T. SHIMBO KODAI MATH. SEM. REP. 28 (1977), 278-283

ON HARMONIC MAJORATION

By TSUNEHIKO SHIMBO

It is easily verified that if u(z) is subharmonic in the unit disk \varDelta and has a harmonic majorant on some annulus $[\rho < |z| < 1]$, then on \varDelta so does u. Royden [6] showed that if u is harmonic in a finite Riemann surface W and has a positive harmonic majorant on some boundary neighborhood, then on W so does u. On the other hand Gauthier and Hengartner [1] has recently shown that if u is subharmonic in the unit disk \varDelta and has harmonic majorants on sufficiently small (relative) neighborhoods of each point of the frontier $\partial \varDelta$, then on \varDelta so does u.

We are concerned with partitionality of harmonic majoration. In the present paper we give some extensions of the above statements.

1. Sectional Majoration Theorem.

THEOREM 1. On an open Riemann surface W, let A be a relatively compact ring domain with frontier $\partial A = \gamma_1 \cup \gamma_2$, where γ_1 and γ_2 are mutually disjoint simple closed curves. Let W_1 and W_2 be regions on W satisfying that: i) $W_1 \cap W_2 = A$, ii) W_k contains $\gamma_k(k=1, 2)$, iii) W_1 has positive ideal boundary. Suppose that u is subharmonic in $W_1 \cup W_2$ and has harmonic majorants on each of W_1 and W_2 . Then u has a harmonic majorant on $W_1 \cup W_2$.

Proof. Let us take an analytic simple closed curve $\gamma(\text{in } A)$ separating ∂A . Let $W_1'(W_2')$ denote the subregion of $W_1(W_2, \text{ resp.})$ obtained by removing the closed ring domain bounded by γ and γ_2 (γ_1 , resp.).

Let b be a bounded harmonic function on W_1' with the boundary values $h_2 - h_1$ on γ , where h_1 and h_2 are harmonic majorants of u on W_1 and W_2 , respectively. Let $\omega \not\equiv 0$ be a nonnegative bounded harmonic function on W_1' continuously vanishing toward γ . We define a function w on $W_1 \cup W_2$ as follows:

$$w = \begin{cases} h_2 + M & \text{on } W_2' \\ h_1 - K \omega + b + M & \text{on } W_1', \end{cases}$$

where K and M are positive constants satisfying that

 $-K\omega+b+M>0$ in W_1 .

Received Dec. 11, 1975.

Here we may assume that both ω and b are harmonically extended over the closed annulus A_1 bounded by γ and γ_2 , and that $\omega \leq 0$ on A_1 . Hence, for sufficiently large K,

$$h_2 + M \leq h_1 - K\omega + b + M$$
 on A_1 .

This inequality implies that w is superharmonic in $W_1 \cup W_2$ for such K, which proves the theorem.

A meromorphic function f on a Riemann surface W is called Lindelöfian on W if $\log^+ |f(z)|$ has a superharmonic majorant on W. (See Heins [2].) As an application of the theorem we give a decomposition formula for Lindelöfian meromorphic functions on a plane region.

THEOREM 2. Let Ω be a plane region whose complement in the extended plane \overline{C} consists of mutually disjoint n continua E_1, E_2, \dots, E_n . Then every Lindelöfian meromorphic function f on Ω can be represented in the form

$$f = f_1 + f_2 + \dots + f_n$$
,

where $f_k(k=1, 2, \dots, n)$ are Lindelöfian meromorphic functions respectively on the simply-connected regions $\overline{C} \sim E_k$.

