 ¼

nð6n2 þ 21nþ 23Þ
6

are constants depending on n.
r

4. Totally complex parallel submanifolds of QPn and the spectrum of J

Parallel submanifolds of QPn have been classified by K. Tsukada in [T1].
He proved that there are four types of parallel not totally geodesic submanifolds
in QPn:

ðR–RÞ totally real submanifolds contained in a totally real totally geodesic
submanifold,
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ðR–CÞ totally real submanifolds contained in a totally complex totally
geodesic submanifold,

ðC–CÞ totally complex submanifolds contained in a totally complex totally
geodesic submanifold,

ðC–QÞ totally complex submanifolds contained in an invariant totally
geodesic submanifold.

The immersion of a submanifold of type ðR–RÞ (respectively, ðR–CÞ) into
QPn, is given by the composition of its immersion into the real projective space
RPk (respectively, the complex projective space CPk), with the standard totally
geodesic immersion of RPk (respectively, CPk) into QPk. In the same way, the
immersion of a submanifold of type ðC–CÞ into QPn, is the composition of
its Kaehler immersion into CPk with the standard totally geodesic immersion of
CPk into QPk. For this reason, totally complex submanifolds of type ðC–QÞ
appear to be the most specific parallel submanifolds of QPn. Moreover, up to
our knowledge, the known results about totally complex submanifolds of QPn,
except for Tsukada’s works [T1] and [T2], mostly concern submanifolds of type
ðC–CÞ (see for example [CoGa], [Mr], [Mt], [X]).

Tsukada [T1] proved that a totally complex parallel submanifold of QPn,
of type ðC–QÞ, has complex dimension n. Moreover, associated with a totally
complex parallel immersion into QPn, there exists a Kaehler immersion into a
ð2nþ 1Þ-dimensional complex projective space CP2nþ1, whose composition with the
projection of CP2nþ1 onto QPn coincides with the given totally complex immer-
sion. Therefore, the classification of totally complex parallel submanifolds of
QPn is related to the one of Kaehler imbeddings of Hermitian symmetric spaces
into the complex projective space, given By Nakagawa and Takagi in [NTa].

The following table describes explicitly all n-dimensional compact totally
complex parallel submanifolds, embedded into QPnðcÞ.

Table 1

M dim t

CPnðcÞ n nðnþ 1Þc

Spð3Þ=Uð3Þ 6 24c

SUð6Þ=SðUð3Þ �Uð3ÞÞ 9 54c

SOð12Þ=Uð6Þ 15 150c

E7=E6 � T 27 486c

CP1ðcÞ � CP1ðcÞ � CP1ðcÞ 3 6c

CP1ðcÞ � CP1 c

2

� �
2 3c

CP1ðcÞ �Qn�1 n ð2þ ðn� 1Þ2Þc
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The first six manifolds listed in Table 1 are irreducible symmetric spaces
and so, Einstein spaces. It is easy to check that, for two di¤erent manifolds in
the Table 1, having the same complex dimension n, the scalar curvature t never
attains the same value. Therefore, we have the following

Theorem 4.1. Each n-dimensional totally complex parallel submanifold M0

of QPnðcÞ is uniquely determined by its scalar curvature.

Taking into account formulas (3.13)–(3.15) and Theorem 4.1, we can now
prove the following

Theorem 4.2. Each n-dimensional totally complex parallel submanifold M0

of QPnðcÞ is uniquely determined by its specðJÞ.

