ON THE EMBEDDING OF THE CAYLEY PLANE INTO THE EXCEPTIONAL LIE GROUP OF TYPE F_4

By Kenzi Atsuyama

§1. Introduction.

The embedding map φ of the Cayley plane Π into the exceptional Lie group of type F_4 (this group will be denoted as F_4) is explicitly constructed by I. Yokota [4]. First we study some properties of φ and show that $\varphi(A)$, $A \in \Pi$, is a reflection map in the exceptional Jordan algebra \mathfrak{B} . Hence, having an idea of the reflection, we consider the structure of F_4 . In § 4, motivated by the fact that $F_4/\text{Spin}(9)$ is homeomorphic to Π , we show that any element of F_4 can be decomposed into the factors of $\varphi(A)$ and Spin(9). We also show that F_4 =Aut (Π , *) which means that a non-singular linear transformation α of \mathfrak{B} belongs to F_4 if and only if α preserves the reflection * on Π .

I wish to express my hearty thanks to Prof. K. Yamaguti and Prof. I Yokota for many advices on this work.

§ 2. Preliminaries.

Let \mathfrak{E} be the Cayley algebra over the field R of real numbers and let \mathfrak{F} be the set of all 3×3 Hermitian matrices

$$X = X(\xi, u) = \begin{pmatrix} \xi_1 & u_3 & \bar{u}_2 \\ \bar{u}_3 & \xi_2 & u_1 \\ u_2 & \bar{u}_1 & \xi_3 \end{pmatrix}$$

with coefficients in \mathfrak{E} . Define the Jordan product \circ in \mathfrak{F} by $X \circ Y = \frac{1}{2}(XY + YX)$. And define the trace, the inner product and the triple inner product by

(1)

$$tr (X) = \xi_1 + \xi_2 + \xi_3 \qquad \text{for } X = X(\xi, u) \in \mathfrak{Z}$$

$$(X, Y) = tr (X \circ Y)$$

$$tr (X, Y, Z) = (X \circ Y, Z) \qquad \text{for } X, Y, Z \in \mathfrak{Z}.$$

A non-singular linear transformation α of \Im is said to be an automorphism of \Im if $\alpha(X \circ Y) = \alpha X \circ \alpha Y$ for X, $Y \in \Im$. The group F_4 of all automorphisms of \Im

Recieved June 24, 1974

KENZI ATUYAMA

is a 52-dimensional exceptional simple Lie group of type F_4 . Any element of F_4 makes each of (1) invariant and F_4 has two subgroups Spin(9), Spin(8) defined by the sets of all elements of F_4 which make E_1 , E_1 and E_2 invariant respectively, where E_i is the element in Π and is the matrix with $\xi_i=1$ and all remaining terms are zero. The homogeneous space F_4 /Spin(9) is homeomorphic to the Cayley plane Π which is composed of the element X of \Im with $X^2=X$ and tr (X)=1.

We take ε^{16} as the space of pairs of octanion numbers (x, y) with $|x|^2 + |y|^2 < 1$ and ε^8 as the space of octanion numbers x with |x| < 1. The cellular decomposition of Π is given in [3]: Π has three disjoint cells e^0 , e^8 , e^{16} where e^0 is the point E_8 and e^8 , e^{16} respectively are the sets of all points X such that $X = X(a_i \bar{a}_j)$ with $a_1 = 0$, $a_2 = (1 - |x|^2)^{1/2}$, $a_3 = x$ for $x \in \varepsilon^8$ and $X = X(a_i \bar{a}_j)$ with $a_1 = (1 - |x|^2 - |y|^2)^{1/2}$, $a_2 = x$, $a_3 = y$ for $(x, y) \in \varepsilon^{16}$. The cellular map g of the closure of ε^8 into Π is defined by $g(x) = X(a_i \bar{a}_j)$ with $a_1 = 0$, $a_2 = (1 - |x|^2)^{1/2}$, $a_3 = x$. And the other cellular map f of the closure of ε^{16} into Π is defined similarly. The line $\bar{\varepsilon}^8$ is the union of the cells e^0 , e^8 and is homeomorphic to a 8-dimensional sphere S^8 , composed of the element (ξ, u) of $\mathbf{R} \times \mathfrak{E}$ with $\left(\xi - \frac{1}{2}\right)^2 + |u|^2 = \frac{1}{4}$, by the correspondence of the element $X = (a_i \bar{a}_j)$ of $\bar{\varepsilon}^8$ to the element $((a_2)^2, a_3 \bar{a}_2)$ of $\mathbf{R} \times \mathfrak{E}$. If we define the Hopf map ν of the boundary Bd (ε^{16}) of ε^{16} onto the sphere S^8 by $\nu(x, y) = (|x|^2, y\bar{x})$, then map η , restricted f to Bd (ε^{16}) , may be also regarded as the Hopf map because we can have a following commutative diagram.

