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ON THE EMBEDDING OF THE CAYLEY PLANE INTO
THE EXCEPTIONAL LIE GROUP OF TYPE F,

BY KENZI ATSUYAMA

§ 1. Introduction.

The embedding map φ of the Cayley plane Π into the exceptional Lie
group of type F4 (this group will be denoted as F4) is explicitely constructed
by I. Yokota [4]. First we study some properties of ψ and show that φ(A\
A<=Π, is a reflection map in the exceptional Jordan algebra 3. Hence, having
an idea of the reflection, we consider the structure of F4. In § 4, motivated
by the fact that F4/Sρin(9) is homeomorphic to Π, we show that any element
of F4 can be decomposed into the factors of φ(A) and Spin(9). We also show
that i^^Aut (/7, *) which means that a non-singular linear transformation a
of 3 belongs to F4 if and only if a preserves the reflection * on Π.

I wish to express my hearty thanks to Prof. K. Yamaguti and Prof. I Yo-
kota for many advices on this work.

§ 2. Preliminaries.

Let (£ be the Cayley algebra over the field R of real numbers and let 3
be the set of all 3x3 Hermitian matrices

X=X(ξ9u)=[ΰt ξ2

*ι ξj

with coefficients in <£. Define the Jordan product o in 3 by XoY=-~(XY+YX).

And define the trace, the inner product and the triple inner product by

tr(X):=ξ1JΓξ2JΓξB forX=X(ξ, w)e3

tr (X, Y, Z)=(Xo F, Z) for X, Y, Ze S.

A non-singular linear transformation a of 3 is said to be an automorphism of
3 if a(XoY)=aXoaY for X, Fe$. The group F4 of all automorphisms of 3
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is a 52-dimensional exceptional simple Lie group of type F4. Any element of
F4 makes each of (1) imariant and F4 has two subgroups Spin(9), Spin(8)
defined by the sets of all elements of F4 which make Elt El and E2 invariant
respectively, where Et is the element in Π and is the matrix with ξl=l and
all remaining terms are zero. The homogeneous space jF4/Sρin(9) is homeo-
morphic to the Cayley plane 77 which is composed of the element X of 3 with
X2=X and tr(X)=l.

We take ε16 as the space of pairs of octanion numbers (x,y) with |*|2-1-
| j>| 2<l and ε8 as the space of octanion numbers x with |*|<1. The cellular
decomposition of 77 is given in [3] : 77 has three disjoint cells e°, e8, eu where
£° is the point EB and es, e16 respectively are the sets of all points X such that
X=X(aiά3) with ^=0, α2=(l-|*Γ)1/2, a,=x for xtΞε8 and X=X(aiά3) with aλ=
(1— \x\2— M2)1/2, a2=x, a3=y for (x, j>)eε16. The cellular map g of the closure
of ε8 into 77 is defined by g(x)=X(^ά 3} with ^=0, α2=(l- I*I2)1 / 2, aB=x. And
the other cellular map / of the closure of ε16 into 77 is defined similarly. The
line e8 is the union of the cells e°, e8 and is homeomorphic to a 8-dimensional

/ 1 \2 1
sphere S8, composed of the element ( ζ , u ) of J?χ(£ with (ζ—κ-j +\u\2=—^,

by the correspondence of the element A'=(αίβJ) of e8 to the element ((α2)
2, ^3^2)

of Rx&. If we define the Hopf map y of the boundary Bd (ε16) of ε16 onto the
sphere S8 by v(x, y}=(\x\2, yx\ then map -η, restricted / to Bd (ε16), may be
also regarded as the Hopf map because we can have a following commutative
diagram.

Bd (ε16) 2 ^ e*

& homeo.

§ 3. Embedding map φ : 77 -»jF4.

The map φ of Π into F4 is defined in [4] such that

, X) for Λe77 and

where 2XxY=2XoY-tτ(X)Y-tr(Y)X+(tτ(X)tτ(Y)-(X, F))£ for X, Fe3
and for the unit matrix E.

