E. M. MOSKAL KÕDAI MATH. SEM. REP 28 (1977), 115–128

ON THE TRIDEGREE OF FORMS ON *f*-MANIFOLDS

BY EDWARD M. MOSKAL

1. Introduction

The motivation for the material presented here is twofold. Firstly, the remarkable correspondence between Kaehlerian and Sasakian geometries has, up to now, been lacking a result analogous to the fact that a compact Kaehlerian manifold of complex dimension n and having strictly positive sectional curvatures cannot carry a non-trivial harmonic r-form of bidegree (r, 0) for $1 \le r \le n$. This situation is examined and resolved in §4 and §5.

Secondly, several authors have used a definition of "tridegree" which is, in fact, not well-defined, yielding possible difficulties. A proper definition is made in § 3, some consequences discussed in § 6 and the above-mentioned problems clarified in § 7.

2. Preliminaries

Let M be a smooth manifold. An *f*-structure on M is a smooth linear transformation field $f \neq 0$ satisfying

 $f^{3}+f=0$,

and having constant (necessarily even) rank 2n([11, 12]). A smooth manifold carrying an *f*-structure of rank 2n will be termed a (2n+s)-dimensional *f*-manifold. If $\mathcal{X}(M)$ is the space of smooth vector fields on M, complementary projection operators l and m are defined by

$$l = -f^2, \qquad m = f^2 + I,$$

yielding complementary distributions $L=l(\mathfrak{X}(M))$, $\mathfrak{M}=m(\mathfrak{X}(M))$ where L has dimension $2n=\operatorname{rank} f$. An f-structure on M is *integrable* ([5]) if the Nijenhuis torsion of f vanishes (see § 6).

A (2n+s)-dimensional *f*-manifold *M* has a complemented framing if there exist s vector fields E_{α} and s 1-forms $\eta^{\alpha}, \alpha=1, \dots, s$, satisfying

$$\eta^{\alpha}(E_{\beta}) = \delta^{\alpha}_{\beta}$$
 and $m = \eta^{\alpha} \otimes E_{\alpha}$

 $(\delta^{\alpha}_{\beta}$ is the "Kronecker delta" and here, as in the sequel, the summation convention is employed). With such a complemented framing, M becomes a *framed*

Received June 5, 1975

f-manifold. A framed f-manifold is normal if

 $[f, f] + d\eta^{\alpha} \otimes E_{\alpha} = 0$

where [f, f] if the Nijenhuis torsion of f (see § 6).

A framed f-manifold M becomes a metric framed f-manifold if there exists a Riemannian structure g satisfying

$$g(fX, fY) = g(X, Y) - \sum_{\alpha} \eta^{\alpha}(X) \eta^{\alpha}(Y)$$

for all X, Y in $\mathfrak{X}(M)$. It readily follows that L and \mathcal{M} are orthogonal distributions and $\{E_{\alpha}(x)\}$ is an orthonormal basis of $\mathcal{M}(x)$ for all x in M. The fundamental 2-form F of a metric framed f-manifold is given by

$$F(X, Y) = 2g(X, fY)$$
.

Finally, an operator \tilde{F} on the space $\Lambda(M)$ of forms on an *f*-manifold *M* is given by

$$(\widetilde{F}\alpha)(X_1, \cdots, X_p) = \sum_{i=1}^p \alpha(X_1, \cdots, fX_i, \cdots, X_p),$$

for α a *p*-form $(\alpha \in \Lambda_p(M))$ and X_1, \dots, X_p in $\mathfrak{X}(M)$.

