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CR WEYL GEOMETRY AND CONNECTIONS

OF THE CANONICAL BUNDLE

Takaaki Ohkubo

Abstract

A nondegenerate CR manifold has a natural conformal class consisting of hermitian

forms, which are called Levi forms, on the hyperdistribution. It is important to study

the objects on CR manifolds which are independent of the choice of Levi forms. A CR

Einstein-Weyl structure defined in [8] is one of such objects. Our purpose is to find

nondegenerate CR manifolds with CR Einstein-Weyl structures.

In this paper, we shall obtain many examples of CR Einstein-Weyl manifolds.

These examples are actually derived from the fact that CR Einstein-Weyl structures are

closely concerned with connections of the canonical bundle of CR manifolds.

0. Introduction

We have been considering the following problem: Find nondegenerate CR
manifolds with CR Einstein-Weyl structures. Actually we have the only one
example in [8] of CR Einstein-Weyl manifolds.

A nondegenerate CR manifold has a natural conformal class consisting of
hermitian forms, which are called Levi forms, on the hyperdistribution. Ac-
cordingly the geometry on a CR manifold has been compared with that on a
usual conformal manifold with a conformal class consisting of Riemannian
metrics. The objects which are invariant under the conformal change of Rie-
mannian metrics are important. Correspondingly it is natural to consider that
the objects which are independent of the choice of Levi forms have significance
for CR geometry. A CR Einstein-Weyl structure appearing in the above prob-
lem is one of such objects on CR manifolds. Therefore it is consequential in
CR geometry to study the various problems with respect to CR Einstein-Weyl
structures.

A CR Einstein-Weyl structure on a nondegenerate CR manifold is intro-
duced in [8] as an analogous notion to an Einstein-Weyl structure.

The Einstein-Weyl structure is one of the above mentioned objects in con-
formal geometry and, in fact, is a pair of a conformal class of Riemannian
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metrics and a torsion-free linear connection preserving the conformal class (Weyl
connection) whose Ricci tensor satisfies the equation that the symmetric part is
proportional to the Riemannian metrics belonging to the conformal class point-
wise. We can say that the Einstein-Weyl structure is the conformal version of
the Einstein structure.

The CR Einstein-Weyl structure is similarly defined for the conformal class
of Levi forms on nondegenerate CR manifolds, but the definition has a certain
remarkable point. This point is that the CR Einstein-Weyl structure is the
pseudoconformal version of the pseudo-Einstein structure.

The pseudo-Einstein structure is the notion introduced by J. M. Lee in [7]
and correponds to the Einstein structure. In fact, the pseudo-Einstein structure
is as follows: On a nondegenerate CR manifold, there is a class consisting of
particular almost contact structures belonging to the CR structure and the Levi
forms are actually induced by the almost contact structures. Therefore when
we compare CR geometry with conformal geometry, we had better consider that
the almost contact structures correspond to the Riemannian structures. Fixed
an almost contact structure belonging to the CR structure, there is a unique
linear connection associated with the almost contact structure which is called
the Tanaka-Webster connection. It follows that Tanaka-Webster connections
correspond to Levi-Civita connections. An almost contact structure is pseudo-
Einstein if the *-Ricci tensor of the Tanaka-Webster connection is proportional to
the Levi form pointwise. Here, the *-Ricci tensor is the hermitian tensor field
defined in [10] and is more natural in CR geometry than the usual Ricci tensor.

In fact, the linear connection corresponding to the Weyl connection in the
definition of CR Einstein-Weyl structures (CR Weyl connection) is defined as the
connection which is preserving the class of the almost contact structures and is
closely concerned with Tanaka-Webster connections. A CR Weyl connection is
CR Einstein-Weyl if the hermitian part of the *-Ricci tensor of the CR Weyl
connection is proportional to the Levi forms pointwise.

Seemingly the pseudo-Einstein structure is fundamental, but it depends on
the choice of the Levi forms. Therefore the author considers that we should
attach importance to CR Einstein-Weyl structures rather than pseudo-Einstein
structures. However we should keep it in mind that CR Einstein-Weyl structures
is closely related to pseudo-Einstein structures.

In this paper, we shall show the following theorem (Theorem 5.1): Let N
be a complex manifold with a holomorphic connection of the canonical line
bundle. Then every nondegenerate real hypersurface in N admits a CR Einstein-
Weyl structure. Theorem 5.1 provides us with many examples of CR Einstein-
Weyl manifolds. Concretely we can see these in Examples 1, 2 and 3 in Section
5. For instance, we obtain the following corollary (Corollary 5.3) in Example
3: Let N be a compact Kählerian manifold with zero first Chern class. Then
every nondegenerate real hypersurface in N admits a CR Einstein-Weyl structure.

Theorem 5.1 is brought about by the result which Lee obtained in [7]. In
fact, it is as follows: If there is a nonvanishing closed ðnþ 1; 0Þ-form on an
orientable nondegenerate CR manifold M of dimension 2nþ 1 ðnb 1Þ, M
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admits a pseudo-Einstein structure. This Lee’s work becomes a great help to
obtain the key theorem (Theorem 3.3) which induces Theorem 5.1. Theorem 3.3
states that connections of the canonical bundle on CR manifolds are closely
concerned with CR Einstein-Weyl structures.

The canonical bundle on CR manifolds is appeared in various studies [2] and
[3]. CR Weyl connections and CR Einstein-Weyl structures would be useful for
the study of CR geometry through connections of the canonical bundle.

In Sections 1 and 2, we recall the definitions of Tanaka-Webster connections,
pseudo-Einstein structures, CR Weyl connections and CR Einstein-Weyl struc-
tures. In Section 3, we give a new proof of the above theorem which Lee ob-
tained in [7]. This viewpoint makes us think of Theorem 3.3. In fact, Theorem
3.3 gives a su‰cient condition for the existence of CR Einstein-Weyl structures
on orientable CR manifolds. In Section 4, we observe that Theorem 3.3 holds
even if CR manifolds are not necessarily orientable. Moreover we show in Prop-
osition 4.3 that the assumtion of Theorem 3.3 is the necessary condition for the
existence of CR Einstein-Weyl structures. The last section is devoted to The-
orem 5.1 and the examples of CR Einstein-Weyl manifolds.

1. Tanaka-Webster connections

Let M be a connected di¤erentiable manifold of dimention 2nþ 1 ðnb 1Þ.
Let D denote a 1-codimensional subbundle of the tangent bundle TM, which is
called a hyperdistribution. A cross section J of the bundle DnD� satisfying
J 2 ¼ �I is called a complex structure on D, where D� is the dual bundle of D
and I is the identity transformation. Let ðD; JÞ be a pair of a hyperdistribution
D and a complex structure J on D. The complex structure J on D can be
uniquely extended to a complex linear endomorphism of the complexification CD
of D and the extended endomorphism, denoted also by J, satisfies the equation
J 2 ¼ �I . Thus the vector bundle CD is decomposed as

CD ¼ D1;0 lD0;1;

where D1;0 (resp. D0;1) be a subbundle of CD composed of the eigenvectors
corresponding to i (resp. �i) of J. A pair ðD; JÞ is a CR structure if D1;0 is

involutive, that is, D1;0 satisfies

½Y1;Y2� A GðD1;0ÞðCÞ
for any Y1;Y2 A GðD1;0Þ, where GðD1;0Þ denotes the set of all cross sections of
the vector bundle D1;0. A pair ðD; JÞ is a CR structure if and only if the
following two conditions hold:

½JX ; JY � � ½X ;Y � A GðDÞðC:1Þ
½JX ; JY � � ½X ;Y � � Jð½X ; JY � þ ½JX ;Y �Þ ¼ 0ðC:2Þ

for any X ;Y A GðDÞ (cf. [9]). If M admits a CR structure ðD; JÞ, then ðM;D; JÞ
is called a CR manifold. Let y be a local 1-form on an open set U HM
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annihilating the hyperdistribution D, which is determined up to nonvanishing
smooth functions. Noting that

�2 dyðX ;YÞ ¼ yð½X ;Y �Þ(1.1)

for any X ;Y A GðU ;DÞ, we see that the condition (C.1) for the pair ðD; JÞ is
equivalent to the condition

dyðJX ; JY Þ ¼ dyðX ;YÞð1:2Þ

for all X ;Y A D, where GðU ;DÞ denotes the set of all cross sections on U of the
vector bundle D. The base space M of the vector bundle D may be restricted on
an open set according to the objects of D. Moreover we have

dð f yÞðX ;YÞ ¼ f dyðX ;YÞ

for all X ;Y A D and every smooth function f on U , which allows us to call
ðD; JÞ a nondegenerate CR structure if dy is nondegenerate on D.

Let ðM;D; JÞ be a nondegenerate CR manifold and y a local 1-form on an
open set U annihilating D. For y, there uniquely exists x A GðTUÞ satisfying

yðxÞ ¼ 1;

½x;GðU ;DÞ�HGðU ;DÞð*Þ

(cf. [9]). Then defining the tensor field f on U by

fðVÞ ¼ JðV � yðVÞxÞ

for every V A TU , the triplet ðf; x; yÞ becomes an almost contact structure on U
(cf. [9]). Such an almost contact structure ðf; x; yÞ satisfying the condition ð*Þ is
called a D-preserving almost contact structure belonging to ðD; JÞ and is written
as ðU ; ðf; x; yÞÞ (cf. [8]).

Remark. Note that if M is orientable, there exist D-preserving almost
contact structures ðf; x; yÞ globally defined on M. Fix an orientation O on M.
Usually assumed that a manifold is second countable, there is a Riemannian
metric h on M. We take a base fe1; . . . ; en; Je1; . . . ; Jeng of D at each point
x A M. Then we can take a di¤erentiable unit vector field x� such that it is
orthogonal to D with respect to h and fx�; e1; . . . ; en; Je1; . . . ; Jeng is a positive
base of the orientation O. We put yðVÞ ¼ hðx�;VÞ and f�ðVÞ ¼ JðV � yðVÞx�Þ
for every V A TM. Then ðf�; x�; yÞ becomes an almost contact structure on M.
This almost contact structure may not satisfy the condition ð*Þ. However by
Proposition 1.2 in [9], we can always obtain a D-preserving almost contact
structure globally defined on M.

