EXISTENCE OF SUPERCRITICAL PASTING ARCS FOR TWO SHEETED SPHERES

Mitsuru Nakai

Abstract

Take e.g. two disjoint nondegenerate compact continua A and B in the complex plane \mathbf{C} with connected complements and pick a simple arc γ in the complex sphere $\hat{\mathbf{C}}$ disjoint from $A \cup B$, which we call a pasting arc for A and B. Construct a covering Riemann surface $\hat{\mathbf{C}}_{\gamma}$ over $\hat{\mathbf{C}}$ by pasting two copies of $\hat{\mathbf{C}} \backslash \gamma$ crosswise along γ. We embed A in one sheet and B in another sheet of two sheets of $\hat{\mathbf{C}}_{\gamma}$ which are copies of $\hat{\mathbf{C}} \backslash \gamma$ so that $\hat{\mathbf{C}}_{\gamma} \backslash A \cup B$ is understood as being obtained by pasting $(\hat{\mathbf{C}} \backslash A) \backslash \gamma$ with $(\hat{\mathbf{C}} \backslash B) \backslash \gamma$ crosswise along γ. In the comparison of the variational 2 capacity $\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma} \backslash B\right)$ of the compact set A considered in the open set $\hat{\mathbf{C}}_{\gamma} \backslash B$ with the corresponding $\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)$, we say that the pasting arc γ for A and B is subcritical, critical, or supercritical according as $\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma} \backslash B\right)$ is less than, equal to, or greater than $\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)$, respectively. We have shown in our former paper [4] the existence of pasting arc γ of any one of the above three types but that of supercritical and critical type was only shown under the additional requirment on A and B that A and B are symmetric about a common straight line simultaneously. The purpose of the present paper is to show that in the above mentioned result the additional symmetry assumption is redundant: we will show the existence of supercritical and hence of critical arc γ starting from an arbitrarily given point in $\hat{\mathbf{C}} \backslash A \cup B$ for any general admissible pair of A and B without any further requirment whatsoever.

1. Introduction

A nonempty compact subset A of the complex plane \mathbf{C} will be referred to as an admissible compact subset if $\hat{\mathbf{C}} \backslash A$ is a regular subregion of the complex sphere $\hat{\mathbf{C}}=\mathbf{C} \cup\{\infty\}$, i.e. a relatively compact and connected open subset of $\hat{\mathbf{C}}$ whose relative boundary $\partial(\hat{\mathbf{C}} \backslash A)$ consists of a finite number of disjoint analytic Jordan curves. Thus an admissible A may or may not be connected and in general it consists of a finite number of connected components which themselves are also admissible. If B is another admissible compact subset of \mathbf{C} disjoint from A, then $A \cup B$ is again admissible. For a pair of two disjoint admissible compact subsets

[^0]A and B in \mathbf{C}, a simple arc γ in $\hat{\mathbf{C}} \backslash A \cup B$ will be referred to as a pasting arc for A and B since we will paste $(\mathbf{C} \backslash A) \backslash \gamma$ with $(\hat{\mathbf{C}} \backslash B) \backslash \gamma$ crosswise along γ. In general consider two subregions R and S in $\hat{\mathbf{C}}$ and a simple arc γ in $R \cap S$. We will use (cf. [5]) the convenient notation $(R \backslash \gamma) \bigotimes_{\gamma}(S \backslash \gamma)$ for the Riemann surface obtained from R and S by pasting $R \backslash \gamma$ with $S \backslash \gamma$ crosswise along γ. For a pair of two disjoint admissible compact subsets A and B in \mathbf{C} and a pasting arc γ for A and B we will consider a new Riemann surface
$$
\hat{\mathbf{C}}_{\gamma}:=(\hat{\mathbf{C}} \backslash \gamma)\left(凶_{\gamma}(\hat{\mathbf{C}} \backslash \gamma)\right.
$$
and also its subsurface
\[

$$
\begin{equation*}
W_{\gamma}:=\hat{\mathbf{C}}_{\gamma} \backslash A \cup B, \tag{1.1}
\end{equation*}
$$

