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ON r-FOLD (4, 2)- AND /-PRODUCTS

BY LIEVEN VANHECKE

In this paper we treat a generalization of the notion of an /-structure [8]
and a (4, ±2)-structure [9] on a manifold. We obtain the so-called /- or (4, 2)-
products (or structures) with factor C2 and this is done in the same way as A.
GRAY and R. B. BROWN have done [2] to obtain the r-fold vector cross pro-
ducts (or structures) starting from an almost complex structure.

The greatest part of this paper is devoted to the algebraic viewpoint and
gives algebraic properties. In the second part we give some details concerning
such structures on a manifold, we obtain certain theorems in relation with in-
duced structures on submanifolds and relations with the curvature. Finally we
consider a certain generalization of the Nijenhuis tensor of a structure.

1. In [8] K. YANO has considered a structure on a manifold, called an
/-structure and defined as follows:

DEFINITION 1. Let Mn be a differentiate manifold of class C°° and fΦO a
tensor field of type (1, 1) and of class C°°. / defines an /-structure if it satisfies

(1) /3+/=0

and is of constant rank.

K. YANO, C. HOUH and B. CHEN treated in [9] another structure contain-
ing the /-structure as a special case.

DEFINITION 2. Let Mn be an n-dimensional differentiate manifold of class
C°° and let there be given a tensor field φ^O of type (1, 1) and of class C°°. φ
is a (4, ±2)-structure on Mn if n=2m and if φ is such that

(2) φ*±φ*=Q, rank^--^-rank^2+m.

It is easy to see that an almost complex structure on Mn is a special case
of an /-structure. These almost complex structures have been generalized by
A. GRAY and R. B. BROWN [2], [5]. They considered the so-called vector
cross product structures defined as follows:

DEFINITION 3. Let V denote an n-dimensional vector space over an
arbitrary field of characteristic not two and let <, > : Vx V-*F denote a symmetric
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nondegenerate bilinear form. An r-fold vector cross -product on V is a multi-
linear map

X: Vr-*V: (αlf αa, - , ar)^X(aί9 a2, - , αr) ,

such that

(3) (i) <X(al9 a2, - , αr), α,>-0 , Vie {1, 2, - , r}

(4) (ii) <X(al9 α2, ••. , αr), X(al9 α2, - , αr)>

We mention that B. ECKMANN [3] and G. WHITEHEAD [7] have con-
sidered the vector cross products from the topological standpoint taking a
continuous instead of a multilinear map.

As we have done in [6] (see also [1]), such a vector cross product may
be generalized in the following sense.

DEFINITION 4. Let V denote an n-dimensional vector space over an
arbitrary field of characteristic not two and let <, > : Vx V-+F denote a symmetric
nondegenerate bilinear form. An r-fold vector π-product with factor C2 on V
is a multilinear map

X: Vr^V: (al9 a2, - , ar)*X(al9 a* - , αr) ,

Ifgrfgn, such that

(5) (i) <X(al9 αa, .- , ar\ a^=Q , Vie {1, 2, - ,r}

(6) (ϋ) <X(al9 a2, - , ar\ X(al9 a2, - , αr)>-C2 det «αf, α,» ,

ΐ,;e{l, 2, — ,r} and C2^OeF.

The case r— 1, C2— — 1 gives the almost product structures.
It is interesting for further considerations that we have shown [6] that

this definition is equivalent with the following.

DEFINITION 5. Let V denote an n-dimensional vector space over an arbitrary
field of characteristic not two and let <, > : Vx V—+F denote a symmetric non-
degenerate bilinear form. An r-fold vector π-product with factor C2 on V is a
multilinear map

X: V^V: (al9 a2, - , ar)*X(aίt a2, •» , αr) ,

l^r^n, such that

(7) (i) <X(al9 «.. , att ... , ar\ x>+(X(al9 - , x, - , ar\ a^O ,

Vie {1,2, ...,r} and
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(ii) X(X(al9 a2, «••, ar\ a2, —, αr)=

(8)

-C2
<α2, βj) <α2 α2> ••• <α2, αr>

αr, α2>

with

2. The purpose of this paper is to generalize the (4, ±2)-structures, and
in a special case the /-structures, in the same way as is done for an almost
complex or product structure.

To do this we start with the following definition.