Proof. Without loss of generality we may assume that Ω contains the point at infinity at which f is analytic and vanishes. Let P be the set of poles of f. Since P clusters only on $\partial \Omega$, we can divide P into mutually disjoint n subsets $P_k(k=1, 2, \dots, n)$ each of which is either a countable set clustering only on E_k or the empty set. Then the usual Aronszajn decomposition

$$f = f_0 + f_1 + f_2 + \dots + f_n$$
,

where

$$f_k(z) = \frac{1}{2\pi i} \int_{c_k} \frac{f(\zeta)}{\zeta - z} d\zeta \qquad (k = 0, 1, 2, \dots, n),$$

 c_0 being a circle centered at the origin with sufficiently large radius and $c_k(k=1, 2, \dots, n)$ being a cycle bounding $E_k \cup P_k$, enjoys the following properties: i) $f_0 \equiv 0$, ii) f_k is meromorphic in $\overline{C} \sim E_k$ and vanishes at the point at infinity $(k=1, 2, \dots, n)$, iii) the set of poles of f_k is precisely $P_k(k=1, 2, \dots, n)$. We must verify that $f_k(k=1, 2, \dots, n)$ are Lindelöfian on their respective domains. To do this for f_1 (for other f_k , the reasoning is the same), let us take a closed ring domain A off $E_1 \cup E_2 \cup \dots \cup E_n$ satisfying that the bounded component of the complement of A contains P_1 and the unbounded component contains P_2, P_3, \dots, P_n . The previous theorem is available to the case: W_1 =the interior of the set obtained by removing $E_1 \cup P_1$ from the union of A and the bounded component of the complement of A, W_2 =the interior of the union of A and the unbounded component, $u(z)=\log^+ |f(z)|, h_1(z)=h(z)+M, h_2(z)=M$, where h(z) is a harmonic majorant of u(z) on Ω less P and M is a sufficiently large constant.

TSUNEHIKO SHIMBO

2. Local Majoration Theorem.

We turn to another partitionality.

THEOREM 3. Let W be a finite Riemann surface with border β which consists of a finite number of mutually disjoint smooth simple closed curves. If u is subharmonic in W and has positive harmonic majorants on sufficiently small (relative) neighborhoods of each point of the border β , then u has a positive harmonic majorant on the whole surface W.

Before proving the theorem, we note

LEMMA. Let C be a simple closed curve in the plane and $f(\zeta)$ be a continuous function on an open subarc γ of C. Let $\{u_n\}$ be a sequence of harmonic functions converging inside C. Suppose that $u_n(n=1, 2, \cdots)$ have common continuous boundary values $f(\zeta)$ at each point of γ , and that there exists a harmonic function U(z) inside C such that $U(z) \leq u_n(z)$ $(n=1, 2, \cdots)$ inside C. Then the limit function also has continuous boundary values $f(\zeta)$ at each point of γ .

The lemma reduces to the case where C is the unit circle, $U(z)\equiv 0$ and $f(\zeta)\equiv 0$. In this case the lemma can be verified by the following fact which is an immediate consequence of Poisson's integral formula for harmonic functions. For $\alpha > 0$, let H_{α} be the family of functions which: i) are nonnegative and continuous on the closed unit disk, ii) are harmonic in the (open) unit disk, iii) are dominated by 1 at the origin, and iv) vanish on the arc $\bar{\gamma} = \{e^{i\theta}; |\theta| \leq \alpha\}$. Then H_{α} is equicontinuous near γ in the sense that for any $\varepsilon > 0$ and any positive $\eta(<\alpha)$ there exists a positive $\rho < 1$ satisfying that $u(re^{i\theta}) < \varepsilon$ for every $u \in H_{\alpha}$ and r, θ with $\rho < r < 1$, $|\theta| \leq \eta$.

To prove the theorem it suffices to show that u has a harmonic majorant on some neighborhood of the border β , and hence to show the following: Let u(z) be a nonnegative subharmonic function on an annulus 1 < |z| < R ($<\infty$). If u(z) has harmonic majorants on sufficiently small (relative) neighborhoods of each point of the circle |z|=R, then on some annulus $\rho < |z| < R u$ has a harmonic majorant.