A Sasakian manifold is a normal metric framed (2n+1)-dimensional f-manifold with f-structure ϕ of rank 2n and fundamental 2-form Φ which satisfies

 $d\eta = \Phi$

where (E, η) gives the complemented framing. If x is any point of a Sasakian manifold M, a ϕ -frame at x is an orthonormal basis $\{X_1, \dots, X_{2n+1}\}$ of $T_x(M)$, the tangent space at x, where

$$\begin{aligned} X_{2n+1} = X_{\mathbf{A}} = E(x), \\ X_{i*} = X_{i+n} = \phi X_i, \qquad 1 \leq i \leq n. \end{aligned}$$

In the sequel, when giving the components of tensors and forms with respect to a ϕ -frame, indices A, B, C, \cdots take values in $\{1, 2, \cdots, 2n, 2n+1=\Delta\}, \alpha, \beta, \gamma, \cdots$ values in $\{1, 2, \cdots, 2n\}$ and i, j, k, \cdots values in $\{1, 2, \cdots, n\}$.

In a later section, we shall need the following known relations ([7], [8]) satisfied by the components of the Riemannian curvature tensor of a Sasakian manifold with respect to an arbitrary ϕ -frame:

$$\begin{aligned} R_{ijk*l} &= -R_{ijkl*} = R_{ij*k*l*}, \\ R_{i*jk*l*} &= R_{ij*k*l*} = -R_{i*jkl*} + (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}), \\ R_{ijkl} &= R_{i*j*kl*} = R_{ijk*l*} + (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}), \\ R_{d\alpha d\beta} &= \delta_{\alpha\beta}, 1 \leq i, j, k, l \leq n, 1 \leq \alpha, \beta \leq 2n, i*=i+n, \text{etc} \end{aligned}$$

The complexification of a real vector space V will be denoted by V^c and, if f is a linear operator on V, we denote by f the extension to V^c .

3. The trigraded structure in $\Lambda(M)^{c}$

Because the results of this section closely parallel a corresponding section in [3], few details will be given.

Let M be a (2n+s)-dimensional f-manifold. The linear transformation field f, acting as an operator on $\mathcal{X}(M)^c$, has eigenvalues 0, i and -i with corresponding eigenspaces $\mathcal{X}_0(M)$, $\mathcal{X}_i(M)$ and $\mathcal{X}_{-i}(M)$, respectively, yielding the direct sum decomposition

$$\mathfrak{X}(M)^{c} = \mathfrak{X}_{0}(M) \oplus \mathfrak{X}_{i}(M) \oplus \mathfrak{X}_{-i}(M)$$
.

Clearly, $\mathscr{X}_0(M) = \mathscr{M}^c$ and $\mathscr{X}_i(M) \oplus X_{-i}(M) = L^c$, where \mathscr{M} and L are the distributions given is §2. The projection operators corresponding to eigenvalues 0, i and -i are P_0 , P and \overline{P} , respectively, and are given by $P_0 = m$, $P = -\frac{1}{2} - (l - if)$, $\overline{P} = -\frac{1}{2} - (l + if)$.

On $\Lambda_p(M)^c$ we defined operators $\Pi_{\lambda,\mu,\nu}$, $0 \leq \lambda, \mu \leq n, 0 \leq \nu \leq s, \lambda + \mu + \nu = p$, by

$$(\Pi_{\lambda,\mu,\nu}\alpha)(X_{1},\cdots,X_{p})$$

$$=\frac{1}{\lambda!\,\mu!\,\nu!}\sum_{\alpha\in S_{p}}(\operatorname{sgn}\sigma)\alpha(PX_{\sigma(1)},\cdots,PX_{\sigma(\lambda)},\bar{P}X_{\sigma(\lambda+1)},\cdots,\bar{P}X_{\sigma(\lambda+\mu)},$$

$$P_{0}X_{\sigma(\lambda+\mu+1)},\cdots,P_{0}X_{\sigma(p)})$$

for arbitrary $\alpha \in \Lambda_p(M)^c$, $X_1, \dots, X_p \in \mathscr{X}(M)^c$, where S_p is the group of all permutations on $\{1, \dots, p\}$. If deg $\alpha \neq \lambda + \mu + \nu$, we set $\prod_{\lambda,\mu,\nu} \alpha = 0$, thereby defining the operators $\prod_{\lambda,\mu,\nu}$ on all of $\Lambda(M)^c$. It is easy to check that these operators are projections, that is,

$$\begin{split} &\Pi_{\lambda,\mu,\nu} \circ \Pi_{\lambda',\mu',\nu'} = \delta_{\lambda\lambda'} \delta_{\mu\mu'} \delta_{\nu\nu'} \Pi_{\lambda,\mu,\nu} \,, \\ &\sum_{\substack{0 \leq \lambda,\mu \leq n \\ 0 \leq \nu \leq n}} \Pi_{\lambda,\mu,\nu} = I \,. \end{split}$$