DEFINITION 6. Let V denote a vector space of dimension n over an arbitrary
field F of characteristic not two and <, > : Vx V-+F a symmetric, nondegenerate
bilinear from. An r-fold (4, 2)-product with factor C2 on F is a multilinear map

X: Vr-*V: (al9 a2, ••• , ar)

such that

(9) (i) <X(al9 fl2> - , flr), αt>=0 ,

(10) (ii) <X(X(alt a2, - , ar\ az, - , αr),

9 a2, ••• , αr) ,

{1, 2, - , r]

l f α2, - , αr), α2, - , αr)>

-C2 det «α^, fl^»<X(fllf flίf ". , flr)f

ιv,;ve{2, 3, - , r} and C2^OeF.

Sometimes it is easier to replace (10) by another expression. This can be
done by the following theorem.

THEOREM 1. Condition (ii) in the definition of an r-fold (4, 2)-product with
factor C2 can be replaced by

(11)

i.e.

1(α2, •- , αr)
2}-0

(110 X(X(X(X(alt az, ••• , ar\ az, - , ar\ a2t ~ , αr), α2f — , αr)

+C2det«α,,, ajty)X(X(al9 a2, ... , αr), αβ, - , «r)-0β

I. Suppose (9) and (10) are given. Linearizing (9) we obtain for

(12) <X(al9 az, .- , ar\

Doing this also for (10) we get
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(13) <X2{aί(a2, - , αr)
2}, X2{b(a2, • » , αr)

2}>

-C2 det «fl<,, aj,yχX(aί9 a2, - , αr), *(&, fla> ... , αr)>=0 .

Employing (12) in (13) we obtain

(14) <X2{aί(a2ί - , αr)
2}, X*{b(at, - , αr)

2}>

+C adet«flΓ > <v»<Z2K(α2, •- , αr)
2}, ft>=0.

Substituting b by X(6, α2, ••• > #r) in (12), it becomes

(15) <*(βl, α2, - , flr), *(δ, fla, - , flr)>+<*β{Kα», - , ̂ r)2}, flι>=0

and substituting in this relation aλ by Z2{α!(α2, ••• , αr)
2} we get

(16) <X3{(a1(a2ί ... , αr)
3

(14) and (16) give together

(17) <^8{flι(fl«,

and with the help of (12) we obtain finally

<X4{a1(a2) -. , α r)
4}+C2det «at,, ary}X*{aι(a2, ... , αr)

2}, 6>=0.

<, > being nondegenerate we may conclude that (11) is proved.
II. Suppose now that (9) and (11) are given. Then (12) is still valid and

substituting in this relation al by X(al9 a2, •••, αr) and b by X2{a1(a2ί ... , αr)
2} we

get

(18) <*<{βι(fla, - , «r)4}, α1>-<^2{α1(fl2, - , αr)
2}, ^2{flι(fl«, - , 0r)2}=0.

On the other side, we have with the help of (12)

(19) <X2{aί(a2, ... , αr)
2}, a^+<X(al9 a2, -. , αr)f j?(fll, α2, - , αr)>=0.

Multiplying (19) by C2det«a<,, α^» and adding by (18), we get with (11)

-C2 det «G<ί, aj,yχX(al, a2, — , αr), ^(βj, α2, - , αr)>=0

which is the required relation (10).

3. We prove now some other interesting properties of an r-fold (4, 2)-
product.

THEOREM 2. An r-fold (4, 2)-product is an antisymmetric multilinear map.

Proof. With the help of (12) we have for Vz



166 LIEVEN VANHECKE

<X(alt ••• , x, ••• , y, ." , flr), ^>=-<i^(fl1, - , z, •-., j, - , αr),

=<^Γ(αlf — , z, — , *, — , αr), ;y>

The required result follows from the fact that <, > is nondegenerate.

THEOREM 3. A multilinear map such that

<X(al9 fl2, -. , αr), αt>=0 , Vie {1, 2, - , r}

satisfies also

(20) <*'*+1{αι(α«, .-,ar)^+1},^>-0.

Proof. In this case (12) is valid and substituting al by X2{a1(a29 •«• , αr)
2}

we get

<*«{αι(fl«, - , arγ}, b)+<X(b, a2, ». , αr), ^2{«ife, - , flr)
2}>=0.