Let ðU ; ðf; x; yÞÞ be a D-preserving almost contact structure on U . Define
o by

o ¼ �2 dy:ð1:3Þ
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Moreover define g : D�D ! R by

gðX ;YÞ ¼ oðJX ;Y Þ;ð1:4Þ

which satisfies the equations

gðX ;Y Þ ¼ gðY ;X Þ; gðJX ; JYÞ ¼ gðX ;YÞð1:5Þ

for all X ;Y A D, where we have used (1.2). Therefore g is hermitian and
nondegenerate on D and is called Levi form with respect to ðU ; ðf; x; yÞÞ. On
nondegenerate CR manifold ðM;D; JÞ, Tanaka [12] showed (cf. [9]):

Lemma 1.1. Let ðU ; ðf; x; yÞÞ be a D-preserving almost contact structure on
U . Then there uniquely exists a linear connection ‘ on the open submanifold U
such that

‘f ¼ 0; ‘x ¼ 0; ‘y ¼ 0; ‘�g ¼ 0;

T‘ðX ;YÞ ¼ �oðX ;Y Þx; T‘ðx;YÞ ¼ � 1

2
fðLxfÞY

for all X ;Y A D, where ‘� denotes the induced connection on the hyperdistribution
D, T‘ the torsion tensor of ‘ and Lx the Lie di¤erentiation with respect to x.

The linear connection in the above lemma is called the Tanaka-Webster
connection associated with ðU ; ðf; x; yÞÞ.

For a D-preserving almost contact structure ðU ; ðf; x; yÞÞ, we can take a
frame field of CTU :

fx;Z1; . . . ;Zn;Z1; . . . ;Zng;ð1:6Þ

where we shrink U if necessary, fZ1; . . . ;Zng is a frame field of D1;0 on U and
Za ¼ Za. We call such a frame field containing x an admissible frame of
ðU ; ðf; x; yÞÞ. We put the dual frame field of (1.6) as

fy; y1; . . . ; yn; y1; . . . ; yng;ð1:7Þ

where ya ¼ ya. The set fy1; . . . ; yng in (1.7) is called the admissible coframe with
respect to y (cf. [6]).

Remark. We uniquely extend g to a complex bilinear form of CD, denoted
also by g, and we put

g
ab

¼ gðZa;Zb
Þ; gab ¼ gðZa;ZbÞ

for the adapted frame (1.6). From the property (1.5) of g, it follows that
the matrices ðg

ab
Þ and ðgabÞ satisfy the equations g

ab
¼ g

ba
and g

ab
¼ gab, and

moreover these are the nondegenerate matrices. We put

ðgabÞ ¼ ðg
ab
Þ�1; ðgabÞ ¼ ðgabÞ�1;
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where ðg
ab
Þ�1 (resp. ðgabÞ�1) denotes the inverse matrix of ðg

ab
Þ (resp. ðgabÞ).

Then we have gab ¼ gba and gab ¼ gab. In the sequel small Greek indices run
from 1 to n, and Einstein convention is used. The Levi form g

ab
and its inverse

gab are used to lower and raise indices. On the other hand, note that dy is
written as

dy ¼ ig
ab
ya5ybð1:8Þ

in virtue of ð*Þ.

We uniquely extend the covariant derivative of the Tanaka-Webster con-
nection associated with ðU ; ðf; x; yÞÞ to the covariant derivative of CTU and it is
also denoted by ‘. When we write the connection form with respect to (1.6) as

0

nb
g

n
b
g

0
B@

1
CA;ð1:9Þ

we know that (1.9) satisfies

dyg þ nb
g5yb ¼ �Ag

b
yb5y; Aab ¼ Aba;ð1:10Þ

n
ab
þ n

ba
¼ dg

ab
;ð1:11Þ

where n
b
g ¼ nb g, Ag

b ¼ Ag
b
, Aab ¼ gagA

g
b and n

ab
¼ na

gg
gb

(cf. [6], [11], [13]).

Taking any two D-preserving almost contact structures ðU ; ðf; x; yÞÞ and
ðU 0; ðf 0; x 0; y 0ÞÞ such that U VU 0 0j, these are related as follows (cf. [9]):

Lemma 1.2. There is a unique smooth function m on U VU 0 such that

y 0 ¼ ee2my; x 0 ¼ ee�2mðx� 2Q�Þ; f 0 ¼ f� 2ynP�; g 0 ¼ ee2mg;ð1:12Þ
where e ¼G1, P� A GðU VU 0;DÞ is defined by gðP�;X Þ ¼ dmðXÞ for every
X A GðU VU 0;DÞ and Q� ¼ JP�.

Let ‘ and ‘ 0 be the Tanaka-Webster connections associated with
ðU ; ðf; x; yÞÞ and ðU 0; ðf 0; x 0; y 0ÞÞ respectively. Then it is known in [9] that

Lemma 1.3. Define the di¤erence H � between ‘ and ‘ 0 by H � ¼ ‘ 0 � ‘.
Then on U VU 0, we have

H �ðX ;Y Þ ¼ p�ðXÞY þ p�ðY ÞX � gðX ;YÞP�ð1:13Þ
þ q�ðXÞJY þ q�ðYÞJX � gðJX ;YÞQ�;

H �ðx;Y Þ ¼ ‘JYP
� þ ‘YQ

� � 2q�ðY ÞP� þ 2p�ðYÞQ� þ 2gðP�;P�ÞJYð1:14Þ
for all X ;Y A GðU VU 0;DÞ, where p� ¼ dm and q� ¼ �p� � f.

We write the expression of dm with respect to (1.7) as
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dm ¼ may
a þ may

a þ m0y:ð1:15Þ
Then we have

q� ¼ �iðmaya � may
aÞ; P� ¼ maZa þ maZa; Q� ¼ iðmaZa � maZaÞ;ð1:16Þ

where ma ¼ m
b
gba and ma ¼ mbg

ba.
Let

fx 0;Z 0
1; . . . ;Z

0
n;Z

0
1
; . . . ;Z 0

ngð1:17Þ
be an admissible frame of ðU 0; ðf 0; x 0; y 0ÞÞ such that Z 0

a ¼ Za on U VU 0. The
relation between (1.7) and the admissible coframe

fy 0; 0y1; . . . ; 0yn; 0y1; . . . ; 0yng;ð1:18Þ
is

0ya ¼ ya þ 2imay:ð1:19Þ
We write the connection form of the Tanaka-Webster connection ‘ 0 associated
with ðU 0; ðf 0; x 0; y 0ÞÞ with respect to the admissible frame (1.17) as

0
0nb

g

0n
b
g

0
B@

1
CA:ð1:20Þ

We prepare notations before stating the following lemma. In general,
expressing a 1-form p as

p ¼ pay
a þ pay

a þ p0y

on U , the notation pbl (resp. p
bl
) denotes the coe‰cient of yb n yl (resp.

yb n yl) of ‘p, where ð‘pÞðV ;WÞ ¼ ð‘WpÞðVÞ for V ;W A TU , namely,

pbl ¼ Zl � pb � nb
aðZlÞpa; p

bl
¼ Zl � pb � n

b
aðZlÞpa:

We similarly define p
bl
, p

bl
, pb0 and p

b0
. Note that

p0l ¼ Zl � p0; p
0l

¼ Z
l
� p0; p00 ¼ x � p0:

Define P A GðU ;DÞ by gðP;XÞ ¼ pðXÞ for every X A GðU ;DÞ. We easily obtain
that the expression of P with respect to (1.6) is

P ¼ paZa þ paZa;

where pa ¼ gab p
b

and pa ¼ gab pb. The notation pb
l (resp. pb

l) denotes the
coe‰cient of Zb n yl (resp. Z

b
n yl) of ‘P, that is,

pb
l ¼ Zl � pb þ na

bðZlÞpa; pb
l ¼ Zl � pb þ na

bðZlÞpa:

We similarly define pb
l
, pb

l
, pb

0 and pb
0. From (1.11), we have

nab þ nba ¼ �dgab:
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By this result, we obtain

pb
l ¼ gba pal:ð1:21Þ

We have the similar results for pb
l, pb

l
, pb

l
, pb

0 and pb
0, that is, the covariant

derivative with respect to the Tanaka-Webster connection is commutative with
the lowering and raising indices.

On the other hand, we see that the expression of dp with respect to (1.7) is

dp ¼ paby
b5ya þ ð�p

ab
þ p

ba
þ ig

ab
p0Þya5yb þ p

ab
yb5yað1:22Þ

þ ð�pa0 þ p0a � Ab
a pbÞy

a5yþ ð�pa0 þ p0a � Ab
a pbÞya5y

in virtue of (1.8) and (1.10). In particular, since d 2m ¼ 0, we obtain

mab ¼ mba; m
ab
� m

ba
¼ ig

ab
m0; m0a � ma0 ¼ Ab

amb:ð1:23Þ
Therefore we have the following lemma, by using Lemma 1.3:

Lemma 1.4. On U VU 0, the connection forms of ‘ and ‘ 0 with respect to the
admissible frame (1.6) are related as follows:

0nb
g ¼ nb

g þ 2ðmbyg � mgybÞ þ 2d
g
bmay

að1:24Þ

þ iðmg
b þ mb

g þ 4mbm
g þ 4dgbmam

a � id
g
bm0Þy:

Remark. The equation (5.7) in [6] is the relation of components of the
connection forms when (1.17) is an adapted frame to ðU 0; ðf 0; x 0; y 0ÞÞ such that
Z 0

a ¼ ee�mZa on U VU 0.