Proof. We treat the cases n0 3 and n ¼ 3 separately.
a) If n0 3, then, by (3.13) and (3.14) it follows that spec J determines the

dimension and the scalar curvature of a totally complex parallel submanifold M0

of QPnðcÞ. The conclusion then follows from Theorem 4.1.
b) If n ¼ 3, a totally complex parallel submanifold of QP3ðcÞ is either iso-

metric to CP3ðcÞ or to CP1ðcÞ � CP1ðcÞ � CP1ðcÞ (see Table 1). We will show
that they do not have the same spec J. In fact, let M0 be an n-dimensional
totally complex parallel Einstein submanifold of QPn. Then ks0k2 is constant

and k%0k2 ¼
t20
2n

. Taking also into account (2.8), from (2.11) it follows

kR0k2 ¼
nþ 7

2
ct0 �

1

2n
t20 � nðnþ 1Þc2:ð4:1Þ

Suppose now that M0 ¼ CP3ðcÞ and M 0
0 ¼ CP1ðcÞ � CP1ðcÞ � CP1ðcÞ have the

same spec J. In particular, a0ðM0Þ ¼ a0ðM 0
0Þ and a2ðM0Þ ¼ a2ðM 0

0Þ. So, by
(3.13) and (3.15), volðM0Þ ¼ volðM 0

0Þ, andð
M0

� 1

20
kR0k2 þ

7

15
k%0k2 �

1

12
t20

� �
dvþ 1

2
c

ð
M0

t0 dvð4:2Þ

¼
ð
M 0

0

� 1

20
kR 0

0k
2 þ 7

15
k% 0

0k
2 � 1

12
ðt 00Þ

2

� �
dvþ 1

2
c

ð
M 0

0

t 00 dv:

We know that t0 ¼ 12c and t 00 ¼ 6c (see Table 1). Since both M0 and M 0
0

are Einstein, k%0k2 ¼
t20
6
¼ 24c2 and k% 0

0k
2 ¼ 6c2. Moreover, from (4.1) we get

kR0k2 ¼ 24c2 and kR 0
0k

2 ¼ 12c2. Using this information in (4.2), we obtain

4c2 volðM0Þ ¼
11

5
c2 volðM 0

0Þ;

which can not occur, since volðM0Þ ¼ volðM 0
0Þ and c > 0. r
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We now characterize totally complex parallel Einstein submanifolds of
QPnðcÞ, in the class of all totally complex submanifolds, by proving the fol-
lowing

Theorem 4.3. Let M be a compact totally complex submanifold of QPnðcÞ
and M0 a totally complex parallel Einstein submanifold of QPnðcÞ. If specðM; JÞ
¼ specðM0; JÞ and 8a dim M0 a 26, then M is isometric to M0.

Proof. Since specðM; JÞ ¼ specðM0; JÞ, M and M0 have the same complex
dimension n and, from Theorem 3.3, since n0 3, we get

volðMÞ ¼ volðM0Þ;ð4:3Þ ð
M

t dv ¼
ð
M0

t0 dv;ð4:4Þ

2n� 15

180

ð
M

kRk2 dvþ 45� n

90

ð
M

k%k2 dvþ n� 6

36

ð
M

t2 dvð4:5Þ

¼ 2n� 15

180

ð
M0

kR0k2 dvþ
45� n

90

ð
M0

k%0k2 dvþ
n� 6

36

ð
M0

t20 dv:

Since t0 is constant and volðMÞ ¼ volðM0Þ, we haveð
M

t2 dv�
ð
M0

t20 dv ¼
ð
M

t2 dv� 2t0

ð
M0

t0 dvþ
ð
M0

t20 dvð4:6Þ

¼
ð
M

ðt� t0Þ2 dvb 0

where the equality holds if and only if t ¼ t0.