To do this, we have only to show

LEMMA. Let $\{r_n\}$ be strictly increasing sequence with a finite limit R (>1) and for a fixed positive α ($<\pi$)f, f_n ($n=1, 2, \cdots$) be nonnegative bounded continuous functions on the arcs $\{e^{i\theta}; |\theta| < \alpha\}$, $\{r_n e^{i\theta}; |\theta| < \alpha\}$ ($n=1, 2, \cdots$), respectively. By h_n ($n=1, 2, \cdots$) we denote the bounded harmonic functions on the sets $R_n = \{re^{i\theta}; 1 < r < r_n, |\theta| < \beta\}$ having continuous boundary values:

- $\begin{array}{ll} f(\zeta) & on \; \{e^{i\theta} \; ; \; |\theta| < \alpha\} \; , \\ f_n(\zeta) & on \; \{r_n e^{i\theta} \; ; \; |\theta| < \alpha\} \; , \end{array}$
 - 0 otherwise (except at the points with $|\theta| = \alpha$).

By $H_n(n=1, 2, \dots)$ we denote the bounded harmonic functions on the annuli $A_n =$

280

 $[1 < |z| < r_n]$ having continuous boundary values:

- $f(\zeta)$ on $\{e^{i heta}; \, |\, heta\,|\,{<}\, lpha\}$,
- $f_n(\zeta)$ on $\{r_n e^{i\theta}; |\theta| < \alpha\}$,
 - 0 otherwise (except at the points with $|\theta| = \alpha$).

If for some $\beta(>\alpha)$ $\{h_n\}$ contains a converging subsequence, so does $\{H_n\}$.

Proof. Fix a point z_0 with $1 < |z_0| < r_1$, $\alpha < \arg z_0 < \beta$. Let g_n , G_n be the Green functions with pole z_0 of regions R_n , A_n , respectively $(n=1, 2, \cdots)$.

We assert that for sufficiently large M

$$G_n(z) \leq Mg_n(z)$$

in the sets $\{re^{i\theta}; 1 \le r \le r_n, |\theta| \le \alpha\}$ $(n=1, 2, \dots)$. To see this, set

 $M_n = \max G_n(z)/g_n(z)$

over the segments $\{re^{i\theta}; 1 \leq r \leq r_n, |\theta| = \alpha\}$, where the values of $G_n(z)/g_n(z)$ at the end points are interpreted as the values of

$$(\partial G_n/\partial r)/(\partial g_n/\partial r)$$
 (n=1, 2, ...).

Suppose that there exists a subsequence $\{M_{n_k}\}$ with $M_{n_k} \to \infty(k \to \infty)$. We may assume $M_n \to \infty(n \to \infty)$, so that we can take a $\{z_n\}$ such that

$$1 < |z_n| < r_n, |\arg z_n| = \alpha$$
 (n=1, 2, ...)

and

$$G_n(z_n)/g_n(z_n) \rightarrow \infty \qquad (n \rightarrow \infty).$$

By Cauchy's mean value theorem we can find a $\{\rho_n\}$ with $1 < \rho_n < r_n$ $(n=1, 2, \cdots)$ satisfying either that $\mu_n \to \infty(n \to \infty)$, where $\mu_n(n=1, 2, \cdots)$ are the values of $(\partial G_n/\partial r)/(\partial g_n/\partial r)$ at $z = \rho_n e^{i\alpha}$ or $\rho_n e^{-i\alpha}$. But this contradicts the uniform convergence in an appropriately extended, or that for infinite $n \partial G_n/\partial r = \partial g_n/\partial r = 0$ at $z = P_n e^{i\alpha}$ or $P_n e^{-i\alpha}$ region of the sequences of the Green functions and of their derivatives.

3. We finish up with a classification of Riemann surfaces.

By O_{AL} , O_R , O_1 we denote the classes of Riemann surfaces not admitting respectively nonconstant: Lindelöfian analytic functions, analytic functions whose real parts are dominated by positive harmonic functions, H^1 -functions (i.e., analytic functions whose moduli are dominated by harmonic functions).

We establish the strict inclusion relations:

$$O_{AL} \subseteq O_R \subseteq O_1.$$

TSUNEHIKO SHIMBO

i) $O_{AL} \subseteq O_R$. $O_{AL} \subset O_R$ is due to the following theorem (Heins [2]). Every analytic function whose real part is dominated by a positive harmonic function is Lindelöfian. Here we show that Myrberg's example (Myrberg [4]) is an example for the concerned strict inclusion relation. Let F be two-sheeted covering surface of the plane given by the equation

$$w^2 - \sin z = 0$$
.