For given A^Π, let SA be a .R-vector space consists of the element X of
3 with AoX=A(A, X). Then it holds that Ze3 belongs to the space SA if and
only if (AoX, Z)=(A, X)(A, Z) for X<=S.

PROPOSITION 3.1.
(1) φ(A) is a reflection map across SA.



EMBEDDING OF THE CAYLEY PLANE 131

(2) // atΞF4 and A^Π, aφ(A)a~1=φ(aA).
(3) For AtΞΠ, φ\A)=l (1: identity map in 3).
(4) The group F4 is generated by φ(A), A<=Π.

REMARK. (1) This map φ(A) is also obtained as the FreudenthaΓs Pers-
pectivity ΠK

A,B with A=B and κ=-l [1, (11.3.3)]. (2) The Cayley plane Π is
a symmetric space relative to φ (cf. O. Loos [2]). (3) If the domain of ψ be
extended to 3, it holds that the element X of 3 with φ(X)^F4 and XΦQ exists
in Π (the converse of [4]).

§4. Main results.

This section is devoted to show that any element of F4 can be decomposed
into the factors of φ(A) and Spin(9), and that F4=Aut (77, *).

Let S15=(x,y}<Ξ&x®\x\2+\y\2=- (Cε16), η = f\Sn and e^=el6-

J, where / is the cellular map of ε16 defined in § 2. Then η is a homeomor-
phism of S15.

PROPOSITION 4.1. For
(1) // B^e^\J{El}J there exist exactly two Aλ, A2 in e$ such that φ(A1}E1=

B, φ(A2}E1=B.
(2) // BtΞe8, the set {A<=Π\φ(A)El—B} is homeomorphic to a 7-dimen-

sional sphere and 7}(S15ϊ={J{A^Π\φ(A)E1=B}.

(3) If B=E19 then

Proof. Let A=A(yiyJ)*ΞΠ, y,=(l- \y2\
2- I^IT2, and put λ=y*. Then

Hence, for B=B(xlxJ)^Π, ^=(1- \x2\
2- U3|

2)1/2, the element A of Π with
φ(A)E1=B can be given as:

(1) If B^e^{El}J we have

) = Vl+?ι = _ *2

That Alt A2 exist in 46 can be seen from the fact that A=A(yiyJ)^Π exists

^
in e^ if and only if 3Ί=£l, — .̂

(2) If 5ee8, the solution is affected by the attaching of Bd (ε16) to e8 by
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the Hopf map η. Since xl in B is 0, ^=-9". So A is necessary to be one of

the form A=A(yiyJ\ JΊ=^ Hence we have {Ae Π \φ(Λ)E1 = B} C^(S15)

because (jy2, j>3)^S15 and A=η(yZjy^. Define a homeomorphism h : Slδ-*Bd (ε16)

by h(x,y)=(^/2x, V2y) and define a map H of ί(S15) onto e8 by
for A^η(S15). Then we obtain the following commutative diagram.

Bd (ε16) -- > e8

It follows that H is the Hopf map. Therefore the inverse-image of H is a 7-
dimensional sphere. The latter assertion is evident from the diagram.

(3) If B=E19 it is easy to solve φ(A)El=E1.
We shall use Lemma 4.2 and Proposition 4.3 for the decomposition of any

element of Spin (9).

LEMMA 4.2. For αejF4, the following two conditions are equivalent. (1) α<=
Spin(9), (2) α£2, aE3^e8.

\= , ω=g\S7 and 4-^8-{ω(S7)UE2}, where g is theLet S7=

cellular map of ε8 defined in § 2. Then ω is a homeomorphism of S7.