Let R‘ be the curvature tensor of the Tanaka-Webster connection ‘
associated with ðU ; ðf; x; yÞÞ. Define k‘ by

k‘ðV ;WÞ ¼ 1

2
traceðfR‘ðV ; fWÞÞð1:25Þ

for all V ;W A TM (cf. [10]), which is called the *-Ricci tensor of ‘. Expressing
k‘ with respect to (1.6) and (1.7), we have

k‘ðV ;WÞ ¼ 1

2
fyðfR‘ðV ; fWÞxÞ þ ybðfR‘ðV ; fWÞZbÞð1:26Þ

þ ybðfR‘ðV ; fWÞZ
b
Þg

¼ 1

2
fiybð2ðdnb g þ nl

g5nb
lÞðV ; fWÞZgÞ

� iybð2ðdn
b
g þ n

l
g5n

b
lÞðV ; fWÞZgÞg

¼ iðdna a � dna
aÞðV ; fWÞ;
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where we have used the definition of R‘ in [5] and the fact that fR‘ ¼ R‘f
proved in [10]. Note that dna

a is independent of the choice of frames adapted to
ðU ; ðf; x; yÞÞ. From (1.11), we have

na
a þ na

a ¼ gba dg
ab

¼ d logjdetðg
ab
Þj:

Therefore we obtain

dna
a þ dna

a ¼ 0;ð1:27Þ
which states that the complex valued 2-form dna

a is pure imaginary. By using
this result, we see that the equation (1.26) becomes

k‘ðV ;WÞ ¼ 2i dna
aðV ; fWÞ:ð1:28Þ

Remark. The *-Ricci tensor k‘ satisfies the following equations (cf. [10]):

k‘ðY ;ZÞ ¼ k‘ðZ;YÞ; k‘ðJY ; JZÞ ¼ k‘ðY ;ZÞ:
for all Y ;Z A D.

A D-preserving almost contact structure ðU ; ðf; x; yÞÞ is pseudo-Einstein if k‘

is proportional to g pointwise, that is, there is a smooth function l on U such
that

k‘ðY ;ZÞ ¼ lgðY ;ZÞ
for all Y ;Z A D.

For any two D-preserving almost contact structures ðU ; ðf; x; yÞÞ and
ðU 0; ðf 0; x 0; y 0ÞÞ, we obtain

k‘
0 ðY ;ZÞ ¼ k‘ðY ;ZÞ � 2ðnþ 2Þ dq�ðY ; JZÞð1:29Þ

� gðY ;ZÞf2ðnþ 1Þp�ðP�Þ þ traceD ‘P�g

for all Y ;Z A D on U VU 0, where traceD denotes the trace on only D. In fact,
the equation (1.29) can be shown as follows. By a direct calculation, we have

ð‘Yp
�ÞðZÞ � ð‘JYq

�ÞðZÞ þ p�ðxÞgðJY ;ZÞ � 2 dp�ðJY ; JZÞ ¼ 2 dq�ðY ; JZÞð1:30Þ
for all Y ;Z A D. Using Lemma 1.3, we have

k‘
0 ðY ;ZÞ ¼ k‘ðY ;ZÞ � ðnþ 2Þfð‘Yp

�ÞðZÞ � ð‘JYq
�ÞðZÞ þ p�ðxÞgðJY ;ZÞg

� gðY ;ZÞf2ðnþ 1Þp�ðP�Þ þ traceD ‘P�g;

for the detail, see [10]. Applying (1.30) to the above equation, we have (1.29).

Remark. We extend p� and q� to complex linear forms and denote
them also by p� and q� respectively. Then the complex valued 1-form p� þ iq�

becomes a ð1; 0Þ-form, that is, ðp� þ iq�ÞðY 1Þ ¼ 0 for every Y1 A D1;0. From the
condition (C), we have dðp� þ iq�ÞðY 1;Y 2Þ ¼ 0 for all Y1;Y2 A D1;0. This fact
is equivalent to the following equation:
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dp�ðX ;Y Þ � dp�ðJX ; JY Þ � dq�ðX ; JY Þ � dq�ðJX ;Y Þ ¼ 0ð1:31Þ
for all X ;Y A D. Since dp� ¼ d 2m ¼ 0, the equation (1.31) states that
dq�ðJY ; JZÞ ¼ dq�ðY ;ZÞ for all Y ;Z A D.

Let s‘ be the usual Ricci tensor of the Tanaka-Webster connection ‘
associated with ðU ; ðf; x; yÞÞ, that is,

s‘ðV ;WÞ ¼ traceðX ! R‘ðX ;VÞWÞ

for V ;W A TM. Define S‘ A GðU ;DnD�Þ by gðS‘Y ;ZÞ ¼ s‘ðY ;ZÞ for all
Y ;Z A GðU ;DÞ. Moreover, define r‘ by r‘ ¼ traceD S‘, which is a smooth
function on U and is called the scalar curvature of ‘ (cf. [10]).

Remark. The Webster scalar curvature R defined in [6] is related to r‘ as
follows:

r‘ ¼ 2R:

On U VU 0, the scalar curvature r‘
0
of ‘ 0 is related to r‘ of ‘ as follows:

ee2mr‘
0 ¼ r‘ � 4ðnþ 1Þ traceD ‘P� � 4nðnþ 1Þp�ðP�Þð1:32Þ

(cf. [10]). By using the admissible frame (1.6), we have

traceD ‘P� ¼ ma
a þ ma

a ¼ ma
a þ ma

a; p�ðP�Þ ¼ 2mam
a;ð1:33Þ

so that we obtain

ee2mr‘
0 ¼ r‘ � 4ðnþ 1Þfma

a þ ma
a þ 2nmam

ag:
Note that ma

a, ma
a and mam

a are independent of the choice of the admissible
frames of ðU ; ðf; x; yÞÞ.

2. CR Weyl connections

Let ðM;D; JÞ be a nondegenerate CR manifold of dimension 2nþ 1 ðnb 1Þ.
A linear connection D on M is a CR Weyl connection if for each D-preserving
almost contact structure ðU ; ðf; x; yÞÞ, there is a 1-form p on U such that

DVy ¼ �2pðVÞy; DVv ¼ 2pðVÞv; D�
VJ ¼ 0; D�

Vg ¼ �2pðVÞg;ð2:1Þ

TðX ;Y Þ ¼ �oðX ;Y Þv; Tðv;YÞ ¼ � 1

2
jðLvjÞY

for all V A TM and X ;Y A D, where D� denotes the induced connection on the
hyperdistribution D, T the torsion tensor of D, v ¼ x� 2Q, j ¼ f� 2ynP,
P A GðU ;DÞ is defined by gðP;X Þ ¼ pðX Þ for every X A GðU ;DÞ and Q ¼ JP.
For a given D, we call p the associated 1-form relative to ðU ; ðf; x; yÞÞ. Let a
CR Weyl connection D on M be fixed. Then it is shown that each associated
1-form p should satisfy
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dpðJX ; JY Þ þ dpðX ;YÞ ¼ 0ð2:2Þ

for all X ;Y A D (cf. [8]). Taking any two D-preserving almost contact structures
ðU ; ðf; x; yÞÞ and ðU 0; ðf 0; x 0; y 0ÞÞ,

�2p 0ðVÞy 0 ¼ DVy
0 ¼ DV ðee2myÞ ¼ 2ee2m dmðVÞyþ ee2mDVy

¼ 2 dmðVÞy 0 þ ee2mð�2pðVÞyÞ
¼ �2ðp� dmÞðVÞy 0;

so that we have

p 0 ¼ p� dmð2:3Þ
on U VU 0, where p 0 is the associated 1-form on U 0 relative to ðU 0; ðf 0; x 0; y 0ÞÞ.
From (2.3), we have

P 0 ¼ ee�2mðP� P�Þ; Q 0 ¼ ee�2mðQ�Q�Þð2:4Þ
on U VU 0. Therefore we have

x 0 � 2Q 0 ¼ ee�2mðx� 2QÞ; f 0 � 2y 0 nP 0 ¼ f� 2ynP

because of (1.12), so that we obtain

v 0 ¼ ee�2mv; j 0 ¼ jð2:5Þ
on U VU 0.

Let ‘ be the Tanaka-Webster connection associated with ðU ; ðf; x; yÞÞ.
Then the following lemma has been proved in [8].

Lemma 2.1. Define the di¤erence H between D and ‘ by H ¼ D� ‘.
Then, on U , we have

HðX ;YÞ ¼ pðXÞY þ pðYÞX � gðX ;Y ÞPð2:6Þ
þ qðXÞJY þ qðY ÞJX � gðJX ;Y ÞQ;

Hðx;YÞ ¼ ‘JYPþ ‘YQ� 2qðY ÞPþ 2pðYÞQþ 2gðP;PÞJYð2:7Þ

for all X ;Y A GðU ;DÞ, where p is the associated 1-form relative to ðU ; ðf; x; yÞÞ
and q ¼ �p � f.

Next lemma gives us the su‰cient condition for the existence of a CR Weyl
connection.

Lemma 2.2. Assume that M be covered by open sets fUg and that, for each
D-preserving almost contact structure ðU ; ðf; x; yÞÞ, there is a 1-form p on each U
satisfying the equation (2.2) and the 1-forms satisfy (2.3) on each nonempty in-
tersection U VU 0. Then there is a CR Weyl connection D on M such that the
associated 1-form coincides with the given p on each U .
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Proof. For each ðU ; ðf; x; yÞÞ, define D by

DXY ¼ ‘XY þHðX ;YÞ; DxY ¼ ‘xY þHðx;YÞ; DVv ¼ 2pðVÞvð2:8Þ
for all V A TU and X ;Y A GðDÞ, where H is defined as (2.6) and (2.7). Then D
becomes a linear connection on the open submanifold U . By a direct calcu-
lation, we can show that the linear connection D satisfies (2.1). Note that we
require the assumption (2.2) to show D�

xg ¼ �2pðxÞg.
We can complete the proof if, for any two D-preserving almost contact

structures ðU ; ðf; x; yÞÞ and ðU 0; ðf 0; x 0; y 0ÞÞ, we show

D 0 ¼ D:ð2:9Þ
on U VU 0. From (1.12), (2.3) and the definition of q, we have

q 0 ¼ q� q� þ 2pðP�Þy� 2p�ðP�Þy:ð2:10Þ
First, applying (1.13), (2.3), (2.4) and (2.10) to (2.8), we have

D 0
XY ¼ DXYð2:11Þ

for all X ;Y A GðU VU 0;DÞ. Next, from (1.13), (1.14) and (2.4), we have the
two following equations:

‘ 0
JXP

0 ¼ ee�2mf‘JXP� ‘JXP
� � 2q�ðX ÞP� � 2p�ðXÞQ�ð2:12Þ

þ q�ðX ÞPþ qðX ÞP� þ p�ðXÞQþ pðXÞQ�

þ p�ðPÞJX � q�ðPÞX � p�ðP�ÞJXg

‘ 0
XQ

0 ¼ ee�2mf‘XQ� ‘XQ
� þ 2q�ðXÞP� þ 2p�ðX ÞQ�ð2:13Þ

� q�ðX ÞP� qðXÞP� � p�ðXÞQ� pðX ÞQ�

þ p�ðPÞJX þ p�ðQÞX � p�ðP�ÞJXg

for every X A GðU VU 0;DÞ. Applying these equations to (2.8), we obtain

D 0
x 0X ¼ Dx 0X :ð2:14Þ

Finally, we have

D 0
Vx

0 ¼ D 0
V ðv 0 þ 2Q 0Þ

¼ 2p 0ðVÞv 0 �DV ðx 0 � 2Q 0Þ þDVx
0

¼ 2p 0ðVÞv 0 �DV ðee�2mvÞ þDVx
0

¼ DVx
0;

where we have used (2.5), (2.11) and (2.14). r

From the definition of CR Weyl connections and Lemma 2.2, we see that
there is a CR Weyl connection D if and only if, for a family of D-preserving
almost contact structures ðU ; ðf; x; yÞÞ such that fUg cover M, there is a 1-form
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p on each U which satisfies (2.2) and (2.3) on every nonempty intersection
U VU 0.

If M is orientable, there is a global D-preserving almost contact structure
ðf; x; yÞ. Then we have the following corollary (cf. [8]):

Corollary 2.3. Let M be an orientable nondegenerate CR manifold.
Then, for a 1-form p on M satisfying (2.2), there is a CR Weyl connection D
whose associated form is p.

Proof. Fix a global D-preserving almost contact structure ðf; x; yÞ and
define D by (2.8). Then the linear connection D on M is a CR Weyl connection.

r

Note that if we define D 0 by using the global 1-form p� dm and a D-

preserving almost contact structure ðf 0; x 0; y 0Þ related with ðf; x; yÞ as (1.12), we

see that D 0 coincides with D. However if we use the 1-form p and ðf 0; x 0; y 0Þ, we
obtain another CR Weyl connection.

Remark. Let D be a CR Weyl connection on M. If each local 1-form
associated with D is exact, there is a D-preserving almost contact structure
ðU ; ðf; x; yÞÞ such that ‘ ¼ D on U , where ‘ is the Tanaka-Webster connection
determined by ðU ; ðf; x; yÞÞ.

Let D be a CR Weyl connection on M and R the curvature tensor of D.
Define k by

kðV ;WÞ ¼ 1

2
traceðjRðV ; jWÞÞð2:15Þ

for all V ;W A TM, which is called the *-Ricci tensor of D. Since j 0 ¼ j from
(2.5), k is globally defined. It was shown in [8] that the tensor field k satisfies

kðX ;Y Þ � kðY ;XÞ ¼ �4ðnþ 2Þ dpðX ;YÞ;ð2:16Þ
kðJX ; JY Þ � kðX ;Y Þ ¼ 4ðnþ 2Þ dpðX ;YÞ

for all X ;Y A D. Note that the 2-form dp globally exists on M because of (2.3).
We denote the usual Ricci tensor of D by s and define S A GðU ;DnD�Þ by
gðSY ;ZÞ ¼ sðY ;ZÞ for all Y ;Z A GðU ;DÞ for each D-preserving almost contact
structure ðU ; ðf; x; yÞÞ. Moreover define r by r ¼ traceD S. Then, for any two
D-preserving almost contact structures ðU ; ðf; x; yÞÞ and ðU 0; ðf 0; x 0; y 0ÞÞ, we have

r 0 ¼ ee�2mrð2:17Þ

on U VU 0. Also, for ðU ; ðf; x; yÞÞ, define l by

lðY ;ZÞ ¼ � 1

2ðnþ 2Þ kðY ;ZÞ þ 1

8ðnþ 1Þðnþ 2Þ rgðY ;ZÞð2:18Þ
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for any Y ;Z A D. We see from (1.12) and (2.17) that l is globally defined on M.
We have

lðY ;ZÞ � lðZ;YÞ ¼ 2 dpðY ;ZÞ;ð2:19Þ
lðJY ; JZÞ � lðY ;ZÞ ¼ �2 dpðY ;ZÞ

for all Y ;Z A D because of (2.16). Define ric A GðD� nD�Þ by

ricðY ;ZÞ ¼ lðY ;ZÞ � dpðY ;ZÞð2:20Þ

for Y ;Z A D. From (2.19) we have

ricðY ;ZÞ ¼ ricðZ;Y Þ; ricðJY ; JZÞ ¼ ricðY ;ZÞð2:21Þ

for all Y ;Z A D. A CR Weyl connection D is CR Einstein-Weyl if, for each D-
preserving almost contact structure ðU ; ðf; x; yÞÞ, there is a smooth function l on
U such that

ricðY ;ZÞ ¼ lgðY ;ZÞð2:22Þ

for all Y ;Z A D. Since ric is globally defined, for any two D-preserving almost
contact structures ðU ; ðf; x; yÞÞ and ðU 0; ðf 0; x 0; y 0ÞÞ, we have

l 0 ¼ ee�2ml on U VU 0:ð2:23Þ

Let D be a CR Weyl connection on M. For every D-preserving almost
contact structure ðU ; ðf; x; yÞÞ, we have

kðY ;ZÞ ¼ k‘ðY ;ZÞ � 2ðnþ 2Þ dqðY ; JZÞð2:24Þ
� gðY ;ZÞf2ðnþ 1ÞpðPÞ þ traceD ‘Pg

for all Y ;Z A D on U . In fact, this equation is showed by the same way as
(1.29). In [8] it was shown that

kðY ;ZÞ ¼ k‘ðY ;ZÞ � gðY ;ZÞf2ðnþ 1ÞpðPÞ þ traceD ‘Pgð2:25Þ
� ðnþ 2Þfð‘YpÞðZÞ � ð‘JYqÞðZÞ þ pðxÞgðJY ;ZÞ þ 2 dpðY ;ZÞg

for all Y ;Z A D on U . Also by a direct calculation, we have the equation in
which we replace p� and q� with p and q in the equation (1.30) respectively.
Applying (2.2) and this equation to (2.25), we obtain (2.24).

Remark. Since the complex valued 1-form pþ iq is a ð1; 0Þ-form, we have
the equation in which we replace p� and q� with p and q in the equation (1.31)
respectively. Applying (2.2) to this equation, we have

2 dpðY ;ZÞ ¼ dqðY ; JZÞ þ dqðJY ;ZÞð2:26Þ
for all X ;Y A D.

It is also proved in [8] that
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r ¼ r‘ � 4ðnþ 1Þ traceD ‘P� 4nðnþ 1ÞpðPÞð2:27Þ
on U .

For a D-preserving almost contact structure ðU ; ðf; x; yÞÞ, define l‘ by

l‘ðY ;ZÞ ¼ � 1

2ðnþ 2Þ k
‘ðY ;ZÞ þ 1

8ðnþ 1Þðnþ 2Þ r
‘gðY ;ZÞ

for all Y ;Z A D on U . Then, from (2.24) and (2.27), we have

lðY ;ZÞ ¼ l‘ðY ;ZÞ þ dqðY ; JZÞ þ 1

2
pðPÞgðY ;ZÞð2:28Þ

on U . Then, from (2.20), (2.26) and (2.28), we have

ricðY ;ZÞ ¼ � 1

2ðnþ 2Þ k
‘ðY ;ZÞ þ 1

2
fdqðY ; JZÞ � dqðJY ;ZÞgð2:29Þ

þ 1

2
pðPÞ þ 1

8ðnþ 1Þðnþ 2Þ r
‘

� �
gðY ;ZÞ

on U . If a CR Weyl connection D is CR Einstein-Weyl, for every D-preserving
almost contact structure ðU ; ðf; x; yÞÞ, we obtain

k‘ðY ;ZÞ � ðnþ 2ÞfdqðY ; JZÞ � dqðJY ;ZÞgð2:30Þ

¼ �2ðnþ 2Þ l� 1

2
pðPÞ � 1

8ðnþ 1Þðnþ 2Þ r
‘

� �
gðY ;ZÞ

for all Y ;Z A D in virtue of (2.29). Conversely, from Lemma 2.2 and (2.29), we
immediately have

Lemma 2.4. Let p be the local 1-form on each U in the assumption of
Lemma 2.2. If, for each D-preserving almost contact structure ðU ; ðf; x; yÞÞ, there
is a smooth function L on U such that

k‘ðY ;ZÞ � ðnþ 2ÞfdqðY ; JZÞ � dqðJY ;ZÞg ¼ LgðY ;ZÞð2:31Þ
for all Y ;Z A D, then the CR Weyl connection D determined by Lemma 2.2 is CR
Einstein-Weyl.

If M is orientable, we have (cf. [8])

Corollary 2.5. Assume that there is a 1-form p on M satisfying (2.2). If
there is a D-preserving almost contact structure ðf; x; yÞ such that (2.31) holds, a
CR Weyl connection D in Corollary 2.3 is CR Einstein-Weyl.

3. CR Einstein-Weyl structures on an orientable CR manifold

In this section, let M be an orientable nondegenerate CR manifold of
dimension 2nþ 1 ðnb 1Þ. Then there exist global D-preserving almost contact
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structures. We choose ðf; x; yÞ from them arbitrarily. The Tanaka-Webster
connection ‘ associated with ðf; x; yÞ is a linear connection defined on M.

Let KM be the complex line bundle consisting of ðnþ 1; 0Þ-forms which
vanish on D0;1, that is,

KM ¼ z A 5
nþ1

CT �M jYcz ¼ 0 for Y A D1;0

( )
;ð3:1Þ

which is called the canonical bundle on M. Farris [2] showed the following
lemma which we prove to complete this paper.