Setting $\Lambda_{\lambda,\mu,\nu}(M) = \prod_{\lambda,\mu,\nu} \Lambda(M)^c$, we get

$$\Lambda(M)^{c} = \sum_{\substack{0 \leq \lambda, \, \mu \leq n \\ 0 \leq \nu \leq s}} \Lambda_{\lambda, \mu, \nu}(M) \qquad (\text{direct sum}) \,.$$

Furthermore, if $\alpha \in \Lambda_{\lambda,\mu,\nu}(M)$ and $\beta \in \Lambda_{\lambda',\mu',\nu'}(M)$, it is easily checked that $\alpha \wedge \beta \in \Lambda_{\lambda+\lambda',\mu+\mu',\nu+\nu'}(M)$, where $\Lambda_{\lambda,\mu,\nu}(M) = \{0\}$ if $\lambda > n$, $\mu > n$ or $\nu > s$. Thus we have

THEOREM 3.1 In a (2n+s)-dimensional f-manifold M, the algebra $\Lambda(M)^c$ of complex-valued forms on M carries a trigraded structure with two grades of degree n and one of degree s.

Remarks. The case of s=0, an almost complex manifold, is well known (see, for example, [6, chapter 3]). The case of s=1, an almost contact manifold, was considered by Fujitani ([3]) who considered manifolds with more structure,

but, in this context, only the almost contact structure is required. Finally, note that for a framed *f*-manifold we can write $P = -\frac{1}{2} - \{I - \eta^{\alpha} \otimes E_{\alpha} - if\}, \vec{P}_{i} = -\frac{1}{2} - \{I - \eta^{\alpha} \otimes E_{\alpha} - if\}$ $-\frac{1}{2}$ { $I-\eta^{\alpha}\otimes E_{\alpha}+if$ } and $P_{0}=\eta^{\alpha}\otimes E_{\alpha}$. In the next section we will require the following LEMMA 3.2 If $\alpha \in \Lambda_{\lambda,\mu,\nu}(M)$, then $\widetilde{F}\alpha = i(\lambda - \mu)\alpha$. *Proof.* Let $\alpha \in \Lambda_{\lambda, \mu, \nu}(M)$. Then $\Pi_{\lambda, \mu, \nu} \alpha = \alpha$. For arbitrary $X_1, \cdots, X_p \in \mathcal{X}(M)^c, \qquad p = \lambda + \mu + \nu,$ $(\Pi_{\lambda,\mu,\nu}\widetilde{F}\alpha)(X_1,\cdots,X_n)$ $= -\frac{1}{\lambda! \,\mu! \,\nu!} \sum_{\sigma \in S_n}^{\lambda} (\operatorname{sgn} \sigma) [\sum_{k=1}^{\lambda} \alpha(PX_{\sigma(1)}, \cdots, fPX_{\sigma(k)}, \cdots, PX_{\sigma(\lambda)}, \cdots, PX_{\sigma(\lambda$ $\overline{P}X_{\sigma(\lambda+1)}, \cdots, P_0X_{\sigma(n)}$ $+\sum_{\lambda}^{\lambda+\mu} \alpha(PX_{\sigma(1)}, \cdots, PX_{\sigma(\lambda)}, \bar{P}X_{\sigma(\lambda+1)}, \cdots, f\bar{P}X_{\sigma(k)}, \cdots,$ $\bar{P}X_{a(2+u)}, P_0X_{a(2+u+1)}, \cdots, P_0X_{a(n)})$ + $\sum_{k=2,j=1}^{p} \alpha(PX_{\sigma(1)}, \cdots, \overline{P}X_{\sigma(\lambda+\mu)}, P_0X_{\sigma(\lambda+\mu+1)}, \cdots,$ $fP_0X_{\sigma(k)}, \cdots, P_0X_{\sigma(n)})$ $= \frac{1}{\lambda ! \mu ! \nu !} \sum_{\sigma \in S_n} (\operatorname{sgn} \sigma) \left[\sum_{k=1}^{\lambda} \alpha(PX_{\sigma(1)}, \cdots, iPX_{\sigma(k)}, \cdots, \right] \right]$ $PX_{\sigma(\lambda)}, \bar{P}X_{\sigma(\lambda+1)}, \cdots, P_0X_{\sigma(p)})$ + $\sum_{i=1}^{\lambda+n} \alpha(PX_{\sigma(1)}, \cdots, PX_{\sigma(\lambda)}, \overline{P}X_{\sigma(\lambda+1)}, \cdots, -i\overline{P}X_{\sigma(k)}, \cdots,$ $\bar{P}X_{\sigma(2+n)}, P_0X_{\sigma(2+n+1)}, \cdots, P_0X_{\sigma(n)})$ $=i(\lambda-\mu)(\prod_{\lambda,\mu,\nu}\alpha)(X_1,\cdots,X_p)$ $=i(\lambda-\mu)\alpha(X_1,\cdots,X_n)$.