§ 3. Embedding map $\varphi: \Pi \rightarrow F_4$.

The map φ of Π into F_4 is defined in [4] such that

$$\varphi(A)X = 16A \times (A \times X) + 4A \circ X - 3X$$

$$= X - 4A \circ X + 4A(A, X) \quad \text{for } A \in \Pi \text{ and } X \in \mathfrak{I},$$

where $2X \times Y = 2X \circ Y - \operatorname{tr}(X)Y - \operatorname{tr}(Y)X + (\operatorname{tr}(X)\operatorname{tr}(Y) - (X, Y))E$ for $X, Y \in \mathfrak{Z}$ and for the unit matrix E.

For given $A \in \Pi$, let S_A be a **R**-vector space consists of the element X of \mathfrak{Y} with $A \circ X = A(A, X)$. Then it holds that $Z \in \mathfrak{Y}$ belongs to the space S_A if and only if $(A \circ X, Z) = (A, X)(A, Z)$ for $X \in \mathfrak{Y}$.

PROPOSITION 3.1.

(1) $\varphi(A)$ is a reflection map across S_A .

130

- (2) If $\alpha \in \mathbf{F}_4$ and $A \in \Pi$, $\alpha \varphi(A) \alpha^{-1} = \varphi(\alpha A)$.
- (3) For $A \in \Pi$, $\varphi^2(A) = 1$ (1: identity map in 3).
- (4) The group F_4 is generated by $\varphi(A)$, $A \in \Pi$.

REMARK. (1) This map $\varphi(A)$ is also obtained as the Freudenthal's Perspectivity $\Pi_{A,B}^{\kappa}$ with A=B and $\kappa=-1$ [1, (11.3.3)]. (2) The Cayley plane Π is a symmetric space relative to φ (cf. O. Loos [2]). (3) If the domain of φ be extended to \Im , it holds that the element X of \Im with $\varphi(X) \in F_4$ and $X \neq 0$ exists in Π (the converse of [4]).

§4. Main results.

This section is devoted to show that any element of F_4 can be decomposed into the factors of $\varphi(A)$ and Spin(9), and that F_4 =Aut (II, *).

Let $S^{15} = \{(x, y) \in \mathfrak{E} \times \mathfrak{E} \mid |x|^2 + |y|^2 = -\frac{1}{2} \} (\subset \varepsilon^{16}), \ \overline{\eta} = f \mid S^{15} \text{ and } e_*^{16} = e^{16} - \{\overline{\eta}(S^{15}) \cup E_1\}$, where f is the cellular map of ε^{16} defined in §2. Then $\overline{\eta}$ is a homeomorphism of S^{15} .

PROPOSITION 4.1. For $B \in \Pi$,

(1) If $B \in \overline{e}^8 \cup \{E_1\}$, there exist exactly two A_1 , A_2 in e_*^{16} such that $\varphi(A_1)E_1 = B$, $\varphi(A_2)E_1 = B$.

(2) If $B \in \bar{e}^{8}$, the set $\{A \in \Pi | \varphi(A)E_{1} = B\}$ is homeomorphic to a 7-dimensional sphere and $\bar{\eta}(S^{15}) = \bigcup_{R} \{A \in \Pi | \varphi(A)E_{1} = B\}$.

(3) If
$$B = E_1$$
, then $\bar{e}^8 \cup \{E_1\} = \{A \in \Pi \mid \varphi(A)E_1 = E_1\}$.