Lemma 3.1. For every nonvanishing global cross section z of KM , there exists
a unique 1-form y 0 annihilating D up to the multiple of G1 such that

y 05ðdy 0Þn ¼ i n
2

n!ð�1Þ t
0
y 05ðx 0czÞ5ðx 0czÞ;ð3:2Þ

where x 0 is a unique vector field satisfying the condition ð*Þ determined by y 0 and t 0

denotes the signature of the Levi form defined by y 0.

Proof. We first show the existence of the 1-form y 0. We fix a 1-form y on
M annihilating D and put y 0 ¼ ee2my. We shall find a function m such that the
1-form y 0 satisfies the equation (3.2).

Assume that the 1-form y 0 satisfies (3.2). Take an admissible frame (1.6)
and the dual frame (1.7) of ðf; x; yÞ on an open set U HM and determine the
admissible frame (1.17) and the dual frame (1.18) of ðf 0; x 0; y 0Þ on the same U .
From (1.8), we have

ðdyÞn ¼ i n
2

n! detðg
ab
Þy15� � �5yn5y15� � �5ynð3:3Þ

on U . It follows that the equation (3.3) similarly holds for every 1-form y
annihilating D and every admissible coframe of ðf; x; yÞ. Also when we put the
local expressions of z with respect to (1.7) and (1.18) as

z ¼ f y5y15� � �5yn; z ¼ f 0y 05 0y15� � �5 0ynð3:4Þ
on U respectively, we have from (1.19)

f 0 ¼ ee�2mf :ð3:5Þ
Since the 1-form y 0 satisfies (3.2), we have

ð�1Þ t
0
detðg 0

ab
Þ ¼ j f 0j2ð3:6Þ

on U , where we have used (3.3) and (3.4). Applying (3.5) and the equation
g 0
ab

¼ ee2mg
ab

to (3.6), we have

ð�1Þ tþt 0 ðee2mÞnþ2 ¼ j f j2

ð�1Þ t detðg
ab
Þ
;ð3:7Þ

where t denotes the signature of the Levi form defined by y. Note that if e ¼ 1
(resp. e ¼ �1), t 0 ¼ t (resp. t 0 ¼ n� t). Thus the left hand side of (3.7) becomes
ðe2mÞnþ2. Therefore we obtain
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m ¼ 1

2ðnþ 2Þ log
j f j2

ð�1Þ t detðg
ab
Þ

 !
ð3:8Þ

on U .
Conversely, define a function m by (3.8) on each open set U where an

admissible frame (1.6) of ðf; x; yÞ is defined. Taking another admissible frame
and the dual frame

fx; ~ZZ1; . . . ; ~ZZn; ~ZZ1
; . . . ; ~ZZng; fy; ~yy1; . . . ; ~yyn; ~yy1; . . . ; ~yyngð3:9Þ

on ~UU , we have ~ZZa ¼ ZbXa
b on U V ~UU , where ðXa

bÞ is the n� n nonsingular
matrix valued function on U V ~UU and it is written as X ¼ ðXa

bÞ. Then we
obtain ~ff ¼ f det X and ð~gg

ab
Þ ¼ tX ðg

ab
ÞX on U V ~UU . Thus we have ~mm ¼ m on

U V ~UU , which states that the function m is a globally defined function on
M. Putting y 0 ¼ ee2my, we see that the 1-form y 0 satisfies (3.2).

Next, we show the uniqueness of the 1-form y 0. Assume that two 1-forms
y and y 0 annihilating D satisfy (3.2). Then there is a smooth function m such
that y 0 ¼ ee2my by Lemma 1.2. Since both y 0 and y satisfy (3.2), we obtain (3.7)
and the equation ð�1Þ t detðg

ab
Þ ¼ j f j2 on an arbitrary open set U where an

admissible frame (1.6) of ðf; x; yÞ and (1.17) of ðf 0; x 0; y 0Þ are defined. Therefore
we have e2m ¼ 1. r

Lee [7] showed the following lemma. We show this Lee’s result by the other
way, since the proof makes us guess the main theorem in this section.

Lemma 3.2. Assume that there exists a closed nonvanishing global cross
section z of KM . Let y 0 be a 1-form on M determined by z as in Lemma 3.1.
Then the D-preserving almost contact structure ðf 0; x 0; y 0Þ determined by y 0 is
pseudo-Einstein.

Proof. We fix a D-preserving almost contact structure ðf; x; yÞ on M and
put y 0 ¼ e2my by using the smooth function m defined by (3.8) for ðf; x; yÞ. Take
an arbitrary admissible frame (1.6) and the dual frame (1.7) on an open set U .
To show that ðf 0; x 0; y 0Þ is pseudo-Einstein by making use of (1.28) and (1.29), it
is su‰cient to show that there is a function L such that

i dna
a � ðnþ 2Þ dq� 1L dy ðmod yÞ;ð3:10Þ

where nb
g is the connection form of the Tanaka-Webster connection associated

with ðf; x; yÞ with respect to (1.6), q� ¼ �p� � f and p� ¼ dm. Note that since
k‘ðJY ; JZÞ ¼ k‘ðY ;ZÞ and dq�ðJY ; JZÞ ¼ dq�ðY ;ZÞ for Y ;Z A D, dna

a and dq�

do not have the parts of yb5yg and yb5yg.
From (1.11) and the fact that d detðg

ab
Þ ¼ detðg

ab
Þglg dg

gl
, we have

p� ¼ 1

nþ 2
Re

df

f
� na

a

� �
;ð3:11Þ
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where Re denotes the real parts of complex valued forms. To simplify the
notation, we put u ¼ na

a. In general, giving a 1-form p ¼ ReðaÞ for a complex

valued 1-form a ¼ aby
b þ a

b
yb þ a0y on U , we have

q ¼ Imðabyb � a
b
ybÞ;ð3:12Þ

where q ¼ �p � f and Im denotes the imaginary parts of complex valued forms.
Thus from (3.11) and (3.12), we have

q� ¼ 1

nþ 2
Im

fb

f
� ub

� �
yb �

f
b

f
� u

b

 !
yb

( )
;ð3:13Þ

where

df ¼ fby
b þ f

b
yb þ f0y; u ¼ uby

b þ u
b
yb þ u0y:

Note that although both df =f and u depend on the choice of the admissible
frames of ðf; x; yÞ, df =f � u and dðdf =f Þ are independent of the choice of them.
The equation d df ¼ 0 yields

ð�fbg þ fgb þ igbg f0Þyb5yg 1 0:ð3:14Þ
Since

d
f
b

f
� u

b

 !
yb

( )
ð3:15Þ

¼ 1

f
f
bg
� 1

f 2
f
b
fg � u

bg

� �
yg5yb þ 1

f
f
bg
� 1

f 2
f
b
fg � u

bg

� �
yg5yb

� 1

f
f
b0
� 1

f 2
f
b
f0 � u

b0

� �
yb5y� fg

f
� ug

� �
Ag

by
b5y

and dfð fb=f � ubÞybg is similarly calculated, we have

dq� 1
1

2iðnþ 2Þ

�
� 1

f
fbg �

1

f
fgb þ

2

f 2
fb fg þ ubg þ ugbð3:16Þ

� 1

f
f
gb
� 1

f
f
bg
þ 2

f 2
fg fb þ u

gb
þ u

bg

�
yb5yg ðmod yÞ:

On the other hand, from the assumption dz ¼ 0, we have

1

f
f
b
� u

b

� �
yb 1 0;

where we have used (1.10). Therefore (3.15) vanishes identically. In particular
we have

1

f
fgb �

1

f 2
fg fb � ugb ¼ 0:ð3:17Þ
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Applying (3.14) and (3.17) to (3.16), we have

dq� 1
1

2iðnþ 2Þ ubg � ugb þ u
gb
� u

bg
� 2i Im

f0

f

� �
igbg

� �
yb5yg ðmod yÞ:ð3:18Þ

Also, from (1.22), we have

ðubg � ugbÞyb5yg 1�duþ igbgu0y
b5yg ðmod yÞ;ð3:19Þ

ðu
gb
� u

bg
Þyb5yg 1 du� igbgu0y

b5yg ðmod yÞ:

Substituting (3.19) and applying the fact that du is pure imaginary to (3.18), we
have

dq� 1
1

2iðnþ 2Þ �2 du� 2i Im
df

f
� u

� �
ðxÞ dy

� �
ðmod yÞ;ð3:20Þ

from which we obtain (3.10). r

It determines a connection �h of the complex line bundle KM to assign a
1-form �hðwÞ to each frame w of KM on each member U of a family of open
subsets such that U ’s cover M and �hðwÞ’s satisfy the transformation rule of
connection forms on each intersection of the open sets. If a local frame is fixed,
we shall often denote the connection form of �h with respect to the fixed frame
also by �h. The reason why we add minus sign is that we have the follow-
ing example: Let M be an m-dimensional manifold, k a linear connection and
kðwÞ the connection form with respect to a local frame w ¼ ðX1; . . . ;XmÞ of the
tangent bundle TM. Then k naturally induces a connection of the line bundle
5m

T �M, which is determined by each local 1-form �traceðkðwÞÞ with respect to

y15� � �5ym, where fy ig is the dual frame of w.
Let z be a nonvanishing global cross section of KM . For each local frame w

of KM , we define a local function fw by z ¼ fww. Then we assign a local 1-form

� dfw

fw
ð3:21Þ

to each local frame w of KM , which gives us a connection of KM . Writing this
connection as �h, we see that the local 1-form �df =f appearing in (3.11) is the
connection form of �h with respect to the local frame y5y15� � �5yn. Also
noting that the curvature form of a connection of KM is globally defined, we see
that the condition dðdf =f Þ ¼ 0 implies that the curvature of the connection �h
defined by (3.21) is identically zero.