PROPOSITION 4.3. For B<=e8,
(1) // £:££2, EΛ, there exist exactly two Al9 A2 in e\ such that φ(AJE2=B,

φ(A2)E2=B.
(2) // B=E99 ω(S^={A<
(3) // B=E» {E2) EB} =

Proof. The proof is similar to that of Proposition 4.1. If BΦE2, Es, for
B=B(xlxJ}^e8 with x2=(l- U3|

2)1/2, the element A of e8 with φ(A)E2=B can
be given as

THEOREM 4.4. For
(1) // αφ Spin (9) αnίί aE^e*, there exist exactly two pairs ( A l f β), (A2, γ)

in e$ X Spin (9) such that a=φ(A^β, a=φ(A2}γ.
(2) // α^Spin(9) and aE^e*, the set {A^Π\a=φ(A)β for some β^

Spin(9)} is homeomorphic to a 1'-dimensional sphere.
(3) // αe Spin (9), αφ Spin (8) and aE2φE^ the?e exist exactly two pairs
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(Λ, β\ (A2, γ) in 4 X Spin (8) such that a=φ(AJβ, a=φ(A2)γ.
(4) // αeSρin(9), α^Spin(8) and aE2=E3, ω(S7)={A^es\a=φ(A)β for

some βeSpin(8)}.
(5) If a^Spm(S)9 for Et, there exists βt in Spin (8) such that a=φ(Eί}βί

(i=l, 2, 3).

Proof. This Theorem can be proved by Proposition 4.1, 4.3, For instance,
in case of (1), if we put aE1=B9 we can get Aτ in Π such that φ(Al)E1—B
(i=l, 2) by Proposition 4.1 (1). Hence, put β=φ(A1)a and γ—ψ(Az)a, then β, γ
e Spin (9). Therefore we have exactly two pairs (Alt β), (A2, γ} in 0$ X Spin (9)
such that a=φ(AJβ, a=φ(A2)γ.

Now we study the structure of F4 with an idea of reflection. Define Aut
(77, *) be the set of non-singular linear transformations or of 3 such that a(A*B)
=aA*aB for A, B^Π, where this * is defined in 3 by X*Y=φ(X)Y=Y-4XoY
+4X(X, Y) for X, F<Ξ3. Then our aim is to prove F4=Aut(Π, *).

LEMMA 4.5. Let a be a non-singular linear transformation of 3, then the
following two conditions are equivalent. (1) a^F^ (2) a(AoE) = aAoaB for
A, £e77.

LEMMA 4.6. For A^Π, there exists a sequence {Bn} such that Bn<=Π, EnΦ A
for every n<=N and lim Bn=A.

THEOREM 4.7. F4=Aut (77, *).

Proof. Let # eF4, then we have a(A^B)=a(φ(A)B)=aφ(A)a~1aB=φ(aA')aB
=aA*aB for A, J5e77. Conversely, assume αeAut(77, *), then for A, B^Π,
we get a(A*B}=aA*aB and a(B*A)=aB*aA. Namely, we have —a(AoB) +
aA(A, B}^-aAoaB+aA(aA, aB) and -a(BoA}+aB(B, A)=-aBoaA+aB(aB,
a A). From these equations, we see that a(A— B)(A, B} — a(A—B)(aA, aB).
Hence, if AΦB, we obtain (A, B)—(aA, aB} because a is a non-singular linear
transformation of 3. Next, let A be fixed arbitrary, then we prove that (a A,
aA)=l. Define two maps f,g: Π—R by f(B)=(A, B\ g(B)=(aA, aB) for B^Π.
Then, by the continuity of a and of the inner product, both /, g are continuous.
For this A, let {Bn} satisfy the condition of Lemma 4.6, then lim Bn=A and
f(Bn}=g(Bn\ Hence, we have (a A, aA)=g(A)=g(lim Bn)=limg(Bn)=limf(Bn)
=f(lim Bn)=f(A)=l. So, we get that (A, B)=(aA, aB) for Λ B^Π. From
this fact and —a(AoB)+aA(A, B} = — aAoaB+aA(aA,aB}J we obtain a(Aoβ)
= aAoaB. Since A, B are arbitrary, by Lemma 4.5, we conclude that

REMARK. Define a new multiplication * in the Lie group F^ by a*β=aβ~1a
for a, β^Fi, then we can know that F±=φ(Π) * Spin (9) by Theorem 4.4, [5,
Theorem 7.2] and also know that φ is a representation of (projective space
77, *) into (Lie group F4, *).
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