Proof. Let $A = A(y_i \bar{y}_j) \in \Pi$, $y_1 = (1 - |y_2|^2 - |y_3|^2)^{1/2}$, and put $\lambda = y_1^2$. Then

$$\varphi(A)E_{1} = \begin{pmatrix} (1-2\lambda)^{2} & (-2+4\lambda)y_{1}\bar{y}_{2} & (-2+4\lambda)y_{1}\bar{y}_{3} \\ (-2+4\lambda)y_{2}\bar{y}_{1} & 4\lambda|y_{2}|^{2} & 4\lambda y_{2}\bar{y}_{3} \\ (-2+4\lambda)y_{3}\bar{y}_{1} & 4\lambda y_{3}\bar{y}_{2} & 4\lambda|y_{3}|^{2} \end{pmatrix}.$$

Hence, for $B=B(x_1\bar{x}_1)\in\Pi$, $x_1=(1-|x_2|^2-|x_3|^2)^{1/2}$, the element A of Π with $\varphi(A)E_1=B$ can be given as:

(1) If $B \in \bar{e}^{8} \cup \{E_{1}\}$, we have

$$A_{1} = A(y_{i}\bar{y}_{j}), \quad y_{1} = \frac{\sqrt{1-x_{1}}}{\sqrt{2}} \quad y_{2} = \frac{-x_{2}}{\sqrt{2}\sqrt{1-x_{1}}} \quad y_{3} = \frac{-x_{3}}{\sqrt{2}\sqrt{1-x_{1}}},$$

$$A_{2} = A(y_{i}\bar{y}_{j}), \quad y_{1} = \frac{\sqrt{1+x_{1}}}{\sqrt{2}} \quad y_{1} = \frac{x_{2}}{\sqrt{2}\sqrt{1+x_{1}}} \quad y_{3} = \frac{x_{3}}{\sqrt{2}\sqrt{1+x_{1}}}.$$

That A_1 , A_2 exist in e_*^{16} can be seen from the fact that $A = A(y_i \bar{y}_j) \in \Pi$ exists in e_*^{16} if and only if $y_1 \neq 1$, $\frac{1}{\sqrt{2}}$.

(2) If $B \in \bar{e}^{8}$, the solution is affected by the attaching of Bd (ϵ^{16}) to \bar{e}^{8} by

the Hopf map η . Since x_1 in B is 0, $\lambda = \frac{1}{2}$. So A is necessary to be one of the form $A = A(y_i \bar{y}_j)$, $y_1 = \frac{1}{\sqrt{2}}$. Hence we have $\{A \in \Pi | \varphi(A)E_1 = B\} \subset \bar{\eta}(S^{15})$ because $(y_2, y_3) \in S^{15}$ and $A = \bar{\eta}(y_2, y_3)$. Define a homeomorphism $h: S^{15} \rightarrow Bd(\varepsilon^{16})$ by $h(x, y) = (\sqrt{2}x, \sqrt{2}y)$ and define a map H of $\bar{\eta}(S^{15})$ onto \bar{e}^8 by $H(A) = \varphi(A)E_1$ for $A \in \bar{\eta}(S^{15})$. Then we obtain the following commutative diagram.

It follows that H is the Hopf map. Therefore the inverse-image of H is a 7-dimensional sphere. The latter assertion is evident from the diagram.

(3) If $B=E_1$, it is easy to solve $\varphi(A)E_1=E_1$.

We shall use Lemma 4.2 and Proposition 4.3 for the decomposition of any element of Spin (9).

LEMMA 4.2. For $\alpha \in F_4$, the following two conditions are equivalent. (1) $\alpha \in$ Spin(9), (2) αE_2 , $\alpha E_3 \in \overline{e}^8$.

Let $S^{7} = \left\{ x \in \mathfrak{G} \mid |x| = \frac{1}{\sqrt{2}} \right\}$, $\omega = g \mid S^{7}$ and $e_{*}^{8} = e^{8} - \{\omega(S^{7}) \cup E_{2}\}$, where g is the cellular map of ε^{8} defined in § 2. Then ω is a homeomorphism of S^{7} .

PROPOSITION 4.3. For $B \in \bar{e}^{8}$,

(1) If $B \neq E_2$, E_3 , there exist exactly two A_1 , A_2 in e_*^8 such that $\varphi(A_1)E_2=B$, $\varphi(A_2)E_2=B$.