Let ðf; x; yÞ be a D-preserving almost contact structure on M, ‘ the Tanaka-
Webster connection on M associated with ðf; x; yÞ and nb

g the connection form of

‘ with respect to a frame (1.6) on an open set U . Assign a local 1-form �na
a ¼

�traceðnb gÞ to each frame y5y15� � �5yn of KM on U . Taking any two frames

(1.6) and (3.9), we have

~nnb
g ¼ ðX�1Þa g dXb

a þ ðX�1Þl gna lX b
a
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on U V ~UU , so that we have

�~nna
a ¼ det X ddetðX�1Þ þ ð�na

aÞð3:22Þ

on U V ~UU , where ~nnb
g is the connection form of ‘ with respect to (3.9). Noting

that y5~yy15� � �5~yyn ¼ detðX�1Þy5y15� � �5yn, we see that the system of
the local 1-forms �na

a satisfies the transformation rule of connection forms of
KM . Therefore we have a connection of KM . This connection of KM is called
the connection induced by a Tanaka-Webster connection ‘ and written as �u.

Considering a connection of KM instead of a global cross section of KM and
taking (3.11) into account, we can obtain the following result for the case of CR
Einstein-Weyl structures.

Theorem 3.3. Let ðM;D; JÞ be an orientable nondegenerate CR manifold
of dimension 2nþ 1 ðnb 1Þ. Assume that, for a D-preserving almost contact
structure ðf; x; yÞ on M, there is a connection �h of KM such that

�dhðY1;Y 2Þ ¼ 0;ð3:23Þ
uðY 1Þ ¼ 0ð3:24Þ

for any Y1;Y2 A D1;0, where �dh is the curvature form of the connection �h
and u is the di¤erence between the connections �u and �h defined by u ¼
�uðwÞ � ð�hðwÞÞ for an arbitrary local frame w of KM . Define a real valued 1-
form p on M by

p ¼ 1

nþ 2
ReðuÞ:ð3:25Þ

Then the CR Weyl connection determined by p and the almost contact structure
ðf; x; yÞ on M (cf. Corollary 2.3) is CR Einstein-Weyl.

Proof. Since the 2-form dna
a is pure imaginary, we have from (3.23)

dpðY1;Y 2Þ ¼
1

nþ 2
ReðdhÞðY1;Y 2Þ ¼ 0

for all Y1;Y2 A D1;0, which indicates that the 1-form p satisfies (2.2). Therefore
we see from Corollary 2.3 that the 1-form p and the D-preserving almost contact
structure ðf; x; yÞ determine a CR Weyl connection, which is denoted by D.

Take an arbitrary local frame (1.6) and its dual frame (1.7) with respect to
ðf; x; yÞ on an open subset U . To show that D is CR Einstein-Weyl, we see
from Corollay 2.5 that it is su‰cient to show there is a function L such that

i du� ðnþ 2Þ dq1L dy ðmod yb5yg; yb5yg; yÞ;ð3:26Þ
where �u simply denotes the connection form �uðy5y15� � �5ynÞ and q ¼
�p � f.

From the definition of p and (3.12), we have
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q ¼ 1

nþ 2
Imfðhb � ubÞyb � ðh

b
� u

b
Þybg;ð3:27Þ

where h ¼ hby
b þ h

b
yb þ h0y and �h simply denotes the connection form

�hðy5y15� � �5ynÞ. Since

dfðh
b
� u

b
Þybg ¼ ðh

bg
� u

bg
Þyg5yb þ ðh

bg
� u

bg
Þyg5ybð3:28Þ

� ðh
b0
� u

b0
Þyb5y� ðhg � ugÞAg

by
b5y

and dfðhb � ubÞybg is similarly calculated, we have

dq1
1

2iðnþ 2Þ f�hbg � hgb þ ubg þ ugb � h
gb
� h

bg
þ u

gb
þ u

bg
gyb5ygð3:29Þ

ðmod yb5yg; yb5yg; yÞ:

On the other hand, from (3.23) and (1.22), we have

�hbg þ hgb þ igbgh0 ¼ 0:ð3:30Þ

Also, from (3.24), we have ðh
b
� u

b
Þyb 1 0. Therefore the right hand side of

(3.28) identically vanishes. In particular we have

h
bg
� u

bg
¼ 0:ð3:31Þ

Applying (3.30) and (3.31) to (3.29), we have

dq1
1

2iðnþ 2Þ fubg � ugb þ u
gb
� u

bg
� 2i Imðh0Þigbggyb5ygð3:32Þ

ðmod yb5yg; yb5yg; yÞ:

Moreover, applying (3.19) and the fact that du is pure imaginary to (3.32), we
have

dq1
1

2iðnþ 2Þ f�2 du� 2i ImðuÞðxÞ dyg ðmod yb5yg; yb5yg; yÞ;ð3:33Þ

from which we obtain (3.26). r

4. CR Weyl structures and connections of the canonical bundle

In this section, we consider a nondegenerate CR manifold which is not
necessarily orientable. Thus D-preserving almost contact structures are defined
on open subsets which cover M. Turning our attention to the 1-form (3.25), we
shall obtain the following Theorem 4.1. To begin with we prepare the following
result.

Let KU be the restricted line bundle of KM to an open set U . Take any two
D-preserving almost contact structures ðU ; ðf; x; yÞÞ and ðU 0; ðf 0; x 0; y 0ÞÞ. Let ‘
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(resp. ‘ 0) be the Tanaka-Webster connection associated with ðU ; ðf; x; yÞÞ (resp.
ðU 0; ðf 0; x 0; y 0ÞÞ) and �u (resp. �u 0) the connection of KU (resp. KU 0 ) induced by
‘ (resp. ‘ 0). We investigate the relation between �u and �u 0. Take arbitrary
admissible frames (1.6) and (1.17) of ðU ; ðf; x; yÞÞ and ðU 0; ðf 0; x 0; y 0ÞÞ respectively
such that Za ¼ Z 0

a and (1.19) hold for any indices a on U VU 0. From the
definition of connections induced by Tanaka-Webster connections, we have

�uðy5y15� � �5ynÞ ¼ �traceðnb gÞ ¼ �na
a;

�u 0ðy 05 0y15� � �5 0ynÞ ¼ �traceð0nb gÞ ¼ �0na
a;

where nb
g (resp. 0nb

g) is the connection form of ‘ (resp. ‘ 0) with respect to

(1.6) (resp. (1.17)). From (1.24), we have

�0na
a ¼ �na

a � 2ðnþ 1Þmaya þ 2may
að4:1Þ

� ifma
a þ ma

a þ 4ðnþ 1Þmama � inm0gy
on U VU 0. On the other hand, since

y 05 0y15� � �5 0yn ¼ ee2my5y15� � �5yn;ð4:2Þ
we have

�uðy 05 0y15� � �5 0ynÞ ¼ 2 dmþ ð�na
aÞ:ð4:3Þ

Then from (4.1) and (4.3), we have

�u 0 � ð�uÞ ¼ �2ðnþ 2Þmaya � ðnþ 2Þm0y� ifma
a þ ma

a þ 4ðnþ 1Þmamagyð4:4Þ

¼ �ðnþ 2Þðmaya þ may
a þ m0yÞ � ðnþ 2Þðmaya � may

aÞ
� ifma

a þ ma
a þ 4ðnþ 1Þmamagy

¼ �ðnþ 2Þ dm� iðnþ 2Þq� � iftraceD ‘P� þ 2ðnþ 1Þp�ðP�Þgy
where �u 0 � ð�uÞ is the di¤erence between the connections �u 0 and �u and we
have used (1.15), (1.16) and (1.33).

Let A be the set of all connections of KM satisfying

Reð�dhÞðY1;Y 2Þ ¼ 0ð4:5Þ
for all Y1;Y2 A D1;0, where �dh denotes the curvature form of the connection �h
and we note that �dh is globally defined on M. We define an equivalence
relation in the set A by setting �h@�k if and only if the di¤erence �h� ð�kÞ is a
pure imaginary 1-form on M. And we write the set of all equivalence classes as
A=@. Let B be the set of all CR Weyl connections on M. Then we obtain

Theorem 4.1. There exists a one to one correspondence between A=@ and
B.

Proof. To begin with, note that a connection �h of KM induces a con-
nection of KU for an arbitrary open set U . The induced connection of KU is
denoted also by �h.
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Take a connection �h of KM in the set A. For each D-preserving almost
contact structure ðU ; ðf; x; yÞÞ, we have the di¤erence u between �u and �h,
where �u is the connection of KU induced by the Tanaka-Webster connection
associated with ðU ; ðf; x; yÞÞ. Note that u is a complex valued 1-form on U .
Define a real valued 1-form p on U by (3.25). For any two D-preserving almost
contact structures ðU ; ðf; x; yÞÞ and ðU 0; ðf 0; x 0; y 0ÞÞ, from (4.4), we have

u 0 ¼ �u 0 � ð�hÞð4:6Þ
¼ �ð�hÞ � u� ðnþ 2Þ dm� iðnþ 2Þq�

� iftraceD ‘P� þ 2ðnþ 1Þp�ðP�Þgy
¼ u� ðnþ 2Þ dm� iðnþ 2Þq� � iftraceD ‘P� þ 2ðnþ 1Þp�ðP�Þgy;

where u 0 is the di¤erence between �u 0 and �h. From (3.25) and (4.6), we obtain

p 0 ¼ p� dm on U VU 0:

Noting that each 1-form p satisfies (2.2) by (4.5), this system of local 1-forms
determines a CR Weyl connection Dh by virtue of Lemma 2.2. We can define a
map w : A ! B by �h 7! Dh.

For two connections �h and �k of KM contained in the set A, assume that
Dh ¼ Dk. The associated local 1-forms of Dh and Dk relative to the same D-
preserving almost contact structure ðU ; ðf; x; yÞÞ coincide. Thus we have

ReðhðwÞÞ ¼ ReðkðwÞÞ;ð4:7Þ

where w is an arbitrary frame of KM on U . The equation (4.7) states that the
di¤erence between �h and �k is a pure imaginary 1-form on M. Therefore the
map A=@! B induced by w is injective.