\]

where we understand that A (B, resp.) is embedded in the upper (lower, resp.) sheet $\hat{\mathbf{C}} \backslash \gamma$ of $\hat{\mathbf{C}}_{\gamma}$ although A and B are originally contained in the same \mathbf{C}. Hence

$$
\begin{equation*}
W_{\gamma}=((\hat{\mathbf{C}} \backslash A) \backslash \gamma)\left(\bigotimes_{\gamma}((\hat{\mathbf{C}} \backslash B) \backslash \gamma) .\right. \tag{1.2}
\end{equation*}
$$

Here $\hat{\mathbf{C}}_{\gamma}$ is a covering Riemann surface $\left(\hat{\mathbf{C}}_{\gamma}, \hat{\mathbf{C}}, \pi_{\gamma}\right)$ of the base surface $\hat{\mathbf{C}}$ with the natural projection π_{γ}.

Consider next the capacity $\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma} \backslash B\right)$, or more precisely the variational 2 capacity (cf. e.g. [2]), of the compact subset A in $\hat{\mathbf{C}}_{\gamma}$ with respect to the open subset $\hat{\mathbf{C}}_{\gamma} \backslash B$ of $\hat{\mathbf{C}}_{\gamma}$ containing A given by

$$
\begin{equation*}
\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma} \backslash B\right):=\inf _{\varphi} D\left(\varphi ; W_{\gamma}\right), \tag{1.3}
\end{equation*}
$$

where φ in taking the infimum in (1.3) runs over the family of $\varphi \in C\left(\hat{\mathbf{C}}_{\gamma}\right) \cap$ $C^{\infty}\left(W_{\gamma}\right)$ with $\varphi \mid A=1$ and $\varphi \mid B=0$ and $D\left(\varphi ; W_{\gamma}\right)$ indicates the Dirichlet integral of φ over W_{γ} defined by

$$
D\left(\varphi ; W_{\gamma}\right):=\int_{W_{\gamma}} d \varphi \wedge * d \varphi=\int_{W_{\gamma}}|\nabla \varphi(z)|^{2} d x d y .
$$

Here the second term in the above is the coordinate free expression of $D\left(\varphi, W_{\gamma}\right)$ and the third term is the expression of $D\left(\varphi, W_{\gamma}\right)$ in terms of local parameters $z=x+i y$ for W_{γ} and $\nabla \varphi(z)$ is the gradient vector $(\partial \varphi(z) / \partial x, \partial \varphi(z) / \partial y)$. Clealy we have the following symmetry:

$$
\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma} \backslash B\right)=\operatorname{cap}\left(B, \hat{\mathbf{C}}_{\gamma} \backslash A\right) .
$$

The variation (1.3) has the unique extremal function u_{γ} :

$$
\begin{equation*}
\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma} \backslash B\right)=D\left(u_{\gamma} ; W_{\gamma}\right) \tag{1.4}
\end{equation*}
$$

characterized by the conditions $u_{\gamma} \in C\left(\hat{\mathbf{C}}_{\gamma}\right) \cap H\left(W_{\gamma}\right)$ with $u_{\gamma} \mid A=1$ and $u_{\gamma} \mid B=0$ (cf. e.g. [2]), where $H(X)$ denotes the class of harmonic functions defined on an open subset X of a Riemann surface so that the function $u_{\gamma} \mid W_{\gamma}$ is usually referred to as the harmonic measure of $A \cap \partial W_{\gamma}$ (cf. e.g. [8]). The extremal function u_{γ} for (1.3) is also referred to as the capacity function for the compact subset A with respect to $\hat{\mathbf{C}}_{\gamma} \backslash B$ (cf. [7]).