(2) If $B = E_3$, $\omega(S^7) = \{A \in \bar{e}^8 | \varphi(A)E_2 = E_3\}.$ (3) If $B = E_2$, $\{E_2, E_3\} = \{A \in \bar{e}^8 | \varphi(A)E_2 = E_2\}.$

Proof. The proof is similar to that of Proposition 4.1. If $B \neq E_2$, E_3 , for $B = B(x_i \bar{x}_j) \in \bar{e}^8$ with $x_2 = (1 - |x_3|^2)^{1/2}$, the element A of \bar{e}^8 with $\varphi(A)E_2 = B$ can be given as

$$A_{1} = A(y_{i}\bar{y}_{j}), \quad y_{1} = 0 \quad y_{2} = \frac{\sqrt{1-x_{2}}}{\sqrt{2}} \quad y_{3} = \frac{-x_{3}}{\sqrt{2}\sqrt{1-x_{2}}},$$

$$A_{2} = A(y_{i}\bar{y}_{j}), \quad y_{1} = 0 \quad y_{2} = \frac{\sqrt{1+x_{2}}}{\sqrt{2}} \quad y_{3} = \frac{x_{3}}{\sqrt{2}\sqrt{1+x_{2}}}.$$

THEOREM 4.4. For $\alpha \in \mathbf{F}_4$,

(1) If $\alpha \notin \text{Spin}(9)$ and $\alpha E_1 \notin \overline{e}^3$, there exist exactly two pairs (A_1, β) , (A_2, γ) in $e_*^{16} \times \text{Spin}(9)$ such that $\alpha = \varphi(A_1)\beta$, $\alpha = \varphi(A_2)\gamma$.

(2) If $\alpha \notin \text{Spin}(9)$ and $\alpha E_1 \in \overline{e}^3$, the set $\{A \in \Pi \mid \alpha = \varphi(A)\beta \text{ for some } \beta \in \text{Spin}(9)\}$ is homeomorphic to a 7-dimensional sphere.

(3) If $\alpha \in \text{Spin}(9)$, $\alpha \notin \text{Spin}(8)$ and $\alpha E_2 \neq E_3$, there exist exactly two pairs

 $(A_1, \beta), (A_2, \gamma) \text{ in } e_*^8 \times \text{Spin}(8) \text{ such that } \alpha = \varphi(A_1)\beta, \ \alpha = \varphi(A_2)\gamma.$

(4) If $\alpha \in \text{Spin}(9)$, $\alpha \notin \text{Spin}(8)$ and $\alpha E_2 = E_3$, $\omega(S^7) = \{A \in \overline{e}^8 | \alpha = \varphi(A)\beta \text{ for some } \beta \in \text{Spin}(8)\}.$

(5) If $\alpha \in \text{Spin}(8)$, for E_i , there exists β_i in Spin(8) such that $\alpha = \varphi(E_i)\beta_i$ (i=1, 2, 3).

Proof. This Theorem can be proved by Proposition 4.1, 4.3. For instance, in case of (1), if we put $\alpha E_1 = B$, we can get A_i in Π such that $\varphi(A_i)E_1 = B$ (i=1, 2) by Proposition 4.1 (1). Hence, put $\beta = \varphi(A_1)\alpha$ and $\gamma = \varphi(A_2)\alpha$, then β , $\gamma \in \text{Spin (9)}$. Therefore we have exactly two pairs (A_1, β) , (A_2, γ) in $e_*^{16} \times \text{Spin (9)}$ such that $\alpha = \varphi(A_1)\beta$, $\alpha = \varphi(A_2)\gamma$.

Now we study the structure of F_4 with an idea of reflection. Define Aut $(\Pi, *)$ be the set of non-singular linear transformations α of \Im such that $\alpha(A*B) = \alpha A*\alpha B$ for $A, B \in \Pi$, where this * is defined in \Im by $X*Y=\varphi(X)Y=Y-4X\circ Y + 4X(X, Y)$ for $X, Y \in \Im$. Then our aim is to prove F_4 =Aut $(\Pi, *)$.