We remove from F a closed disk K on one sheet, and denote the resulting surface by F_1 . The valence of the projection π of F_1 onto the plane is at most two, thereby π is a Lindelöfian analytic function on F_1 . (Heins [2].) Hence $F_1 \oplus O_{AL}$. Here we need only a weak version of Heins' result. Every meromorphic function such that the set of values taken by the function only a finite number of times has positive (logarithmic) capacity is Lindelöfian. This can be directly proved by Theorem 1 and the following elementary fact: the identity function of the plane is Lindelöfian on regions whose complements have positive capacity.

To show $F_1 \in O_R$ suppose that f is an analytic function whose real part is dominated by a positive harmonic function h on F_1 . On the plane less the projection of K, we consider the function

$$\phi(z) = (e^{f(z^+)} - e^{f(z^-)})^2$$
,

where z^+ and z^- are the points over z. Then ϕ is a single-valued analytic function, and

$$|\phi(z)| \leq 4e^{2\{h(z^+)+h(z^-)\}}$$
.

 $H(z)=h(z^+)+h(z^-)$ is a single-valued positive harmonic function. Therefore it follows that ϕ is meromorphic in a neighborhood of the point at infinity. On the other hand, $\phi(z)=0$ at $z=n\pi$ $(n=\pm 1,\pm 2,\cdots)$. Consequently $\phi\equiv 0$, which shows $f(z^+)=f(z^-)$ and that f can be analytically continued onto F. A similar reasoning applied to $e^{f(z)}$ concludes that f is a constant.

ii) $O_R \cong O_1$. $O_R \subset O_1$ is trivial. Let E_0 be a compact set on the segment $\{-1+\imath y; -1/2 < y < 1/2\}$ of linear measure 0 and positive capacity. Let E be the set $\{-1+\imath y+im; -1+\imath y \in E_0, m \text{ integer}\}$. We show that $R=C \simeq E$ has the desired property. The fact that R belongs to O_1 is seen from the following theorem due to Heins [3]. The sets of linear measure 0 on a finite number of mutually disjoint analytic simple closed curves are null sets for H^1 -functions.

To see $R \oplus O_R$ let ω be the harmonic measure of the imaginary axis with respect to the left half plane less E. Since $\omega(z+i)=\omega(z)$,

$$\sup_{-\infty < y < \infty} \omega \Big(-\frac{1}{2} + \imath y \Big) < 1.$$

We define a function w on R as follows:

282

$$w(x+iy) = \begin{cases} x+A & x \ge 0\\ A\omega & x < 0 \end{cases}.$$

For sufficiently large constant A, w is (nonnegative and) superharmonic in R and dominates the real part of the identity function on R. Hence $R \notin O_R$.

The idea used in the present paper of constructing superharmonic functions by two harmonic functions with same boundary values is found in [5].

References

- [1] GAUTHIER, P. M., AND W. HENGARTNER, Local harmonic mojorants of functions subharmonic in the unit disk, J. d'Anal. Math. vol. 26 (1973), 405-412.
- [2] HEINS, M., Lindelöfian maps, Ann. of Math. vol. 62, no. 3 (1955), 418-446.
- [3] HEINS, M., Hardy classes on Riemann surfaces, Springer Lecture Notes 98 (1969).
- [4] MYRBERG, P. J., Über die analytische Fortsetzung von beschränkten Functionen, Ann. Acad. Sci Fenn. A. I. 58 (1949).
- [5] OHTSUKA, M., Dirichlet problems on Riemann surfaces and conformal mappings, Nagoya Math. J. 3 (1951), 91-137.
- [6] ROYDEN, H. L., The boundary values of analytic and harmonic functions, Math. Zeit. 78 (1962), 1-24.

DEPARTMENT OF MATHEMATICS, Tokyo Institute of Technology.