ON THE EMBEDDING OF THE CAYLEY PLANE INTO THE EXCEPTIONAL LIE GROUP OF TYPE F_{4}

By Kenzi Atsuyama

§ 1. Introduction.

The embedding map φ of the Cayley plane Π into the exceptional Lie group of type \boldsymbol{F}_{4} (this group will be denoted as \boldsymbol{F}_{4}) is explicitely constructed by I. Yokota [4]. First we study some properties of φ and show that $\varphi(A)$, $A \in \Pi$, is a reflection map in the exceptional Jordan algebra \Im. Hence, having an idea of the reflection, we consider the structure of \boldsymbol{F}_{4}. In $\S 4$, motivated by the fact that $\boldsymbol{F}_{4} / \operatorname{Spin}(9)$ is homeomorphic to Π, we show that any element of \boldsymbol{F}_{4} can be decomposed into the factors of $\varphi(A)$ and $\operatorname{Spin}(9)$. We also show that $\boldsymbol{F}_{4}=$ Aut $(\Pi, *)$ which means that a non-singular linear transformation α of \mathfrak{J} belongs to \boldsymbol{F}_{4} if and only if α preserves the reflection $*$ on Π.

I wish to express my hearty thanks to Prof. K. Yamaguti and Prof. I Yokota for many advices on this work.

§ 2. Preliminaries.

Let \mathfrak{F} be the Cayley algebra over the field \boldsymbol{R} of real numbers and let \mathfrak{J} be the set of all 3×3 Hermitian matrices

$$
X=X(\xi, u)=\left(\begin{array}{lll}
\xi_{1} & u_{3} & \bar{u}_{2} \\
\bar{u}_{3} & \xi_{2} & u_{1} \\
u_{2} & \bar{u}_{1} & \xi_{3}
\end{array}\right)
$$

with coefficients in \mathfrak{F}. Define the Jordan product \circ in \Im by $X \circ Y=\frac{1}{2}(X Y+Y X)$. And define the trace, the inner product and the triple inner product by

$$
\begin{array}{ll}
\operatorname{tr}(X)=\xi_{1}+\xi_{2}+\xi_{3} & \text { for } X=X(\xi, u) \in \Im \\
(X, Y)=\operatorname{tr}(X \circ Y) & \tag{1}\\
\operatorname{tr}(X, Y, Z)=(X \circ Y, Z) & \text { for } X, Y, Z \in \Im .
\end{array}
$$

A non-singular linear transformation α of \mathfrak{F} is said to be an automorphism of \mathfrak{F} if $\alpha(X \circ Y)=\alpha X \circ \alpha Y$ for $X, Y \in \mathfrak{F}$. The group \boldsymbol{F}_{4} of all automorphisms of \mathfrak{F}

Recieved June 24, 1974
is a 52 -dimensional exceptional simple Lie group of type \boldsymbol{F}_{4}. Any element of \boldsymbol{F}_{4} makes each of (1) invariant and \boldsymbol{F}_{4} has two subgroups $\operatorname{Spin}(9)$, $\operatorname{Spin}(8)$ defined by the sets of all elements of \boldsymbol{F}_{4} which make E_{1}, E_{1} and E_{2} invariant respectively, where E_{i} is the element in Π and is the matrix with $\xi_{\imath}=1$ and all remaining terms are zero. The homogeneous space $\boldsymbol{F}_{4} / \operatorname{Spin}(9)$ is homeomorphic to the Cayley plane Π which is composed of the element X of \mathfrak{J} with $X^{2}=X$ and $\operatorname{tr}(X)=1$.