We show that w is surjective to complete the proof. Fix an arbitrary
CR Weyl connection D. The CR Weyl connection D assigns the associated 1-
form p on U which satisfies (2.2) to each D-preserving almost contact structure
ðU ; ðf; x; yÞÞ. Note that the system of these 1-forms satisfies the property (2.3).
For a frame w of KU , we define a 1-form �k0ðwÞ on U by

�k0ðwÞ ¼ �ðnþ 2Þp� iðnþ 2Þ qþ pðPÞyþ 1

4ðnþ 1Þðnþ 2Þ r
‘y

� �
� uðwÞ;ð4:8Þ

where r‘ is the scalar curvature of the Tanaka-Webster connection ‘ associated
with ðU ; ðf; x; yÞÞ. Note that the 1-form in the right hand side of (4.8)

�ðnþ 2Þp� iðnþ 2Þ qþ pðPÞyþ 1

4ðnþ 1Þðnþ 2Þ r
‘y

� �

is independent of the choice of the local frame w of KU . Thus the system of the
local 1-forms �k0ðwÞ defined by (4.8) determines a connection of KU .

If, for any two D-preserving almost contact structures ðU ; ðf; x; yÞÞ and
ðU 0; ðf 0; x 0; y 0ÞÞ, the connection forms �k 0

0ðwÞ of KU 0 and �k0ðwÞ of KU with
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respect to an arbitrary local frame w on U VU 0 coincide, we see that the family
of the locally defined connections determines a connection of KM . From (2.3),
(2.4) and (2.10), we have

ðq 0 þ p 0ðP 0Þy 0Þ � ðqþ pðPÞyÞ ¼ �ðq� þ p�ðP�ÞyÞð4:9Þ

on U VU 0. Thus, applying (1.32), (4.4) and (4.9) to (4.8), we have �k 0
0ðwÞ ¼

�kðwÞ for every frame w on U VU 0. Thus (4.8) determines a connection �k0 of
KM . Since D ¼ Dk0 by (4.8), the map w is surjective. r

From Theorem 3.3 and Theorem 4.1, we immediately obtain

Corollary 4.2. Let ðM;D; JÞ be a nondegenerate CR manifold of di-
mension 2nþ 1 ðnb 1Þ. If a connection �h of KM satisfies (3.23) and for each
D-preserving almost contact structure ðU ; ðf; x; yÞÞ, the di¤erence u between �u
and �h satisfies (3.24), the CR Weyl connection Dh corresponding to �h is CR
Einstein-Weyl.

Remark. For each D-preserving almost contact structure ðU ; ðf; x; yÞÞ, the
di¤erence u between �u and �h is a complex valued 1-form on U . For any two
D-preserving almost contact structures ðU ; ðf; x; yÞÞ and ðU 0; ðf 0; x 0; y 0ÞÞ, we have
from (4.4)

u 0 � u1�ðnþ 2Þðp� þ iq�Þ ðmod yÞ

on U VU 0. Since the local 1-form p� þ iq� is a ð1; 0Þ-form, the equation (3.24) is
a global condition on M. Therefore, if the condition (3.24) holds for a con-
nection �h, we say that �h or Dh satisfies (3.24).

Moreover, we have from Theorem 3.3 the following proposition.

Proposition 4.3. ðM;D; JÞ admits a CR Einstein-Weyl connection if and
only if there exists a connection of KM satisfying (3.23) and (3.24) for ðD; JÞ.

Proof. Since we have shown the if part in Corollary 4.2, we shall show that
if there exists a CR Einstein-Weyl connection on M, there exists a connection of
KM satisfying (3.23) and (3.24).

Let D be a CR Einstein-Weyl connection on M. Consider the connection
�k0 of KM defined by (4.8). We note that, for each D-preserving almost contact
structure ðU ; ðf; x; yÞÞ, the di¤erence u between �u and �k0 satisfies (3.24).

Since D is a CR Einstein-Weyl connection, it satisfies the equation (2.22).
For each almost contact structure ðU ; ðf; x; yÞÞ, from (1.28) and (2.30), we have

duðY1;Y 2Þ þ iðnþ 2Þ dqðY1;Y 2Þð4:10Þ

¼ 2iðnþ 2Þ l� 1

2
pðPÞ � 1

8ðnþ 1Þðnþ 2Þ r
‘

� �
dyðY1;Y 2Þ
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for any Y1;Y2 A D1;0, where �du is the curvature form of the connection �u of
KU and l is a function defined on U . Furthermore, from (4.8), we have

�dk0ðY1;Y 2Þ ¼ �duðY1;Y 2Þ � iðnþ 2Þ dqðY1;Y 2Þð4:11Þ

� iðnþ 2Þ pðPÞ þ 1

4ðnþ 1Þðnþ 2Þ r
‘

� �
dyðY1;Y 2Þ

for any Y1;Y2 A D1;0, where �dk0 is the curvature form of the connection �k0
of KM and we have used the fact that each associated 1-form p of D relative to
ðU ; ðf; x; yÞÞ satisfies (2.2). Substituting (4.10) into (4.11), we have

�dk0ðY1;Y 2Þ ¼ �2iðnþ 2Þl dyðY1;Y 2Þð4:12Þ

for any Y1;Y2 A D1;0. Define a 1-form �h by

�h ¼ �k0 þ 2iðnþ 2Þly:ð4:13Þ

Since the system of the functions l satisfies (2.23), we see that ly is a global
1-form on M. Therefore �h becomes a connection of KM . From (4.12) and
(4.13), we have

�dhðY1;Y 2Þ ¼ 0ð4:14Þ
for all Y1;Y2 A D1;0. Therefore the connection �h of KM satisfies (3.23) and
(3.24). r

Remark. Since the 1-form 2iðnþ 2Þly on M is pure imaginary, we obtain
Dk0 ¼ Dh by Theorem 4.1.

Let fðU ; ðf; x; yÞÞg be a family of D-preserving almost contact structures
on open sets U which cover M. Let A� be the set of all connections �k of KM

satisfying (3.24) and, for each ðU ; ðf; x; yÞÞ,

�dkðY1;Y 2Þ ¼ �il dyðY1;Y 2Þð4:15Þ
for some real valued function l on U . We define an equivalence relation on
the set A� by setting �k@�Q if and only if there is a system of real valued
functions a such that �k� ð�QÞ ¼ iay and a 0 ¼ ee�2ma on each the nonempty
intersection U VU 0. And we write the set of all equivalence classes as A�=@.
Moreover, let B� be the set of all CR Einstein-Weyl connections on M. Then
from the proof of Proposition 4.3, we also have the following corollary:

Corollary 4.4. There exists a one to one correspondence between A�=@
and B�.

Remark. Since �dk is a global 2-form on M, for any two D-preserving
almost contact structures ðU ; ðf; x; yÞÞ and ðU 0; ðf 0; x 0; y 0ÞÞ, we have l 0 ¼ ee�2ml
on U VU 0.
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Proof. Let �k be a connection of KM satisfying (3.24) and (4.15). Take an
admissible frame (1.6) and the dual frame (1.7) of ðU ; ðf; x; yÞÞ. From (4.15), we
have

�dk1 lgbgy
b5yg ðmod yb5yg; yb5yg; yÞ

on U . Thus, since

Reð�dkÞ1 1

2
flgbgyb5yg þ lgbgy

b5ygg ðmod yb5yg; yb5yg; yÞ

1
1

2
ðlgbg � lg

gb
Þyb5yg ðmod yb5yg; yb5yg; yÞ

1 0 ðmod yb5yg; yb5yg; yÞ;

we see that the set A� is contained in the set A. Therefore we may restrict the
domain of the map w to the set A�. We denote this restricted map also by w
and put wð�kÞ ¼ Dk for every �k A A�.

Take a connection �k in A�. Define a 1-form �h by

�h ¼ �kþ ilyð4:16Þ

on each U . Then �h becomes a connection of KM since ly is a global 1-form
on M. Since this connection �h of KM satisfies (3.23) and (3.24), the CR Weyl
connection Dh is CR Einstein-Weyl in virtue of Corollary 4.2. Also from (4.16)
and Theorem 4.1, we have Dk ¼ Dh. Therefore the image of the map w is
contained in the set B�.

For two connections �k and �Q of KM contained in the set A�, assume that
Dk ¼ DQ. From Theorem 4.1, there is a pure imaginary 1-form a on M such
that �k� ð�QÞ ¼ a. From (3.24), we have aðY 1Þ ¼ 0 for every Y1 A D1;0, which
also implies that aðY1Þ ¼ 0 for every Y1 A D1;0, because a is pure imaginary.
Thus there is a system of real valued functions a such that a ¼ iay on U .
Therefore the map A�=@! B� induced by w is injective.

Fix a CR Einstein-Weyl connection D on M. For this connection D, define
the connection �k0 of KM by (4.8). From the poof of Proposition 4.3, this
connection �k0 is contained in the set A� and satisfies D ¼ Dk0 . Therefore the
map A�=@! B� is surjective. r

5. Example of CR Einstein-Weyl real hypersurfaces in complex manifolds

Let N be a complex manifold of complex dimension nþ 1 and J the almost
complex structure naturally induced by the complex structure on N. Also let
i : M ! N be an imbedded real hypersurface in N. We often omit the notation
i� (resp. i�) which denotes the di¤erential map (resp. the pullback) of i throughout
this section. We define D by

D ¼ TM V JTM:
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Then D becomes a real vector bundle of rank 2n. The almost complex structure
J induces a complex structure on D, which is denoted also by J. Let D1;0 be a
subbundle of CD composed of the eigenvectors corresponding to i of J. Then
since we have

D1;0 ¼ T 1;0N VCTM;

we see that D1;0 satisfies the integrability condition (C) in Section 1, where T 1;0N
the subbundle of CTN consisting of all complexified tangent vectors of type
ð1; 0Þ. Thus the pair ðD; JÞ on M becomes a CR structure on M, which is called
an induced CR structure on M. A real hypersurface M in the complex manifold
N is nondegenerate if the induced CR structure on M is nondegenerate. We
shall consider only the nondegenerate real hypersurface M in N.