We also consider the capacity cap $(A, \hat{\mathbf{C}} \backslash B)$ of the subset A in $\hat{\mathbf{C}}$ contained in the open subset $\hat{\mathbf{C}} \backslash B$. Similarly as in the case of $\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma} \backslash B\right)$ we have the symmetry $\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)=\operatorname{cap}(B, \hat{\mathbf{C}} \backslash A)$ and that the capacity $\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)$ is given by the capacity function u for the compact subset A with respect to $\hat{\mathbf{C}} \backslash B$:

$$
\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)=D(u ; W) \quad(W:=\hat{\mathbf{C}} \backslash A \cup B),
$$

where $u \in C(\hat{\mathbf{C}}) \cap H(W)$ with $u \mid A=1$ and $u \mid B=0$. Motivated by the problem to clarify when the situation $\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma} \backslash B\right) \leq \operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)$ holds, which occured in the study of the classical and modern type problem (cf. e.g. [6], [10], [8], [5], [3], among many others), the following classification problem of pasting arcs started: since the occurence of

$$
\begin{equation*}
\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma} \backslash B\right)=\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B) \tag{1.5}
\end{equation*}
$$

is very delicate in the sense that the relation is easily destroyed even if we change γ slightly, the pasting arc γ for $\hat{\mathbf{C}}_{\gamma}$ for which we have (1.5) is referred to as being critical. In contrast the situation

$$
\begin{equation*}
\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma} \backslash B\right)<\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B) \tag{1.6}
\end{equation*}
$$

and also the situation

$$
\begin{equation*}
\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma} \backslash B\right)>\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B) \tag{1.7}
\end{equation*}
$$

are quite stable with respect to the small perturbation of γ and the pasting arc γ for which the relation (1.6) ((1.7), resp.) holds is referred to as being subcritical (supercritical, resp.). The occurence for a pasting arc γ to be subcritical is just very common. For example, if the daiameter of γ is sufficiently small, then γ is subcritical (cf. [4]). In view of this it was expected in one time that every pasting arc γ satisfies (1.5) or (1.6) and there is no γ for which (1.7) is valid. We found, however, (1.7) can really occur in our former paper [4] when the pair of disjoint admissible compact subsets A and B are symmetric with respect to a common straight line. The purpose of the present paper is to show that without any additional condition the above is correct: for any pair of disjoint admissible compact subsets A and B in \mathbf{C} there always exists a supercritical pasting arc γ for A and B. Hence we have

Theorem. For any pair of disjoint admissible compact subsets A and B of \mathbf{C}, there always exist pasting arcs γ_{1}, γ_{2}, and γ_{3} in \mathbf{C} for A and B starting from an arbitrarily given nonsingular point a in $\mathbf{C} \backslash A \cup B$ of the gradient of the capacity function on $\hat{\mathbf{C}}$ for A and B such that γ_{1} is critical, γ_{2} is subcritical, and γ_{3} is supercritical.

Not only the mere existence but also the criteria for a given pasting arc γ to be subcrical are discussed in detail in [4]. For a pasting arc γ starting from a point $a \in \mathbf{C}$, we denote by γ_{z} for any $z \in \gamma \backslash\{a\}$ the subarc of γ starting from a and terminating at z. We have also shown in [4] that if γ is supercritical, then there are points s and c in $\gamma \backslash\{a\}$ such that γ_{s} (γ_{c}, resp.) is subcritical (critical, resp.). Hence to complete the proof of the above theorem, we only have to show the existence of a supercritical arc, which is the actual work in this paper.

2. Proof of the theorem

As mentioned in the introduction we only have to prove the existence of a supercritical pasting arc γ for an arbitrarily given general pair of disjoint admissible compact subsets A and B in the complex plane \mathbf{C}. We set

$$
\begin{equation*}
W:=\hat{\mathbf{C}} \backslash(A \cup B) . \tag{2.1}
\end{equation*}
$$

We denote by u the capacity function on $\hat{\mathbf{C}}$ for the capacity of A with respect to $\hat{\mathbf{C}} \backslash B$:

$$
\begin{equation*}
\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)=D(u ; \hat{\mathbf{C}}) \tag{2.2}
\end{equation*}
$$

so that $u \in C(\hat{\mathbf{C}}) \cap H(\hat{\mathbf{C}} \backslash A \cup B), u \mid A=1$, and $u \mid B=0$. Hence $u \mid W$ is the harmonic measure of $A \cap \partial W$ on W. Choose an arbitrary but then fixed nonsingular point $a \in \hat{\mathbf{C}} \backslash A \cup B$ of the gradient vector field of $u: d u(a) \neq 0$. There is an arc l containing a as its interior point, on which $d u \neq 0$, such that