Next, let E ¼ %� t

2n
g denote the Einstein curvature tensor of ðM; gÞ (2n

being the real dimension of M). Since kEk2 ¼ k%k2 � t2

2n
and E0 ¼ 0 because

M0 is an Einstein space, (4.5) becomes

2n� 15

180

ð
M

kRk2 dv�
ð
M0

kR0k2 dv
� �

þ 45� n

90

ð
M

kEk2 dvð4:7Þ

þ 5n2 � 31nþ 45

180n

ð
M

t2 dv�
ð
M0

t20 dv

� �
¼ 0:

Moreover, integrating (2.11) over M and using kEk2, we getð
M

k‘sk2 dv ¼
ð
M

kRk2 dvþ
ð
M

kEk2 dvþ 1

2n

ð
M

t2 dvð4:8Þ

� nþ 7

2
c

ð
M

t dvþ nðnþ 1Þc2 volðMÞ:
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Formula (4.8) also holds for M0, with ‘ 0s0 ¼ E0 ¼ 0. We use (4.8) to calculateÐ
M
kRk2 dv�

Ð
M0

kR0k2 dv. Taking into account (4.3) and (4.4), we getð
M

k‘sk2 dv ¼
ð
M

kRk2 dv�
ð
M0

kR0k2 dv
� �

þ
ð
M

kEk2 dv

þ 1

2n

ð
M

t2 dv�
ð
M0

t20 dv

� �
:

Hence, (4.7) becomes

aðnÞ
ð
M

k‘sk2 dvþ bðnÞ
ð
M

kEk2 dvþ gðnÞ
ð
M

t2 dv�
ð
M0

t20 dv

� �
¼ 0;

where

aðnÞ ¼ 2n� 15

180
;

bðnÞ ¼ 105� 4n

180
;

gðnÞ ¼ 10n2 � 64nþ 105

360n
:

Since 8a na 26, whe have aðnÞ; bðnÞ; gðnÞ > 0 and so, ‘ 0s ¼ 0, E ¼ 0 and
t ¼ t0. Thus, M is an Einstein (compact) totally real parallel submanifold of
QPnðcÞ, with the same specðJÞ of M0, and Theorem 4.2 implies that M is iso-
metric to M0. r

As a consequence of Theorem 4.3, we have at once the following

Corollary 4.4. Totally complex submanifolds SUð6Þ=SðUð3Þ �Uð3ÞÞ of
QP9 and SOð12Þ=Uð6Þ of QP15 are completely characterized by their specðJÞ.

In the case of a totally complex totally geodesic submanifold CPnðcÞ, we
can improve the result given in Theorem 4.3. In fact, let M be a totally com-
plex submanifold of complex dimension n0 3. Then, (3.13) and (3.14) imply

that
Ð
M
t dv is a spectral invariant. So, by (2.8), also

Ð
M
ksk2 dv is a spectral

invariant. In particular, since CPnðcÞ is the only totally complex submanifold of
QPnðcÞ with s ¼ 0, we have the following

Theorem 4.5. In the class of all compact totally complex submanifolds of
QPnðcÞ, the complex projective space CPnðcÞ is characterized by its specðJÞ for all
n0 3.

5. Spectral geometry of the Laplace operator for totally complex
submanifolds of QPn

The problem of characterizing a (compact) Riemannian manifold through
the spectrum of the Laplace-Beltrami operator D acting on functions, is a well-
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known classical problem in Riemannian geometry. In general, a Riemannian
manifold M is not completely characterized by the spectrum of D [BGM, p. 154].
The well-known asymptotic expansion of Minakshisundaram-Pleijel expresses
the partition function associated to specðM;DÞ. The coe‰cients aiðDÞ of this
asymptotic expansion are Riemannian invariants of M [BGM]. In particular,

a0ðDÞ ¼ volðMÞ;ð5:1Þ

a1ðDÞ ¼
1

6

ð
M

t dv;ð5:2Þ

a2ðDÞ ¼
1

360

ð
M

f2kRk2 � 2k%k2 þ 5t2g dv:ð5:3Þ

In [U], Udagawa used these invariants to characterize Hermitian symmetric
submanifolds of degree 3 among all Kaehler-Einstein submanifolds of the com-
plex projective space. By a direct calculation, we can prove a similar result for
totally complex parallel submanifolds of QPn.