Taking b=a1 we arrive at

(21) <^ 8 { f l l ( f l» ,- , f l r ) 8 } , f l l>=0.

Linearizing (21) we get

(22) <*8{fll(fl2, - , flr)3}, &> + <^3{Kfl2, - , flr)3}, flr>-0 .

In the same manner as for (12), (22) gives rise to

(23) <Xs{a1(at9 - , flr)
B}, fl^O.

Continuing this we arrive finally at the desired result.
We prove now that the construction given above is indeed a generalization

of the r-fold vector ττ-product.

THEOREM 4. An r-fold vector π-product with factor C2 is an r-fold (4, 2)-
product with the same factor.

Proof. It follows from (8) that

(24) ^Kfe, - , flr)
3} +C2 det «fl,,, a^X(alf a2, •- , αr)=0

and so

4. In this section we shall give a relationship of an r-fold (4, 2)-ρroduct
with the /-structures and therefore we mention that (24) is an interesting rela-
tion.

First we consider the case r=l. A 1-fold (4, 2)-product with factor C2 is
thus a linear map such that
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(25) Vαe V<Xa, a)=Q , X*+C2X2=Q ,

This is equivalent with

(26) Va<=V<Xa, α>=0, <X2a, X2a}-C\Xa, Xa)=Q .

We have

THEOREM 5. A 1-fold (4, 2}-product with factor C2 is a linear map satisfying

(i) <Zα, α>=0 for V α e F ;
(27)

(ii) Z3+C2Z=0

i/ C >-z s positive definite. The converse is also true without restriction for <, >.

Proof. The proof of the converse is trivial.
Starting from the second relation (26) and substituting a by (X2+C2)a we

get

(28) Ma(ΞV(Aa,Aay=Q

where

(29) A=X3+C2X.

Thus we have

and then ,4=0.
Before proving an analogous result in the general case we give

DEFINITION 7. Let V denote a vector space of dimension n over an arbitrary
field F of characteristic not two and <, > : Vx V-+F a symmetric, nonde-

generate bilinear form. An r-fold ' j '-pro duct with factor C2 on F is a multilinear
map

X: Vr-^V: (a,, a2, - t-ar)^X(alt a2, -, ar) ,

l^r^n, such that

(30) (i) <X(αlf αa> - , αr), αt>-0 , Vie {1, 2, - , r]

(31) (ii) X^a&z, - , αr)
3} +C2 det «αr> α^»Z(α1, αa, - , α

and i /,j /e{2, 3, -,r}.
Now we can prove

THEOREM 6. An r-fold (k,2}~product with factor C2 is an r-fold f-product
with the same factor if <, > is positive definite. The converse is true in the
general case.

Proof. The proof of the converse is trivial.
Substitute now al by
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(32)

in (10). We obtain

(32)'
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- , αr)
2}+C2det«α,,, α,,»fll

+C2 det «α<,, α,, , σr) ,

and this gives the required result for the positive definite case.

Remark. We return to the case r=l and remark that we have

(33) Vα<Λα, α>=0, ,42=0.

In the positive definite case this has ^4=0 as a consequence but a simple coun-
terexample shows that this is not always true in the other cases. Indeed,
taking

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

resp.

0 0 0 1

0 0 - 1 0

0 - 1 0 0

1 0 0 0 J

as matrix for A resp. <, >, a simple calculation shows that (33) is satisfied.

5. We return now to the general case.

THEOREM 7. For an r-fold (4, 2)-product condition (11) may be replaced by

(34) X2{a,(a2, - , αr)
2} -C2 det «fl,,f α,,»α

<α2, flj> <α 2α 2> - <α2, αr>

<αr, αα> <αr, α2> — <αr, αr>

(35)

Proo/. Indeed, we have from (34)

(36) A ία^α,, - , αr)
4}=C2det«αί,,α,,»JHα(α2, - , αr)'

-C2det«αί,, arWMa*

Remark. Note that

αJv»=<d1Λα2Λ ••• /\ar, άί/\aiA ••• Λα r >.
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THEOREM 8. For an r-fold f-product condition (31) may be replaced by (34)
where

(37) X(a,a2, -,α r)=0.

From (34) we obtain further

(38) <X(aί9aΛ, -,fl r),α>=0

and consequently

(39) <*(α,α,, ,αr),f l ι>=0.