$$
\begin{equation*}
* d u=0 \tag{2.3}
\end{equation*}
$$

along l, i.e. l is a u conjugate level arc. We pick an arbitrary interior point b in l other than a such that $u(z)$ decreases as z traces l from a to b. We take an arbitrary but then fixed smooth Jordan curve σ encircling B and intersecting with l only once at b. We give a negative direction to σ. We denote by (σ) the region bounded by σ. Then $\bar{B} \subset(\sigma)$ and a is an interior point in the arc $l \backslash(\sigma)$. Then consider the subarc τ of l whose initial point is a and the terminal point is b. Thus τ is a u conjugate level arc with the positive direction starting from a and ending at b. In general we denote by $|\gamma|$ the length of an arc γ measured by the plane metric. For each $t \in(0,|\sigma| / 100)$ we pick the point $c(t) \in \sigma$ such that the subarc σ_{t}^{\prime} of σ starting from $c(t)$ and ending at b in the direction of σ satisfies $\left|\sigma_{t}^{\prime}\right|=t$. We then put $\sigma_{t}:=\sigma \backslash \sigma_{t}^{\prime}$, the subarc of σ starting from b and ending at $c(t)$ in the direction of σ. Finally we consider the arc

$$
\begin{equation*}
\gamma_{t}:=\tau+\sigma_{t} \quad(0<t<|\sigma| / 100) . \tag{2.4}
\end{equation*}
$$

Here 100 in (2.4) has no particular meaning other than suggesting the point $c(t)$ is situated enough close to the point b since we are making $t \downarrow 0$ later.

We will show that γ_{t} in (2.4) is a supercritical arc if we choose $t \in(0,|\sigma| / 100)$ sufficiently small:

$$
\begin{equation*}
\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma_{t}} \backslash B\right)>\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B) \tag{2.5}
\end{equation*}
$$

for sufficiently small $t \in(0,|\sigma| / 100)$. For simplicity we set

$$
\begin{equation*}
W_{t}:=W_{\gamma_{t}}=\hat{\mathbf{C}}_{\gamma_{t}} \backslash A \cup B=\left((\hat{\mathbf{C}} \backslash A) \backslash \gamma_{t}\right) \backslash \bigotimes_{\gamma_{t}}\left((\hat{\mathbf{C}} \backslash B) \backslash \gamma_{t}\right) \tag{2.6}
\end{equation*}
$$

and also we denote by $u_{t}:=u_{\gamma_{t}}$, the capacity function on $\hat{\mathbf{C}}_{\gamma_{t}}$ for $\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma_{t}} \backslash B\right)$ so that $u_{t} \in C\left(\hat{\mathbf{C}}_{\gamma_{t}}\right) \cap H\left(W_{t}\right)$ with $u_{t} \mid A=1$ and $u_{t} \mid B=0$. We also consider an auxiliary surface

$$
\begin{equation*}
W_{0}:=((\hat{\mathbf{C}} \backslash A \cup B) \backslash \tau)\left(\bigotimes_{\tau}(\hat{\mathbf{C}} \backslash \tau) .\right. \tag{2.7}
\end{equation*}
$$

We denote by $\delta_{t}\left(\delta_{0 t}\right.$, resp.) the part of $W_{t}\left(W_{0}\right.$, resp.) lying over $\sigma_{t}^{\prime}=\overline{\sigma \backslash \sigma_{t}}$, which consists of two copies of σ_{t}^{\prime} situated in each of two sheets of $\hat{\mathbf{C}}_{\gamma_{t}}$ ($\hat{\mathbf{C}}_{\tau}$, resp.). Finally we put $W_{t}^{\prime}=W_{t} \backslash \delta_{t}$ and observe the following two and, especially the second, crucial relations in our proof:

$$
\begin{equation*}
W_{t}^{\prime} \subset W_{s}^{\prime} \quad(0<s \leq t<|\sigma| / 100) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{t}^{\prime}=W_{0} \backslash \delta_{0 t} \quad(0<t<|\sigma| / 100) . \tag{2.9}
\end{equation*}
$$