We take ε^{16} as the space of pairs of octanion numbers (x, y) with $|x|^{2}+$ $|y|^{2}<1$ and ε^{8} as the space of octanion numbers x with $|x|<1$. The cellular decomposition of Π is given in [3]: Π has three disjoint cells e^{0}, e^{8}, e^{16} where e^{0} is the point E_{3} and e^{8}, e^{16} respectively are the sets of all points X such that $X=X\left(a_{i} \bar{a}_{j}\right)$ with $a_{1}=0, a_{2}=\left(1-|x|^{2}\right)^{1 / 2}, a_{3}=x$ for $x \in \varepsilon^{8}$ and $X=X\left(a_{i} \bar{a}_{j}\right)$ with $a_{1}=$ $\left(1-|x|^{2}-|y|^{2}\right)^{1 / 2}, a_{2}=x, a_{3}=y$ for $(x, y) \in \varepsilon^{16}$. The cellular map g of the closure of ε^{8} into Π is defined by $g(x)=X\left(a_{i} \bar{a}_{j}\right)$ with $a_{1}=0, a_{2}=\left(1-|x|^{2}\right)^{1 / 2}, a_{3}=x$. And the other cellular map f of the closure of ε^{16} into Π is defined similarly. The line \bar{e}^{8} is the union of the cells e^{0}, e^{8} and is homeomorphic to a 8-dimensional sphere S^{8}, composed of the element (ξ, u) of $\boldsymbol{R} \times \mathfrak{F}$ with $\left(\xi-\frac{1}{2}\right)^{2}+|u|^{2}=\frac{1}{4}$, by the correspondence of the element $X=\left(a_{i} \bar{a}_{\jmath}\right)$ of \bar{e}^{8} to the element $\left(\left(a_{2}\right)^{2}, a_{3} \bar{a}_{2}\right)$ of $\boldsymbol{R} \times$ §. If we define the Hopf map ν of the boundary $\operatorname{Bd}\left(\varepsilon^{16}\right)$ of ε^{16} onto the sphere S^{8} by $\nu(x, y)=\left(|x|^{2}, y \bar{x}\right)$, then map η, restricted f to $\operatorname{Bd}\left(\varepsilon^{16}\right)$, may be also regarded as the Hopf map because we can have a following commutative diagram.

§ 3. Embedding map $\varphi: \Pi \rightarrow \boldsymbol{F}_{4}$.
The map φ of Π into \boldsymbol{F}_{4} is defined in [4] such that

$$
\begin{aligned}
\varphi(A) X & =16 A \times(A \times X)+4 A \circ X-3 X \\
& =X-4 A \circ X+4 A(A, X) \quad \text { for } A \in \Pi \text { and } X \in \Im,
\end{aligned}
$$

where $2 X \times Y=2 X \circ Y-\operatorname{tr}(X) Y-\operatorname{tr}(Y) X+(\operatorname{tr}(X) \operatorname{tr}(Y)-(X, Y)) E$ for $X, Y \in \Im$ and for the unit matrix E.

For given $A \in \Pi$, let S_{A} be a \boldsymbol{R}-vector space consists of the element X of \mathfrak{F} with $A \circ X=A(A, X)$. Then it holds that $Z \in \mathfrak{F}$ belongs to the space S_{A} if and only if $(A \circ X, Z)=(A, X)(A, Z)$ for $X \in \mathfrak{J}$.

Proposition 3.1.
(1) $\varphi(A)$ is a reflection map across S_{A}.
(2) If $\alpha \in \boldsymbol{F}_{4}$ and $A \in \Pi, \alpha \varphi(A) \alpha^{-1}=\varphi(\alpha A)$.
(3) For $A \in \Pi, \varphi^{2}(A)=1$ (1: identity map in §).
(4) The group \boldsymbol{F}_{4} is generated by $\varphi(A), A \in \Pi$.

Remark. (1) This map $\varphi(A)$ is also obtained as the Freudenthal's Perspectivity $\Pi_{A, B}^{\kappa}$ with $A=B$ and $\kappa=-1[1,(11.3 .3)]$. (2) The Cayley plane Π is a symmetric space relative to φ (cf. O. Loos [2]). (3) If the domain of φ be extended to \mathfrak{J}, it holds that the element X of \mathfrak{F} with $\varphi(X) \in \boldsymbol{F}_{4}$ and $X \neq 0$ exists in Π (the converse of [4]).

§ 4. Main results.