It follows also immediately

(40) <*(α, αa> - , αr), fl<,>=0 .

The same relation gives

(41) <α, α,,>=0

and

(42) C2 det «α,,, fl,.»<αlf α>=C2 det «αz, α,»

—<X(a l t a2, ~ , αr), X(alt a2, — , αr)>.

Using (10) we obtain further

(43) <X(αlf α2, - , αr), ΛΓ(α, α l f - , αr)>-0

and thus

(430 <*'{flι(fl«, -,flr)'},α>=0.

This relation gives

(44) det «fl^,α^»<α, «>-<«,
<α2, αα> <α2, α2

<αr, GJ) <αr, α2

>=0.

Finally we get

(45) <α, α>=<α, flj).

THEOREM 9. // A" defines an r-fold (4, 2)-product with factor C2

(46) Z(fllt α2, - , ar)= 2

defines also an r-fold (4, 2)-product with the same factor.

Proof. Using (34) and (35) we obtain
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(47) Z(alf a2, ••• ar)=—X(alί a2, ••• , ary+X(a, a2, ••-• , αr)

and this shows that Z is a multilinear map since α depends linearly from al

An easy calculation shows further

(48) Z4K(<z2, - , ar)
4}+C2det«^, djWiafa, - , ar)

2}=0,

Finally

(49) <Z(fll, αa, - , αr), αt>= C2det ̂ .̂  α.>>} <*3K(a2, - , αr)
3}, αt>=0

because of Theorem 3 and the simple remark

(50) <Xp{a1(a2f ... , arγ], α ί,>=0> V z ' e {

COROLLARY.
(a)

zv,;ve{2,3, - , r} , i",./"e {1, 3, - , r} .

(b)

(52) ^8{flι(α«, - , a*, - , α., - , «r)
3}+^3K(α2, - , α,, - , α t, - , β,)3}-0.

This follows immediately from (49) in the same way as for Theorem 2.

Before formulating the following theorem we generalize the notion of an
almost tangent structure.

DEFINITION 8. Let V denote a vector space of dimension n over an arbitrary
field F of characteristic not two and let <, > : Vx V-+F denote a symmetric,
nondegenerate bilinear form. An r-fold tangent product on V is a multilinear
map

X: Vr->V: (alt a2, ••• , ar)^X(alf α2, - , αr) ,

l^r^n, such that

(i) < X ( a l f a 2 f -,α r),fl t>=0, Vie {1, 2, .- , r}
(53)

(ii) X'ία^ . α Λ ^Q.

In relation with the defined r-fold products we have now

THEOREM 10. An r-fold (4, 2)-product X defines always an r-fold tangent
product Y by

(54) Y(aίt a,, - , ar)= C' det (<α,t a



ON r-FOLD (4,2)- AND /-PRODUCTS 171

Proof. We have, with the help of (49) and (50)

<Y(*ι, "2, ~ , dr\ flt>=0 , Vie {1, 2, - , r} .

As a consequence of (46) and (47) we get

lί az, ••• , ar)=X(a, a2, - , ar)

which shows that Y is a multilinear map. A straightforward calculation shows
finally

6. For completeness we remark that Theorem 2 remains valid for an r-
fold /-product and that we have also

THEOREM 11. An r-fold vector π-product with factor C2 is an r- f o Id f -product
with the same factor.

This is proved by means of (24).

7. Let us now suppose that Mn is an n-dimensional differentiate manifold
(i.e. C°°) equipped with a pseudo-Riemannian metric <, > and let Z(Mn) denote
the Lie algebra of vector fields on Mn. Suppose further that Mn has a globally
defined r-fold vector π-, (4, 2)- or /-product X which is differentiate (i.e. C°°).
Then X is a tensor field on Mn of type (1, r) and we say that X defines an r-
fold vector π-, (4, 2)- or /-structure on Mn.