The function u_{t}, originally defined on W_{t} so that on W_{t}^{\prime}, may also be considered as being defined on $W_{0} \backslash \delta_{0 t}$ by (2.9) but its boundary values at $\delta_{0 t}$ must be considered in the sense of Carathéodory, i.e. a single point in $\delta_{0 t}$ is considered as two boundary elements in the Carathéodory compactification of $W_{0} \backslash \delta_{0 t}\left(\right.$ cf. [10]). Let w_{t} be the function on $\hat{\mathbf{C}}_{\tau}$ such that $w_{t} \in C\left(\hat{\mathbf{C}}_{\tau}\right) \cap H\left(W_{0} \backslash \delta_{0 t}\right)$ with $w_{t}\left|A=w_{t}\right| B=0$ and $w_{t} \mid \delta_{0 t}=1$. By comparing boundary values we see that $0 \leq w_{s} \leq w_{t} \leq 1(0<s \leq t)$ on $W_{0} \backslash \delta_{0 t}$. Hence $\left(w_{t}\right)_{t \downarrow 0}$ converges to a function $w \in C\left(\hat{\mathbf{C}}_{\tau} \backslash\{\tilde{b}\}\right) \cap H\left(W_{0} \backslash\{\tilde{b}\}\right)$ with $0 \leq w \leq 1$ on $\hat{\mathbf{C}}_{\tau} \backslash\{\tilde{b}\}$ and $w|A=w| B=0$ almost uniformly on $\hat{\mathbf{C}}_{\tau} \backslash\{\tilde{b}\}$, where \tilde{b} is the branch point of $\hat{\mathbf{C}}_{\tau}$ lying over b. By the Riemann removability theorem we see that $w \in H\left(W_{0}\right)$ with boundary values 0 so that $w=0$ and a fortiori

$$
\begin{equation*}
\lim _{t \downarrow 0} w_{t}=0 \tag{2.10}
\end{equation*}
$$

almost uniformly on $\hat{\mathbf{C}}_{\tau} \backslash\{\tilde{b}\}$. Clearly, by comparing the boundary values, we see that

$$
\left|u_{t}-u_{s}\right| \leq w_{t} \quad(0<s \leq t)
$$

on $\bar{W}_{0} \backslash \delta_{0 t}$ and hence on $\hat{\mathbf{C}}_{\tau} \backslash \delta_{0 t}$. Therefore, by (2.10), we see that $\left(u_{t}\right)_{t \downarrow 0}$ converges to a function $v \in C\left(\hat{\mathbf{C}}_{\tau} \backslash\{\tilde{b}\}\right) \cap H\left(W_{0} \backslash\{\tilde{b}\}\right)$ almost uniformly on $\hat{\mathbf{C}}_{\tau} \backslash\{\tilde{b}\}$ such that $v \mid A=1$ and $v \mid B=0$ and $0 \leq v \leq 1$ on $\hat{\mathbf{C}}_{\tau} \backslash\{\tilde{b}\}$. Again by the Riemann removability theorem, $v \in H\left(W_{0}\right)$ and thus of course $v \in\left(\tilde{\mathbf{C}}_{\tau}\right) \cap H\left(W_{0}\right)$.

Set $\alpha:=A \cap \partial W_{0}$ and $\beta:=B \cap \partial W_{0}$. Then we also see that $\alpha=A \cap \partial W_{t}$ and $\beta=B \cap \partial W_{t}$ for any $0<t<|\sigma| / 100$. We give the positive orientation to α and β with respect to the region W_{0} and hence to W_{t} for every $0<t<|\sigma| / 100$. Since α and β are analytic with $u_{t}|\alpha=v| \alpha=1$ and $u_{t}|\beta=v| \beta=0, u_{t}$ and v are extendable as uniformly bounded harmonic functions to a fixed vicinity of $\alpha \cup \beta$ and $\left(u_{t}\right)_{t \downarrow 0}$ converges uniformly to v there. Hence

$$
\begin{equation*}
\lim _{t \downarrow 0} * d u_{t}=* d v \tag{2.11}
\end{equation*}
$$

uniformly on $\alpha \cup \beta$ in the sense that coefficients of $* d u_{t}$ converge uniformly to the corresponding coefficients of $* d v$ in any small parametric disc centered at any point of $\alpha \cup \beta$. Hence in particular we see that

$$
\begin{equation*}
\lim _{t \downarrow 0} \int_{\alpha} * d u_{t}=\int_{\alpha} * d v . \tag{2.12}
\end{equation*}
$$