This section is devoted to show that any element of \boldsymbol{F}_{4} can be decomposed into the factors of $\varphi(A)$ and $\operatorname{Spin}(9)$, and that $\boldsymbol{F}_{4}=\operatorname{Aut}(\Pi, *)$.

Let $S^{15}=\left\{(x, y) \in \mathfrak{E} \times\left.\mathfrak{F}| | x\right|^{2}+|y|^{2}=-\frac{1}{2}\right\}\left(\subset \varepsilon^{16}\right), \bar{\eta}=f \mid S^{15}$ and $e_{*}^{16}=e^{16}-\left\{\bar{\eta}\left(S^{15}\right)\right.$ $\left.\cup E_{1}\right\}$, where f is the cellular map of ε^{16} defined in $\S 2$. Then $\bar{\eta}$ is a homeomorphism of S^{15}.

Proposition 4.1. For $B \in \Pi$,
(1) If $B \notin \bar{e}^{-8} \cup\left\{E_{1}\right\}$, there exist exactly two A_{1}, A_{2} in e_{*}^{16} such that $\varphi\left(A_{1}\right) E_{1}=$ $B, \varphi\left(A_{2}\right) E_{1}=B$.
(2) If $B \in \bar{e}^{8}$, the set $\left\{A \in \Pi \mid \varphi(A) E_{1}=B\right\}$ is homeomorphic to a 7-dimensional sphere and $\bar{\eta}\left(S^{15}\right)=\bigcup_{B}\left\{A \in \Pi \mid \varphi(A) E_{1}=B\right\}$.
(3) If $B=E_{1}$, then $\bar{e}^{8} \cup\left\{E_{1}\right\}=\left\{A \in \Pi \mid \varphi(A) E_{1}=E_{1}\right\}$.

Proof. Let $A=A\left(y_{i} \bar{y}_{j}\right) \in \Pi, y_{1}=\left(1-\left|y_{2}\right|^{2}-\left|y_{3}\right|^{2}\right)^{1 / 2}$, and put $\lambda=y_{1}{ }^{2}$. Then

$$
\varphi(A) E_{1}=\left(\begin{array}{lll}
(1-2 \lambda)^{2} & (-2+4 \lambda) y_{1} \bar{y}_{2} & (-2+4 \lambda) y_{1} \bar{y}_{3} \\
(-2+4 \lambda) y_{2} \bar{y}_{1} & 4 \lambda\left|y_{2}\right|^{2} & 4 \lambda y_{2} \bar{y}_{3} \\
(-2+4 \lambda) y_{3} \bar{y}_{1} & 4 \lambda y_{3} \bar{y}_{2} & 4 \lambda\left|y_{3}\right|^{2}
\end{array}\right) .
$$

Hence, for $B=B\left(x_{2} \bar{x}_{j}\right) \in \Pi, x_{1}=\left(1-\left|x_{2}\right|^{2}-\left|x_{3}\right|^{2}\right)^{1 / 2}$, the element A of Π with $\varphi(A) E_{1}=B$ can be given as:
(1) If $B \notin \bar{e}^{8} \cup\left\{E_{1}\right\}$, we have

$$
\begin{array}{llll}
A_{1}=A\left(y_{i} \bar{y}_{j}\right), & y_{1}=\frac{\sqrt{1-x_{1}}}{\sqrt{2}} & y_{2}=\overline{\sqrt{2}} \frac{-x_{2}}{\sqrt{1-x_{1}}} & y_{3}=\frac{-x_{3}}{\sqrt{2} \sqrt{1-x_{1}}}, \\
A_{2}=A\left(y_{i} \bar{y}_{j}\right), & y_{1}=\frac{\sqrt{1+x_{1}}}{\sqrt{2}} & y_{1}=\frac{x_{2}}{\sqrt{2} \sqrt{1+x_{1}}} & y_{3}=\frac{x_{3}}{\sqrt{2} \sqrt{1+x_{1}}} .
\end{array}
$$