LEMMA 4.5. Let α be a non-singular linear transformation of \mathfrak{F} , then the following two conditions are equivalent. (1) $\alpha \in \mathbf{F}_4$, (2) $\alpha(A \circ B) = \alpha A \circ \alpha B$ for $A, B \in \Pi$.

LEMMA 4.6. For $A \in \Pi$, there exists a sequence $\{B_n\}$ such that $B_n \in \Pi$, $B_n \neq A$ for every $n \in N$ and $\lim B_n = A$.

THEOREM 4.7. $F_4 = \text{Aut}(\Pi, *)$.

Proof. Let $\alpha \in \mathbf{F}_4$, then we have $\alpha(A*B) = \alpha(\varphi(A)B) = \alpha\varphi(A)\alpha^{-1}\alpha B = \varphi(\alpha A)\alpha B$ = $\alpha A*\alpha B$ for $A, B \in \mathbf{II}$. Conversely, assume $\alpha \in \operatorname{Aut}(\mathbf{II}, *)$, then for $A, B \in \mathbf{II}$, we get $\alpha(A*B) = \alpha A*\alpha B$ and $\alpha(B*A) = \alpha B*\alpha A$. Namely, we have $-\alpha(A \circ B) + \alpha A(A, B) = -\alpha A \circ \alpha B + \alpha A(\alpha A, \alpha B)$ and $-\alpha(B \circ A) + \alpha B(B, A) = -\alpha B \circ \alpha A + \alpha B(\alpha B, \alpha A)$. From these equations, we see that $\alpha(A-B)(A, B) = \alpha(A-B)(\alpha A, \alpha B)$. Hence, if $A \neq B$, we obtain $(A, B) = (\alpha A, \alpha B)$ because α is a non-singular linear transformation of \mathfrak{S} . Next, let A be fixed arbitrary, then we prove that $(\alpha A, \alpha A) = 1$. Define two maps $f, g: \mathbf{II} \to \mathbf{R}$ by $f(B) = (A, B), g(B) = (\alpha A, \alpha B)$ for $B \in \mathbf{II}$. Then, by the continuity of α and of the inner product, both f, g are continuous. For this A, let $\{B_n\}$ satisfy the condition of Lemma 4.6, then $\lim B_n = A$ and $f(B_n) = g(B_n)$. Hence, we have $(\alpha A, \alpha A) = g(A) = g(\lim B_n) = \lim g(B_n) = \lim f(B_n) = f(\lim B_n) = f(A) = 1$. So, we get that $(A, B) = (\alpha A, \alpha B)$ for $A, B \in \mathbf{II}$. From this fact and $-\alpha(A \circ B) + \alpha A(A, B) = -\alpha A \circ \alpha B + \alpha A(\alpha A, \alpha B)$, we obtain $\alpha(A \circ B) = \alpha A \circ \alpha B$. Since A, B are arbitrary, by Lemma 4.5, we conclude that $\alpha \in \mathbf{F}_4$.

REMARK. Define a new multiplication * in the Lie group F_4 by $\alpha*\beta=\alpha\beta^{-1}\alpha$ for $\alpha, \beta \in F_4$, then we can know that $F_4=\varphi(\Pi)*$ Spin (9) by Theorem 4.4, [5, Theorem 7.2] and also know that φ is a representation of (projective space $\Pi, *$) into (Lie group $F_4, *$).

KENZI ATUYAMA

References

- [1] H. FREUDENTHAL, Beziehungen der E_7 und E_8 zur Oktavenebene. IV. Indag. Math. 17 (1955), 277-285.
- [2] O. Loos, Spiegelungsräume und homogene symmetrische Räume. Math. Z. 99 (1967), 141-170.
- [3] I. YOKOTA, On the cell structure of the octanion projective plane II. J. Inst. Polytech. Osaka City Univ. Ser. A. 6 (1955), 31-37.
- [4] I. YOKOTA, Embeddings of projective spaces into elliptic projective Lie groups. Proc. Japan Acad. 35 (1959), 281-283.
- [5] I. YOKOTA, Exceptional Lie group F_4 and its representation rings. J. Fac. Sci. Shinshu Univ. 3 (1968), 35-60.

FACULTY OF SCIENCE, KUMAMOTO UNIVERSITY