Let KN be the holomorphic line bundle consisting of all ðnþ 1; 0Þ-forms on
N, that is, KN ¼ 5nþ1

T1;0N, where T1;0N is the dual bundle of T 1;0N. KN is
called the canonical line bundle on N. We denote a connection of a line bundle
by �h and the connection form with respect to a local frame w by �hðwÞ as we
did so in Section 3. Let �h be a connection of KN . If w is a local frame of KN ,
that is, w is a nonvanishing local ðnþ 1; 0Þ-form on N, the pullback of w is a local
frame of KM , which is denoted also by w, where KM is the canonical bundle on
M. Thus assigning the local frame w of KN a local 1-form �i�ðhðwÞÞ, we obtain
a connection of KM which is called the induced connection of KM and denoted by
�h�, that is,

�h�ðwÞ ¼ �i�ðhðwÞÞ:ð5:1Þ
In general, a connection of a holomorphic vector bundle is holomorphic if the

connection form with respect to every holomorphic local frame is a holomorphic
1-form. From Proposition 4.3, we obtain

Theorem 5.1. Let N be a complex manifold with a holomorphic connection of
KN . Then every nondegenerate real hypersurface M in N admits a CR Einstein-
Weyl structure.

Proof. Fix an arbitrary D-preserving almost contact structure ðU ; ðf; x; yÞÞ.
Let ‘ be the Tanaka-Webster connection associated with ðU ; ðf; x; yÞÞ and �u the
connection of KU induced by ‘. On each U , we can take a frame of KU as

i�ðdz15� � �5dznþ1Þð5:2Þ
if necessary we shrink U , where ðz1; . . . ; znþ1Þ is a local complex coordinate on
N. To simplify the notation, we also denote (5.2) by dz15� � �5dznþ1. Taking
an admissible frame (1.6) and the dual frame (1.7) on U , we obtain

�uðdz15� � �5dznþ1Þ ¼ df

f
þ f�uðy5y15� � �5ynÞgð5:3Þ

¼ df

f
� na

a;
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where na
a ¼ traceðnb gÞ, nb g is the connection form of ‘ with respect to (1.6) and

f is the complex valued function defined by

dz15� � �5dznþ1 ¼ f y5y15� � �5ynð5:4Þ

on U . Since the ðnþ 1; 0Þ-form (5.2) is a closed form, we have

�uðdz15� � �5dznþ1ÞðY 1Þ ¼ 0ð5:5Þ

for every Y1 A D1;0 as in the proof of Lemma 3.2. Note that the equation (5.5)
is independent of the choice of the local coordinates ðz1; . . . ; znþ1Þ on N.
Therefore (5.5) is a property of the induced CR structure on a real hypersurface
in a complex manifold.

Let �h be a holomorphic connection of KN . Since dz15� � �5dznþ1 is a
holomorphic local frame of KN , �hðdz15� � �5dznþ1Þ is a holomorphic 1-form.
Thus we have

�h�ðdz15� � �5dznþ1ÞðY 1Þ ¼ 0ð5:6Þ

for every Y1 A D1;0. Combining (5.5) with (5.6), we see that the induced con-
nection �h� satisfies (3.24). On the other hand, for the curvature form of the
induced connection �h�, from (5.1), we have

�dh�ðY1;Y 2Þ ¼ �dðh�ðwÞÞðY1;Y 2Þð5:7Þ

¼ �dðhðwÞÞði�Y1; i�Y 2Þ
¼ 0

for all Y1;Y2 A D1;0, where w is an arbitrary holomorphic local frame of KN .
Thus the induced connection �h� satisfies (3.23).

Therefore, from Corollary 4.2, the CR Weyl connection determined by the
induced connection �h� of KM is CR Einstein-Weyl. r

By making use of Theorem 5.1, we give some examples.

Example 1. Let i : M ! N be a nondegenerate real hypersurface in Cnþ1.
Assign zero-form on Cnþ1 to the global holomorphic frame dz15� � �5dznþ1 of
KC nþ1 derived from the standard coordinate ðz1; . . . ; znþ1Þ of Cnþ1. Then we
have a flat holomorphic connection of KN . Thus, by Theorem 5.1, we obtain
a CR Einstein-Weyl connection on M, which is written as D0. We investigate
the CR Einstein-Weyl connection D0 in detail. To begin with, note that the
pullback of dz15� � �5dznþ1 is the global frame of KM . Fix an arbitrary D-
preserving almost contact structure ðU ; ðf; x; yÞÞ and take an admissible frame
(1.6) and the dual frame (1.7) on an open set U . Then D0 is determined by the
following 1-form
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p ¼ 1

nþ 2
Ref0� uðdz15� � �5dznþ1Þgð5:8Þ

¼ 1

nþ 2
Re

df

f
� uðy5y15� � �5ynÞ

� �

¼ 1

nþ 2
Re

df

f
� na

a

� �
;

where na
a ¼ traceðnb gÞ , nb

g is the connection form of ‘ with respect to (1.6) and
f is the complex valued function defined by (5.4). From (3.8) and (3.11), the
local 1-form p is exact. Thus from the first remark in Section 2, there is a D-
preserving almost contact structure ðU 0; ðf 0; x 0; y 0ÞÞ such that ‘ 0 ¼ D0 on U 0,
where ‘ 0 is the Tanaka-Webster connection associated with ðU 0; ðf 0; x 0; y 0ÞÞ. In
fact y 0 ¼ ee2my for the function m defined by (3.8). Therefore, by Lemma 3.2,
ðU 0; ðf 0; x 0; y 0ÞÞ coincides with the pseudo-Einstein structure obtained in Lee [7].

Example 2. Let i : M ! N be a nondegenerate real hypersurface in Cnþ1.
Assign a global 1-form

Xnþ1

b; g

cbgz
b dzgð5:9Þ

to the global holomorphic frame dz15� � �5dznþ1 of KC nþ1 , where ðz1; . . . ; znþ1Þ
is the standard coordinate of Cnþ1 and cbg is constant. Then we have a
holomorphic connection of KN whose curvature form is

Xnþ1

b; g

cbg dz
b5dzg:

This connection of KN induces a CR Einstein-Weyl connection on M.

Example 3. Let ðN; hÞ be a pair of a complex manifold N of complex
dimension nþ 1 and a Hermitian metric h on N, that is, h is a Riemannian
metric satisfying

hðJX ; JY Þ ¼ hðX ;YÞ

for all X ;Y A TN, where J is the almost complex structure naturally induced by
the complex structure on N.

Let Ap;q be the module of the ðp; qÞ-forms on N. Then the exterior dif-
ferential dj of any form j A Ap;q is the sum of a ðpþ 1; qÞ-form and a ðp; qþ 1Þ-
form denoted respectively by d 0j and d 00j.

We uniquely extend h to a complex bilinear form, denoted also by h. For
all Z;W A T 1;0N,

ðZ;WÞ 7! hðZ;WÞ;
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is a sesquilinear form which becomes a hermitian fiber metric on the holomor-
phic vector bundle T 1;0N. Then there exists a unique connection D of T 1;0N
such that the connection form with respect to every holomorphic local frame
is a ð1; 0Þ-form and the connection is compatible with h, that is, for any
Z;W A GðT 1;0NÞ,

dðhðZ;WÞÞ ¼ hðDZ;WÞ þ hðZ;DWÞ;
which is called the Hermitian connection of h (cf. [4]). When we denote the
connection form of D with respect to a holomorphic local frame ðq=qz1; . . . ;
q=qznþ1Þ by hb

g, that is, Dðq=qzbÞ ¼ hb
gðq=qzgÞ, we have

hb
g ¼ d 0hbah

ag;ð5:10Þ
where hba ¼ hðq=qzb; q=qzaÞ and hag is a component of the inverse matrix of the
hermitian matrix ðhbaÞ. The Hermitian connection of h naturally induces a con-
nection of the canonical line bundle KN , which is denoted by �h as usual. In
fact, the connection form of �h with respect to the local holomorphic frame
dz15� � �5dznþ1 is

�hðdz15� � �5dznþ1Þ ¼ �traceðhb gÞ ¼ �d 0hbah
ab ¼ �d 0 logðdetðhbgÞÞð5:11Þ

because of (5.10). We see from (5.11) that the curvature form of the connection
�h is

�dh ¼ �d 00d 0 logðdetðhbgÞÞ:ð5:12Þ
Note that (5.12) implies that the global 2-form �dh on N is pure imaginary, that
is,

Reð�dhÞ ¼ 0:ð5:13Þ
If ðN; hÞ is a Kähler manifold, the Ricci form of the Kähler manifold is given by
�2i dh (cf. [5]) and the first Chern class c1ðNÞ is represented by the Ricci form
(cf. [1]). Note that the notation ‘‘�dh’’ does not mean at all that it is exact.

Let i : M ! N be a nondegenerate real hypersurface in N and �h� the con-
nection of KM induced by �h. From (5.13), we have

Reð�dh�Þ ¼ 0;ð5:14Þ
where �dh� is the curvature form of the connection �h�. Thus since the
induced connection �h� satisfies (4.5), it determines a CR Weyl connection D by
virtue of Theorem 4.1. The CR Weyl connection D is called the canonical CR
Weyl connection on M induced by the Hermitian structure h on N. By (5.5) and
(5.11), the canonical CR Weyl connection D satisfies (3.24). We consider when
the canonical CR Weyl connection D becomes CR Einstein-Weyl. Yau showed
(cf. [1], [14])

Lemma 5.2. Let N be a compact Kählerian manifold. If c1ðNÞ ¼ 0, N
admits a Kähler metric with zero Ricci form.

From this lemma, we immediately obtain

142 takaaki ohkubo



Corollary 5.3. Let N be a compact Kählerian manifold with zero first
Chern class. Then every nondegenerate real hypersurface M in N admits a CR
Einstein-Weyl structure.

Proof. From Lemma 5.2, we have a Kähler metric h on N with zero Ricci
form. Let �h be the connection of KN induced by the Hermitian connection of
this metric h. Since the Ricci form is zero, we have �dh ¼ 0. Thus, combining
this result with (5.11), we see that the connection �h of KN is holomorphic.
Therefore we see from Theorem 5.1 that every nondegenerate real hypersurface
M in N admits a CR Einstein-Weyl connection. In fact the canonical CR Weyl
connection induced by h is CR Einstein-Weyl. r
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