That A_{1}, A_{2} exist in e_{*}^{16} can be seen from the fact that $A=A\left(y_{i} \bar{y}_{j}\right) \in \Pi$ exists in e_{*}^{16} if and only if $y_{1} \neq 1, \frac{1}{\sqrt{2}}$.
(2) If $B \in \bar{e}^{8}$, the solution is affected by the attaching of $\operatorname{Bd}\left(\varepsilon^{16}\right)$ to \bar{e}^{8} by
the Hopf map η. Since x_{1} in B is $0, \lambda=\frac{1}{2}$. So A is necessary to be one of the form $A=A\left(y_{i} \bar{y}_{j}\right), y_{1}=\frac{1}{\sqrt{2}}$. Hence we have $\left\{A \in \Pi \mid \varphi(A) E_{1}=B\right\} \subset \bar{\eta}\left(S^{15}\right)$ because $\left(y_{2}, y_{3}\right) \in S^{15}$ and $A=\bar{\eta}\left(y_{2}, y_{3}\right)$. Define a homeomorphism $h: S^{15} \rightarrow \operatorname{Bd}\left(\varepsilon^{16}\right)$ by $h(x, y)=(\sqrt{2} x, \sqrt{2} y)$ and define a map H of $\bar{\eta}\left(S^{15}\right)$ onto \bar{e}^{8} by $H(A)=\varphi(A) E_{1}$ for $A \in \bar{\eta}\left(S^{15}\right)$. Then we obtain the following commutative diagram.

It follows that H is the Hopf map. Therefore the inverse-image of H is a 7 dimensional sphere. The latter assertion is evident from the diagram.
(3) If $B=E_{1}$, it is easy to solve $\varphi(A) E_{1}=E_{1}$.

We shall use Lemma 4.2 and Proposition 4.3 for the decomposition of any element of Spin (9).

Lemma 4.2. For $\alpha \in \boldsymbol{F}_{4}$, the following two conditions are equivalent. (1) $\alpha \in$ $\operatorname{Spin}(9)$, (2) $\alpha E_{2}, \alpha E_{3} \in \bar{e}^{8}$.

Let $S^{7}=\left\{x \in \mathfrak{E}| | x \left\lvert\,=\frac{1}{\sqrt{2}}\right.\right\}, \omega=g \mid S^{7}$ and $e_{*}^{8}=e^{8}-\left\{\omega\left(S^{7}\right) \cup E_{2}\right\}$, where g is the cellular map of ε^{8} defined in $\S 2$. Then ω is a homeomorphism of S^{7}.

Proposition 4.3. For $B \in \bar{e}^{8}$,
(1) If $B \neq E_{2}, E_{3}$, there exist exactly two A_{1}, A_{2} in e_{*}^{8} such that $\varphi\left(A_{1}\right) E_{2}=B$, $\varphi\left(A_{2}\right) E_{2}=B$.
(2) If $B=E_{3}, \omega\left(S^{7}\right)=\left\{A \in \bar{e}^{8} \mid \varphi(A) E_{2}=E_{3}\right\}$.
(3) If $B=E_{2},\left\{E_{2}, E_{3}\right\}=\left\{A \in \bar{e}^{8} \mid \varphi(A) E_{2}=E_{2}\right\}$.

Proof. The proof is similar to that of Proposition 4.1. If $B \neq E_{2}, E_{3}$, for $B=B\left(x_{2} \bar{x}_{j}\right) \in \bar{e}^{8}$ with $x_{2}=\left(1-\left|x_{3}\right|^{2}\right)^{1 / 2}$, the element A of \bar{e}^{8} with $\varphi(A) E_{2}=B$ can be given as

$$
\begin{array}{llll}
A_{1}=A\left(y_{i} \bar{y}_{j}\right), & y_{1}=0 & y_{2}=\frac{\sqrt{1-x_{2}}}{\sqrt{2}} & y_{3}=\frac{-x_{3}}{\sqrt{2} \sqrt{1-x_{2}}}, \\
A_{2}=A\left(y_{i} \bar{y}_{j}\right), & y_{1}=0 & y_{2}=\frac{\sqrt{1+x_{2}}}{\sqrt{2}} & y_{3}=\frac{x_{3}}{\sqrt{2} \sqrt{1+x_{2}}} .
\end{array}
$$