From the definitions and theorems given above it is evident that every such
a structure X determines global differential forms φ and ψ of degree r-hl by
the formulas

(55) φ(alt a2, ••• , αr+1)=<X(α1, α2, ••• , αr), αr+1> ,

(56) φ(alt a2, ••• , αr+1)=<Z(α1, α2, — , αr), αr+1>

3 3

for alt αa, — , αr+1

If is easy to prove the following theorem :

THEOREM 12.
1. X defines an r-fold /-structure with factor C2 if and only if

(57)

2. X defines an r-fold (4, 2)-structure with factor C2 if ond only if

(58) ψ(X(al, az, ••• , αr), α2, ••- ,
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3. X defines an r-fold vector π-structure with factor C2 if and only if

(59) al9 a2, •'•, flr), α2, .«•, αr+1)^-C2

<αr, flj) <αr, α2> ••• <αr, αr>

or α l f α2> - , αr+1

4. A defines an r-fold f-structure if and only if

(60) φ(a, a2, - , αr+1)=0

/or Vo:r+1(
5. A defines an r-fold (4, 2)-structure if and only if

(61)

6. For Vα l f α2,

(62)

(63)

a) ^(G!, α2>

b) ^(flj, αa,

-1

αr+1)

, flr+i)

*l, *£, — , f l r ) , r+1, α2, — , αr)).

8. Let F denote a linear connection on Mn. Then we have

r+l

(Fx^)(β1, OJ2, •••, ar+1)=x{φ(a1, a2, •••, ar+1)} —Σ φ(flΊ, * * * > FΛ;OJΪ, •••, βr+1),
1=1

and an easy calculation shows that

—<Fa?A(α1, α2, •••, αr), α r + 1>—(X(a l t a2, ••• ar\ F xa r + 1^.

Doing the same for the (r+l)-form φ we obtain, using (47),

(65) (Far0)(flι, a2, "., αr+1)—z{<A(α—alt a2, --•, αr), αr+1>}

+<(Fa.A)(a—flj, αz, •••, αr), αr+1> .

We may conclude:

THEOREM 13. // F is a linear connection on Mn which is also metric, then
we have
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(67) (Γ^Xαj, α«, - , αr+1)-<(FΛX)(α-α1, α2, - , αr), αr+1>,

=(Γx^)(α-αlf α2, ••• , αr+1) ,

DEFINITIONS. If F is a linear metric connection on Mn, X an r fold vector
7Γ-, (4,2)- or /-product and φ the associated (r+l)-form, then
(i) X is parallel if and only if for

(68) F**=0;

(ii) A is nearly parallel if and only if

(69) (Fβl*)(flι,α,, " , f l r)=0

for Vα l f α2, - , αr

(Hi) A" is almost parallel if and only if dφ=Q;
(iv) A is semiparallel if and only if <50— 0

We remark that it follows from (69) that

(70) (P,X)(flι, α», - , ar)+(FaiX)U a2, - , ar)=0 .

Let 3>, ^2ίP, c^^P, cS^P be the classes of r-fold vector π-, (4, 2)- or /-products
which are parallel, nearly parallel, almost parallel or semiparallel. We have
then if F denote the pseudo-Riemannian connection on Mn :

THEOREM 14. We have the following inclusions
(i)

(ii) £P£c
(iii) &=

for M\

Proof. We have

(71) (dψ)(al9 a2, - , αr+2)=Σf (-

(710 (δφ)(aί9 •- , flr)=-Σ II^ΊI"2(Fe^)(^, α j f flίf •- , αr) .

If A is nearly parallel then

(Γα<^)(flι. fl*. - , flr) = 0 => (Fα^)^!, fla, - , flr+1) = 0

and it follows

(Fα^)(fll. - , ^t, - , βr+2)^(-l)t"1(Fαι0)(α2, - , flt, - , -

Thus

(72) (dφϊ(aί9 α£, - , αr+ί)=(r+2)(Γβl#)(αί, - , α t f - , αr+8) .

Now
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(i) is trivial
(ii) follows from (72)

(iii) by (72) we get

and this gives us V* PXX=Q.
A simple calculation proves further

THEOREM 15.

(73) d(ψjrφ)(al1 a2, — , ar+2}=dφ(a, az, ••• , αr+2) ,

(730 3(«&+0)(flι, fl8, - , ar)=δφ(af α2, - , αr) 5

Using (42) we obtain without difficulties

THEOREM 16.

(74) 2<(F*X)(fl1, α2> - , αr),

COROLLARY (see [6]). // Z defines an r-fold vector π-product with factor
C2, then

(75) <(ΓΛX)(αlf;flί, - , άr), AfaV, α2f. •••", αr»=0

where V is a linear metric connection.