Observe that, by the Stokes formula, we see

$$
\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma_{t}} \backslash B\right)=D\left(u_{\gamma_{t}} ; \hat{\mathbf{C}}_{\gamma_{t}}\right)=D\left(u_{\gamma_{t}} ; \hat{\mathbf{C}}_{\gamma_{t}} \backslash A \cup B\right)=\int_{\alpha} * d u_{\gamma_{t}}=\int_{\alpha} * d u_{t} .
$$

Understanding this time that A and B are contained in the same one sheet $\hat{\mathbf{C}} \backslash \tau$ of $\hat{\mathbf{C}}_{\tau}=(\hat{\mathbf{C}} \backslash \tau)\left(\bigotimes_{\tau}(\hat{\mathbf{C}} \backslash \tau)\right.$ as in the case of W_{0}, we compute the capacity $\operatorname{cap}\left(A, W_{0} \cup A\right)$ of the compact subset A of $\hat{\mathbf{C}}_{\tau}$, considered as $\hat{\mathbf{C}}_{\tau}=$ $\left[((\hat{\mathbf{C}} \backslash A) \backslash \tau) \otimes_{\tau}(\hat{\mathbf{C}} \backslash \tau)\right] \cup A=W_{0} \cup(A \cup B) \supset A$, with respect to the open subset $W_{0} \cup A=((\hat{\mathbf{C}} \backslash B) \backslash \tau) \bigotimes_{\tau}(\hat{\mathbf{C}} \backslash \tau)$ of $\hat{\mathbf{C}}_{\tau}$ containing A. Then, since v is the capacity function for $\operatorname{cap}\left(A, W_{0} \cup A\right)$, by exactly the same argument as above we see that

$$
\operatorname{cap}\left(A, W_{0} \cup A\right)=D\left(v ; \hat{\mathbf{C}}_{\tau}\right)=D\left(v ; \hat{\mathbf{C}}_{\tau} \backslash A \cup B\right)=\int_{\alpha} * d v .
$$

Hence by (2.12) we deduce that

$$
\begin{equation*}
\lim _{t \downarrow 0} \operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma_{t}} \backslash B\right)=\operatorname{cap}\left(A, W_{0} \cup A\right) \tag{2.13}
\end{equation*}
$$

Finally we compare $\operatorname{cap}\left(A, W_{0} \cup A\right)$ with $\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)$. Recall that $W=$ $\hat{\mathbf{C}} \backslash A \cup B$ and u is the capacity function for $\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)$ so that $u \in C(\bar{W}) \cap$ $H(W)$ with $u \mid \alpha=1$ and $u \mid \beta=0$, where α and β can also be viewed as being $\alpha=A \cap \partial W$ and $\beta=B \cap \partial W$ with positive directions with respect to W. Thus

$$
\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)=D(u ; W)=D(u ; W \backslash \tau) .
$$

Viewing $W \backslash \tau$ is a subregion of

$$
W_{0}=((\hat{\mathbf{C}} \backslash A \cup B) \backslash \tau) \bigotimes_{\tau}(\hat{\mathbf{C}} \backslash \tau)=(W \backslash \tau) \bigotimes_{\tau}(\hat{\mathbf{C}} \backslash \tau) \subset \hat{\mathbf{C}}_{\tau}
$$

$W \backslash \tau$ is a subregion R of $\hat{\mathbf{C}}_{\tau}$ whose relative boundary ∂R consists of α, β, and $\gamma: \quad \partial R=\alpha+\beta+\gamma$, where γ arises from τ as a smooth Jordan curve positively oriented with respect to R by considering it in the Carathéodory compactification of R. Therefore we have

$$
\begin{equation*}
\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)=D(u ; W \backslash \tau)=D(u ; R) \tag{2.14}
\end{equation*}
$$