THEOREM 4.4. For $\alpha \in \boldsymbol{F}_{4}$,
(1) If $\alpha \notin \operatorname{Spin}(9)$ and $\alpha E_{1} \notin \bar{e}^{8}$, there exist exactly two pairs $\left(A_{1}, \beta\right),\left(A_{2}, \gamma\right)$ in $e_{*}^{16} \times \operatorname{Spin}(9)$ such that $\alpha=\varphi\left(A_{1}\right) \beta, \alpha=\varphi\left(A_{2}\right) \gamma$.
(2) If $\alpha \notin \operatorname{Spin}(9)$ and $\alpha E_{1} \in \bar{e}^{8}$, the set $\{A \in \Pi \mid \alpha=\varphi(A) \beta$ for some $\beta \in$ $\operatorname{Spin}(9)\}$ is homeomorphic to a 7-dimensional sphere.
(3) If $\alpha \in \operatorname{Spin}(9), \alpha \notin \operatorname{Sin}(8)$ and $\alpha E_{2} \neq E_{3}$, there exist exactly two parrs
$\left(A_{1}, \beta\right),\left(A_{2}, \gamma\right)$ in $e_{*}^{8} \times \operatorname{Spin}(8)$ such that $\alpha=\varphi\left(A_{1}\right) \beta, \alpha=\varphi\left(A_{2}\right) \gamma$.
(4) If $\alpha \in \operatorname{Spin}(9), \alpha \notin \operatorname{Spin}(8)$ and $\alpha E_{2}=E_{3}, \omega\left(S^{7}\right)=\left\{A \in \bar{e}^{8} \mid \alpha=\varphi(A) \beta\right.$ for some $\beta \in \operatorname{Spin}(8)\}$.
(5) If $\alpha \in \operatorname{Spin}(8)$, for E_{i}, there exists β_{i} in $\operatorname{Spin}(8)$ such that $\alpha=\varphi\left(E_{i}\right) \beta_{i}$ ($i=1,2,3$).

Proof. This Theorem can be proved by Proposition 4.1, 4.3. For instance, in case of (1), if we put $\alpha E_{1}=B$, we can get A_{2} in Π such that $\varphi\left(A_{2}\right) E_{1}=B$ ($i=1,2$) by Proposition 4.1 (1). Hence, put $\beta=\varphi\left(A_{1}\right) \alpha$ and $\gamma=\varphi\left(A_{2}\right) \alpha$, then β, γ $\in \operatorname{Spin}(9)$. Therefore we have exactly two pairs $\left(A_{1}, \beta\right),\left(A_{2}, \gamma\right)$ in $e_{*}^{16} \times \operatorname{Spin}(9)$ such that $\alpha=\varphi\left(A_{1}\right) \beta, \alpha=\varphi\left(A_{2}\right) \gamma$.

Now we study the structure of \boldsymbol{F}_{4} with an idea of reflection. Define Aut ($\Pi, *$) be the set of non-singular linear transformations α of $\mathfrak{\Im}$ such that $\alpha(A * B)$ $=\alpha A * \alpha B$ for $A, B \in \Pi$, where this $*$ is defined in \Im by $X * Y=\varphi(X) Y=Y-4 X \circ Y$ $+4 X(X, Y)$ for $X, Y \in \Im$. Then our aim is to prove $\boldsymbol{F}_{4}=\operatorname{Aut}(\Pi, *)$.

Lemma 4.5. Let α be a non-singular linear transformation of \mathfrak{J}, then the following two conditions are equivalent. (1) $\alpha \in \boldsymbol{F}_{4}$, (2) $\alpha(A \circ B)=\alpha A \circ \alpha B$ for $A, B \in \Pi$.

Lemma 4.6. For $A \in \Pi$, there exists a sequence $\left\{B_{n}\right\}$ such that $B_{n} \in \Pi, B_{n} \neq A$ for every $n \in \boldsymbol{N}$ and $\lim B_{n}=A$.