A similar calculation yields

$$(\Pi_{\lambda',\mu',\nu'}\widetilde{F}\alpha)(X_1,\cdots,X_p)=i(\lambda'-\mu')(\Pi_{\lambda',\mu',\nu'}\alpha)(X_1,\cdots,X_p)=0$$

for $(\lambda', \mu', \nu') \neq (\lambda, \mu, \nu)$, $\lambda' + \mu' + \nu' = p$, proving the lemma.

4. The semidegree of a form on M

In order to get something corresponding to a trigrading in $\Lambda(M)$, the last section does not provide entirely satisfactory answers since, clearly, $\Pi_{\lambda,\mu,\nu}$ is a real operator only when $\lambda = \mu$. Partial answers are available, however. To begin, the projections l and m on X(M) can yield a bigrading. Operators $\Pi_{\lambda;\mu}$.

 $0 \leq \lambda \leq 2n$, $0 \leq \nu \leq s$, $\lambda + \nu = p$, are defined on $\Lambda_p(M)$ by

$$(\Pi_{\lambda,\nu}\alpha)(X_{1},\cdots,X_{p}) = \frac{1}{\lambda!\nu!} \sum_{\sigma \in S_{p}} (\operatorname{sgn} \sigma) \alpha(lX_{\sigma(1)},\cdots,lX_{\sigma(\lambda)},$$
$$mX_{\sigma(\lambda+1)},\cdots,mX_{\sigma(p)}),$$

for arbitrary $\alpha \in \Lambda_p(M)$, $X_1, \dots, X_p \in \mathfrak{X}(M)$. If deg $\alpha \neq \lambda + \nu$, we set $\Pi_{\lambda;\nu} \alpha = 0$, defining $\Pi_{\lambda;\nu}$ on all of $\Lambda(M)$. Again it is easily verified that these operators are projections. Thus, setting $\Lambda_{\lambda;\mu}(M) = \Pi_{\lambda,\mu}\Lambda(M)$, we get

$$\Lambda(M) = \sum_{\substack{0 \leq \lambda \leq 2n \\ 0 \leq \nu \leq s}} \Lambda_{\lambda, \mu}(M) \quad (\text{direct sum}).$$

Again, if $\alpha \in \Lambda_{\lambda;\nu}(M)$ and $\beta \in \Lambda_{\lambda';\nu'}(M)$, then $\alpha \wedge \beta \in \Lambda_{\lambda+\lambda';\nu+\nu'}(M)$. Thus we have

THEOREM 4.1 On a (2n+s)-dimensional f-manifold M, the algebra $\Lambda(M)$ of forms on M carries a bigraded structure with one grade of degree 2n and one of degree s.