9. We give now two theorems for (4, 2)- and /-products and which are
proved in [5] for r-fold vector cross products. (Remark that the proof in [5]
is independent of the factor C2). As in [5] we suppose that the r-fold product
varies continuously over the whole manifold.

THEOREM 17. Let X be an r-fold (4, 2)-product (resp. f-producf) with factor
C2 with respect to a metric tensor <, > on a manifold Mn. Let Kdn~k be a submam-
fold of Mn such that the restriction of <, > to the normal bundle (supposed to be
onentable) of Mn~k is nondegenerate and positive definite. Then X induces an
(r—k)-fold (4, 2}-product (resp. f -product) X with the same factor C2 on Mn~k in
a natural way.

Proof. Let nlt n2, ••• , nk be k normal vector fields defined on an open subset
of Mn~k such that <nt, njy=δ iJJ ί,j=;2, 3, -•• ,-•••&, and nl/\n2/\ ••• f\nk is consistent
with the orientation of the normal bundle. Define then

(76) X(al9 α2, - , ar.k)=X(alf a2, ••• , ar_k, nl9 n2, ••• , nΛ)

for flj, α2, •••, ar-k^ϊ,(Mn~k). It is not difficult to verify conditions (9) and (11)
(resp. (30) and (31)) defining the product. Note that (76) is independent of the
choice of nlt n2, ••• , nk.

THEOREM 18. Let Sn denote the unit sphere in Rn+1 and let <, > denote the
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metric tensor of Sn induced from the positive definite one on Rn+1. If Sn has a
globally defined r-fold (4, 2)- or f-product with factor C2, then in the vector space
sense there is an (r+ϊ)-fold continuous (4, 2)- or f-product with the same factor
on Rn+1.

Rroof. We use the construction of [5].
Let Xm denote the r-fold product on Sn at m. Define now

as follows. Let alt a2, •••, ar+1<=Rn+l and write βr+ι—b+e where b is the com-
ponent of ar+1 normal to alt aZ9 •••, ar. If b=Q we set X(alf az, •••, αr.,.1)=0. If
b^Q, let J^ll^ll" 1^ and set

X(alr az, •••, ar+ι)=\W\Xd(aι, α2, •••, α r).

Using the definition of the products one can verify at once that X satisfies the
required relations.

Note that X is linear in alt az, •••, ar but in general is only continuous in
αr+1.

10. Let Mn~k be a submanifold of a pseudo-Riemannian manifold Mn such
that the restriction of the metric tensor <, > of Mn to Mn~k is nondegenerate.
Let X(Mn-k)={X\Mn-k,X(ΞX(Mn)}. Then we may write l(Mn-k}=1(Mn-k}@
I(Mn~kY where I(n~kY is the collection of vector fields normal to Mn~k. The

configuration tensor T: I(Mn~k}xl(Mn-k}->l(Mn-k} is defined by Txy=Ϋxy-Fxy

for *, y<ΞX(Mn-k) and Txz=π7xz for χ(=X(Mn~k\ ztΞΪί(Mn-kγ. Hence F and F
are the Riemannian connections of Mn~k and Mre resp. and π is the projection
of ϊ(Mn'k) onto %(Mn-*). Then [4] for each x^I(Mn'k\ Tx is a skew-symmetric
linear operator with respect to <, > and Txy=Tyx for #, y^I(Mn~k).

THEOREM 19. Let Mn~k and Mn be pseudo-Riemannian manifolds which
satisfy the hypotheses of Theorem 17. Then for x, alf α2, •••, α r_^e%(Mn~*) we
have

(77) (PχX)(aι, G2, •••, ar,k)=π(7xX)(alf •••, ar_k, nlf •••, nk)

k _

ί=l

where nlt n2, •••, w^ αr£ ^/z^ 5βm^ α5 zn the proof of Theorem 17.

Note that Txnl may be replaced by Fxnτ since this is orthogonal to nlm (77)
follows immediately from the definition.

COROLLARY. // X is parallel and Mn~k totally geodesic in Mn, then X is
parallel.