Theorem 4.7. $\boldsymbol{F}_{4}=\operatorname{Aut}(\Pi, *)$.
Proof. Let $\alpha \in \boldsymbol{F}_{4}$, then we have $\alpha(A * B)=\alpha(\varphi(A) B)=\alpha \varphi(A) \alpha^{-1} \alpha B=\varphi(\alpha A) \alpha B$ $=\alpha A * \alpha B$ for $A, B \in \Pi$. Conversely, assume $\alpha \in \operatorname{Aut}(\Pi, *)$, then for $A, B \in \Pi$, we get $\alpha(A * B)=\alpha A * \alpha B$ and $\alpha(B * A)=\alpha B * \alpha A$. Namely, we have $-\alpha(A \circ B)+$ $\alpha A(A, B)=-\alpha A \circ \alpha B+\alpha A(\alpha A, \alpha B)$ and $-\alpha(B \circ A)+\alpha B(B, A)=-\alpha B \circ \alpha A+\alpha B(\alpha B$, $\alpha A)$. From these equations, we see that $\alpha(A-B)(A, B)=\alpha(A-B)(\alpha A, \alpha B)$. Hence, if $A \neq B$, we obtain $(A, B)=(\alpha A, \alpha B)$ because α is a non-singular linear transformation of \mathfrak{J}. Next, let A be fixed arbitrary, then we prove that (αA, $\alpha A)=1$. Define two maps $f, g: \Pi \rightarrow \boldsymbol{R}$ by $f(B)=(A, B), g(B)=(\alpha A, \alpha B)$ for $B \in \Pi$. Then, by the continuity of α and of the inner product, both f, g are continuous. For this A, let $\left\{B_{n}\right\}$ satisfy the condition of Lemma 4.6, then $\lim B_{n}=A$ and $f\left(B_{n}\right)=g\left(B_{n}\right)$. Hence, we have $(\alpha A, \alpha A)=g(A)=g\left(\lim B_{n}\right)=\lim g\left(B_{n}\right)=\lim f\left(B_{n}\right)$ $=f\left(\lim B_{n}\right)=f(A)=1$. So, we get that $(A, B)=(\alpha A, \alpha B)$ for $A, B \in \Pi$. From this fact and $-\alpha(A \circ B)+\alpha A(A, B)=-\alpha A \circ \alpha B+\alpha A(\alpha A, \alpha B)$, we obtain $\alpha(A \circ B)$ $=\alpha A \circ \alpha B$. Since A, B are arbitrary, by Lemma 4.5, we conclude that $\alpha \in \boldsymbol{F}_{4}$.

Remark. Define a new multiplication $*$ in the Lie group \boldsymbol{F}_{4} by $\alpha * \beta=\alpha \beta^{-1} \alpha$ for $\alpha, \beta \in \boldsymbol{F}_{4}$, then we can know that $\boldsymbol{F}_{4}=\varphi(\Pi) * \operatorname{Spin}(9)$ by Theorem 4.4, [5, Theorem 7.2] and also know that φ is a representation of (projective space $\Pi, *$) into (Lie group $\boldsymbol{F}_{4}, *$).

References

[1] H. Freudenthal, Beziehungen der E_{7} und E_{8} zur Oktavenebene. IV. Indag. Math. 17 (1955), 277-285.
[2] O. Loos, Spiegelungsräume und homogene symmetrische Räume. Math. Z. 99 (1967), 141-170.
[3] I. Yokota, On the cell structure of the octanion projective plane Π. J. Inst. Polytech. Osaka City Univ. Ser. A. 6 (1955), 31-37.
[4] I. Yoкотa, Embeddings of projectıve spaces into elliptic projective Lie groups. Proc. Japan Acad. 35 (1959), 281-283.
[5] I. Yokota, Exceptional Lie group F_{4} and its representation rings. J. Fac. Sc1. Shinshu Univ. 3 (1968), 35-60.

Faculty of Science,
Kumamoto University