By (2.3) $* d u=0$ along l and of course along τ so that finally along γ. Restricting v defined on $(W \backslash \tau) \bigotimes_{\tau}(\hat{\mathbf{C}} \backslash \tau)=R \cup \gamma \cup S$ to R, where $S:=\hat{\mathbf{C}} \backslash \tau$, we compute the mutual Dirichlet integral $D(u-v, u ; R)$ of two functions $u-v$ and u over R by using the Stokes formula as follows:

$$
D(u-v, u ; R):=\int_{R} d(u-v) \wedge * d u=\int_{\alpha+\beta+\gamma}(u-v) * d u=\int_{\gamma}(u-v) * d u=0
$$

since $* d u=0$ along γ. Hence $D(u ; R)=D(v, u ; R)$ and the Schwarz inequality yields

$$
D(u ; R)^{2}=D(v, u ; R)^{2} \leq D(v ; R) \cdot D(u ; R) .
$$

Hence we conclude that $D(u ; R) \leq D(v ; R)$ since $D(u ; R)>0$. On the other hand we see that

$$
\begin{aligned}
D(v ; R) & =D(v ; W \backslash \tau)<D(v ; W \backslash \tau)+D(v ; \hat{\mathbf{C}} \backslash \tau) \\
& =D\left(v ; W_{\tau}\right)=D\left(v ;((\hat{\mathbf{C}} \backslash A \cup B) \backslash \tau) \bigotimes_{\tau}(\hat{\mathbf{C}} \backslash \tau)\right)
\end{aligned}
$$

since $D(v ; \hat{\mathbf{C}} \backslash \tau)>0$. The last term of the above is $\operatorname{cap}\left(A, W_{0} \cup A\right)$ so that, by (2.14), we obtain

$$
\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)<\operatorname{cap}\left(A, W_{0} \cup A\right)
$$

This with (2.13) we finally conclude that

$$
\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)<\lim _{t \downarrow 0} \operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma_{t}} \backslash B\right)
$$

and therefore we see that

$$
\operatorname{cap}(A, \hat{\mathbf{C}} \backslash B)<\operatorname{cap}\left(A, \hat{\mathbf{C}}_{\gamma_{t}} \backslash B\right)
$$

for every sufficiently small $t \in(0,|\sigma| / 100)$, i.e. γ_{t} for sufficiently small $0<t<$ $|\sigma| / 100$ is a supercritical pasting arc for A and B in $\hat{\mathbf{C}}$.

References

[1] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, 2nd ed., Springer, 2001.
[2] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Univ. Press, 1993.
[3] M. Nakai, Types of complete infinitely sheeted planes, Nagoya Math. Jour. 176 (2004), 181-195.
[4] M. Nakai, Types of pasting arcs in two sheeted spheres, Potential theory in Matsue, to appear in Advanced studies in pure mathematics, 2005.
[5] M. Nakai and S. Segawa, A role of the completeness in the type problem for infinitely sheeted planes, Complex Variables 49 (2004), 229-240.
[6] R. Nevannlina, Analytic functions, Springer, 1970.
[7] B. Rodin and L. Sario, Principal functions, Van Nostrand, 1970.
[8] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Springer, 1970.
[9] J. L. Schiff, Normal families, Springer, 1993.
[10] M. Tsusi, Potential theory in modern function theory, Maruzen, 1959.

Professor Emeritus at:
Department of Mathematics
Nagoya Institute of Technology
Gokiso, Showa, Nagoya 466-8555
Japan
Mailing Address:
52 Eguchi, Hinaga
Chita 478-0041
Japan
E-mail: nakai@daido-it.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 31A15, 31C15; Secondary 30C85, 30F15.
 Key words and phrases. capacity, covering surface, Dirichlet integral, Dirichlet principle, harmonic measure, modulus, two sheeted plane (sphere).

 Received May 26, 2005; revised September 14, 2005.