THEOREM 20. Let Mn~k and Mn be pseudo-Riemannian manifolds which
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satisfy the hypotheses of Theorem 19. // X is nearly parallel and Mn~k totally
umbilical in Mn, then X is nearly parallel

Proof. Mn~k is totally umbilical if and only if there exists for every unit
normal n a function κ(ri)^£)(Mn~k} (depending on n) such that

Txn=κ(n)x

for all *<Ξ%(M*-*). Thus, using (77),

(78) (FJ?A')(α1, α2, •••, ar.k)=π(PxX)(al9 α2? ••• , ar-k< nι, nι, ••• > n*)

hΣ tfiAfai, α2, ••• , α r _*, nj, — , x9 ••• , n*).
Z- 1

The required result follows now at once from the definition.

11. As before let Mn be a pseudo-Riemannian manifold with metric tensor
<, > and Riemannian connection F. X is a (4, 2)-, /- or vector τr-product with
factor C2 and φ the associated (r+l)-form defined by (55). The purpose of this
section is to see if the relations given by A. GRAY [5] are valid for the de-
fined structures. They introduce the curvature and relate them with the
structure.

If θ is a jb-form on Mn and α, b9 alt ••• 9 ap<=I(Mn') we shall need the follow-
ing formulas:

(79) (F0)(α al9 - , flp)=(Γββ)(fl1> - , αp)

= a{θ(alt - , sg} -Σ
ι=ι

(80) (

(81) (/?«»β)(βι. - , αp)=-Σ ί(flι,

(82) (J0)(fl,, - , αP)=Σ Σ (-IΓ'Hβ^ll-^α^Xe* α,, - , 4,, - , αp)

where { ,̂ ••• , ek] is an orthogonal frame field on an open subset of Mn. Vθ
and F2^ are the first and second covariant derivatives of θ, #αδ=F[α,δ:ι— [Fα, Fδ]
and Δ—dd^dd is the Laplacian.

THEOREM 21. Lέtf α, b, al9 — 9 ar^I(Mn)
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V)( f l ;* ; f l ι , ,flr,*(flι, ,αr))

1, - , αr), (

+-y-(Fα&

where A(a, b) is given by

(830 A(a, V=--b± {λ(aλj - , α t+Fαfl», - , flr)

(83-) Λ( f l l, - , αr)=det «at,, fl^»<alf α> .

Proof. This formula is a straightforward calculation from the definition
(80) of V2φ where we use formula (74) of Theorem 16. Remark that with (42)

t - , ar\ X(al9

COROLLARY 1. Let a, b, a l f ••• , αre%(Mn)

(84) (rv)(α * ^ - , flr, ̂ (αi, - , flr))=(
f/ ^4 fs symmetric in a and b.

COROLLARY 2. Suppose now that we have a vector π-structure with factor
C2 and let <, > be positive definite. If F2^=0, it follows from (83) with a=b that

with (66)

thus.
If X is an r-fold vector π-structure with factor C2 with respect to a positive

definite <, > and if φ is the associated (r+Y)-form, then

and X is parallel.

If Rab denotes the curvature operator of <, >, then the Ricci-curvature k is
defined by

(85) fe(α,&)=Σlkί||-
2<Λαβi&>O

1=1

for α, b^lί(Mn\ where {elt ••• , en} is any orthogonal frame field on an open
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subset of Mn.
As in [5] we define now the Chern form γ of the (4, 2)-, /- or vector π-

product X.

DEFINITION. The Chern form γ of the (4, 2)-, /- or vector π-product with
factor C2 is the (r+l)-fold differential form γ defined by

(86) (r+l)f(flι, α£, -,αr+1)

= Σ Σ (-l)r+*+'ll*J-2<*«,«**, *(**, α l f - , ̂ , - , <*„ - , αr+1)>

for al9 ••• , αr+1<Ξ%(Mn) and any orthogonal frame field {βj, ••• , en}.
We have then

THEOREM 22. Let al9 ••• , αr+1e%(Mn) and to {elf ••• , en} &£ an orthogonal
frame field on an open subset of Mn. Then

(87) WXfli, - , flr+ι)=-Σ lk*|| £(ΓV)(«*; β*; fli, - ,flr+ι)

—(r+ΐ)γ(alt — , ar+1) .

Proof. This follows from a calculation of the Laplacian (82) using (81) and
the definition of the Chern form γ.