Theorem 5.1. Let M be a compact totally complex Einstein submanifold
of QPn and M0 a totally complex parallel Einstein submanifold of QPn. If
specðM;DÞ ¼ specðM0;DÞ, then M is isometric to M0.

Proof. Since specðM;DÞ ¼ specðM0;DÞ, dim M ¼ dim M0 ¼ n. Moreover,
from (5.1)–(5.3) we have

volðMÞ ¼ volðM0Þ;ð5:4Þ ð
M

t dv ¼
ð
M0

t0 dv;ð5:5Þ
ð
M

f2kRk2 � 2k%k2 þ 5t2g dv ¼
ð
M0

f2kR0k2 � 2k%0k2 þ 5t20g dv:ð5:6Þ

Using (5.4) and (5.5) (instead of (4.3) and (4.4)) and proceeding as in the proof of
Theorem 4.3, we can show that (4.6) also holds when specðM;DÞ ¼ specðM0;DÞ
(for all n). Moreover, we can use (4.8), which holds for any totally complex

submanifold of QPn, to express
Ð
M
kRk2 dv�

Ð
M0

kR0k2 dv. Note that in this

case, E ¼ E0 ¼ 0. Therefore, using (5.6) and (4.8), we obtain

2

ð
M

k‘sk2 dv ¼ 2

n
� 5

� � ð
M

t2 dv�
ð
M0

t20 dv

� �
:ð5:7Þ

Since
2

n
� 5 < 0 for all n and, by (4.6),

Ð
M
t2 dv�

Ð
M0

t20 b 0, from (5.7) it follows

that ‘s ¼ 0 and t ¼ t0. Thus, by Theorem 4.1, M is isometric to M0. r

The idea of combining the information coming from spec D and spec J for
a submanifold, has already been used by H. Donnelly [D] to characterize totally
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geodesic submanifolds of a real space form. In the case of totally complex sub-
manifolds of QPn, we can prove the following

Theorem 5.2. For all nb 2, let M be a compact totally complex submanifold
of QPn and M0 a totally complex parallel submanifold of QPn (not necessarily
Einstein). If specðM; JÞ ¼ specðM0; JÞ and specðM;DÞ ¼ specðM0;DÞ, then M is
isometric to M0.

Proof. Since specðM;DÞ ¼ specðM0;DÞ, (5.4)–(5.6) hold and, as a conse-
quence, also (4.6). Moreover, from specðM; JÞ ¼ specðM0; JÞ it follows

2n� 15

180

ð
M

kRk2 dvþ 45� n

90

ð
M

k%k2 dvþ n� 6

36

ð
M

t2 dvð5:8Þ

¼ 2n� 15

180

ð
M0

kR0k2 dvþ
45� n

90

ð
M0

k%0k2 dvþ
n� 6

36

ð
M0

t20 dv:

Next, integrating (2.11) on M, we getð
M

k‘sk2 dv ¼
ð
M

kRk2 dvþ
ð
M

k%k2 dv� nþ 7

2
c

ð
M

t dvþ nðnþ 1Þc2 volðMÞ;

and a corresponding formula holds for M0 with ‘s0 ¼ 0. So,ð
M

k‘sk2 dv ¼
ð
M

kRk2 dv�
ð
M0

kR0k2 dv
� �

þ
ð
M

k%k2 dv�
ð
M0

k%0k2 dv
� �

:

We can use (5.6) and (5.8) to express
Ð
M
kRk2 dv�

Ð
M0

kR0k2 dv and
Ð
M
k%k2 dv�Ð

M0
k%0k2 dv in function of

Ð
M
t2 dv�

Ð
M0

t20 dv. Hence, the last formula becomesð
M

k‘sk2 dv ¼ � 27

10

ð
M

t2 dv�
ð
M0

t20 dv

� �
¼ 0;

from which whe can conclude that ‘s ¼ 0 and t ¼ t0. Therefore, Theorem 4.1
implies that M is isometric to M0. r
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