As operators on $\mathscr{X}(M)^c$, we clearly have $l=P+\bar{P}$, $m=P_0$, and hence $\Pi_{\lambda,\nu} = \sum_{\lambda'+\mu'=\nu} \Pi_{\lambda',\mu',\nu}$ and

$$\Lambda_{\boldsymbol{\lambda};\,\boldsymbol{\nu}}(M)^c \!\!=\!\!\!\sum_{\boldsymbol{\lambda}'+\boldsymbol{\mu}'=\boldsymbol{\lambda}} \Lambda_{\boldsymbol{\lambda}',\boldsymbol{\mu}',\boldsymbol{\nu}}(M) \qquad (\text{direct sum})\,.$$

To further decompose $\Lambda(M)$, we can use Lemma 3.2 and the fact that $\Lambda_{\lambda;\nu}(M) \subset \sum_{\lambda'+\mu'=\lambda} \Lambda_{\lambda',\mu',\nu}(M)$. Each $\Lambda_{\lambda',\mu',\nu'}(M)$ is a space of eigenvectors of \tilde{F} with eigenvalue $i(\lambda'-\mu')$. Thus $\Lambda_{\lambda',\mu',\nu}(M)$ consists of eigenvectors of \tilde{F}^2 with real eigenvalues $-(\lambda'-\mu')^2$. Hence \tilde{F}^2 has only real eigenvalues when operating on $\Lambda_{\lambda;\mu}(M)$, namely, $-\mu^2$ where $\mu \in \{\lambda, \lambda-2, \cdots, \epsilon(\lambda)\}$, where $\epsilon(\lambda)=0$ or 1 and $\epsilon(\lambda) \equiv \lambda \pmod{2}$. If $\alpha \in \Lambda_{\lambda;\nu}(M)$ and $\tilde{F}^2 \alpha = -\mu^2 \alpha$, we shall say that α has semidegree μ . If we denote by $\Lambda_{\lambda(\mu);\nu}(M)$ the space of all vectors in $\Lambda_{\lambda,\nu}(M)$ having semidegree μ , the above discussion yields

$$\Lambda_{\lambda,\nu}(M) = \sum_{k=0}^{(\lambda-\varepsilon(\lambda))/2} \Lambda_{\lambda(\varepsilon(\lambda)+k),\nu}(M) \quad (\text{direct sum})$$

Hence we have

THEOREM 4.2 The algebra $\Lambda(M)$ of forms on an f-manifold M of dimension 2n+s can be decomposed into a direct sum $\sum_{\lambda,\mu,\nu} \Lambda_{\lambda(\mu),\nu}(M)$, where $0 \leq \lambda \leq 2n$, $0 \leq \nu \leq s$, $\mu \in \{\lambda, \lambda-2, \dots, \epsilon(\lambda)\}$. The subscripts λ and ν give the bigrading on $\Lambda(M)$ and $-\mu^2$ is an eigenvalue of the operator \tilde{F}^2 .

Remarks The simplest case where the notion of semidegree has any meaning is for forms in $\Lambda_{2;0}(M)$, where the semidegree could be 0 or 2. If $\alpha \in \Lambda_{2,0}(M)$, an easy calculation yields

$$(\widetilde{F}^{2}\alpha)(X, Y) = -2\alpha(X, Y) + 2\alpha(fX, fY).$$

(In this calculation we use $\alpha(mX, Y) = \alpha(X, mY) = 0$, since $\nu = 0$). If α is of semidegree 2, then $\tilde{F}^2\alpha = -4\alpha$, and hence $\alpha(X, Y) + \alpha(fX, fY) = 0$, or α is *pure*. If α is of semidegree 0, then $\tilde{F}^2\alpha = 0$ and hence $\alpha(X, Y) - \alpha(fX, fY) = 0$, or α is *hybrid*. Thus semidegree generalizes the notions of purity and hybridicity of 2-forms. We note that it is known that the 2-form F is hybrid and hence that it is in $\Lambda_{2(0),0}(M)$.