THEOREM 23. Let α^ ••• , αre%(Mn) and let {elt ••• , en} be an orthogonal
frame field on an open subset of Mn. Then

(88) (Jφ)(al9 .- , αr, X(al9 - , αr))=Σ l
Λ=l

C2 "

flα, - , αr, XCflj, .«• , αr))

«i, - , flr), -y(fll - , Or))-

-C2

+ C2 Σ rΣ (— l) l + J<flιΛ - Λ^Λ ... Λα r, fljΛ - Λ<ί; Λ - /\aryk(aτ,t = l J=l

where the aτ are defined by {following (34))

(89) X2(ai(alt aZ9 — , όt, — , ar)
2)
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r

.7=1

. ../. We start from formula (87) and use (83) and (89). The formula
(89) follows immediately from (34). This can be written as follows

r
+C2 Σ (—iy<<2ιΛα2Λ ••• Λα r,

 βιΛ •*• Λ^Λ -•• Λα r>α ;.

12. THEOREM 24. a^X(Mn) is an infinitesimal automorphism of the (4,2)-,

/- or vector π-structure if and only if for Vblt •••, br(=X(Mn}

r

Proof, a is an infinitesimal automorphism iff for Vblt «••, br

This is equivalent to

(93) -CaX(bί9 b2, ..., br)=± X(bl9 - , &,.!, JCabi, 6<+1, - , ftr).

Formula (91) follows now easily.

THEOREM 25. L*?ί A" and Y be two (1, r)-tensor fields on Mn, then the follow-
ing formula defines a (1, 2r)-tensor field S: for all al9 az, ~ , art blt b2, ••-, br&
I(Mn) we have

(94) S(alt a2, ,ar blt b2f — , ftr)

^f^βj, α2, "., αr), ^^j, bZl " ,

-E^αx..-..^.^..^^......*,)]^

r

— Σ Y(a\, -" , fli-!, Cfl t, A(6α, 62, ... , 6r)], c
ϊ=l

r

r

— Σ Y(blt " , 6 i _ j , C-^(αι> G2> '•• , <2r)> ^ί], ^

Zt + l, — βr)

U + 1, '•• , Or)

'< + l ,-,6r)

?i + l, '•• , 6r)

Σ !, ... , bt-lf [α;, 6J, 6i+1, ... , br\ aj+1, ... , αr)

!, ... , bt-!, [α;, frί], & i+1, .- , br\ aj+1, - , αr) .
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The proof of this theorem is immediate.
It is easy to see that in the case r=l the tensor S defined by (94) is the

Nijenhuis tensor. Therefore we define

DEFINITION. The tensor S defined by (94) is the Nijenhuis tensor of the
two (1, r)-tensors X and Y.

The tensor S defined by (94), where X= Y is a (4, 2)-, /- or vector π-structure,
is called the Nijenhuis tensor of the structure.

We obtain then as a generalization of a known theorem (see KOBAYASHI
and NOMIZU II, p. 128) :

THEOREM 26. Let αl9 α2, •«• , αre%(Mn) be infinitesimal automorphisms of the
structure defined by X. Then X(alf a2, ••• , αr) is an infinitesimal automorphism of
X if and only if

(95) V6 l f bt, " , br^I(Mn) : S(aί9 a2) - , ar bί9 b2, - , δr)=0 ,

where S is the Nijenhuis tensor of this structure.

Proof. a3 is an infinitesimal automorphism if and only if for Mbl9 ••• , 6r

(96) [flj, X(bl9 b2, ... , &r)]=i X(bl9 - , &,.lf [α,, «, &<+1> •- , 6r) .
1=1

X(aij Q<2, '" t ar) is also an infinitesimal automorphism if and only if for Mblf ••• ,

(97)

= Σ ̂ 1, - , fri-l, CJf(flι, - , flr), W, fti+l, - , *r) -
ι=l

The Nijenhuis tensor of the structure is defined by (94) and we find so

(98) -i-5(βl, α2, -. , ar ftlf &8> -. , W-C^!, fl£> - , αr),

-Σ
1=1

+ Σ X(al9 ". , α;_!, Wi, " , bi-lt [_a3ί bj,
t,J-l

It follows now from (96)

(99) Σ X(al9
1=1
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r

With the help of (97), (98) and (99) the proof is now immediate.
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