In our application of the notion of semidegree we shall want a characterization of forms in $\Lambda_{r(r),0}(M)$. Let $\alpha \in \Lambda_{r,0}(M)$, $X, Y \in \mathfrak{X}(M)$. We denote by $\alpha_{X,Y}$ the (r-2)-form $(\iota_X \iota_Y + \iota_f X \iota_f Y) \alpha$.

LEMMA 4.3 Let $\alpha \in \Lambda_{r,0}(M)$, $r \ge 2$, with $\tilde{F}^2 \alpha = \lambda \alpha$, and let $X, Y \in \mathfrak{X}(M)$. Then $\alpha_{X,Y} \in \Lambda_{r-2,0}(M)$, with $\tilde{F}^2 \alpha_{X,Y} = \lambda \alpha_{X,Y}$

Proof. We have $\alpha_{X,Y} \in \Lambda_{r-2}(M)$. To show $\alpha_{X,Y} \in \Lambda_{r-2,0}(M)$, we need only show that $\iota_E \alpha_{X,Y} = 0$ for arbitrary $E \in \mathcal{M}$. But

$$\ell_E \alpha_{XY} = \ell_E (\ell_X \ell_Y + \ell_{fX} \ell_{fY}) \alpha = (\ell_X \ell_Y + \ell_{fX} \ell_{fY}) \ell_E \alpha = 0,$$

since $\alpha \in \Lambda_{r;0}(M)$. Now let $X_1, \dots, X_{r-2} \in \mathfrak{X}(M)$. Then

$$\begin{split} &(\tilde{F}^{2}\alpha_{X,Y})(X_{1},\cdots,X_{r-2}) \\ =&\sum_{i=1}^{r-2} \alpha_{X,Y}(X_{1},\cdots,f^{2}X_{i},\cdots,X_{r-2}) + \sum_{1\leq i\leq j\leq r-2} \alpha_{X,Y}(X_{1},\cdots,fX_{j},\cdots,X_{r-2}) \\ &= -(r-2)\alpha_{X,Y}(X_{1},\cdots,X_{r-2}) + \sum_{1\leq i< j\leq r-2} \alpha_{X,Y}(X_{1},\cdots,fX_{j},\cdots,X_{r-2}) \\ &= -(r-2)\alpha(Y,X,X_{1},\cdots,X_{r-2}) - (r-2)\alpha(fY,fX,X_{1},\cdots,fX_{j},\cdots,X_{r-2}) \\ &+ \sum_{1\leq i< j\leq r-2} \alpha(Y,X,X_{1},\cdots,fX_{i},\cdots,fX_{j},\cdots,X_{r-2}) \\ &+ \sum_{1\leq i< j\leq r-2} \alpha(fY,fX,X_{1},\cdots,fX_{i},\cdots,fX_{j},\cdots,X_{r-2}) \\ &= -(\tilde{F}^{2}\alpha)(Y,X,X_{1},\cdots,X_{r-2}) + (\tilde{F}^{2}\alpha)(fY,fX,X_{1},\cdots,X_{r-2}) \\ &+ 2\alpha(Y,X,X_{1},\cdots,X_{r-2}) + 2\alpha(fY,fX,X_{1},\cdots,X_{r-2}) \\ &- 2\sum_{i=1}^{r-2} \alpha(fY,X,X_{1},\cdots,fX_{i},\cdots,X_{r-2}) - 2\sum_{i=1}^{r-2} \alpha(Y,fX,X_{1},\cdots,fX_{i},\cdots,X_{r-2}) \\ &- 2\alpha(fY,fX,X_{1},\cdots,X_{r-2}) - 2\sum_{i=1}^{r-2} \alpha(f^{2}Y,fX,X_{1},\cdots,fX_{i},\cdots,X_{r-2}) \\ &- 2\sum_{i=1}^{r-2} \alpha(fY,f^{2}X,X_{1},\cdots,fX_{i},\cdots,X_{r-2}) - 2\alpha(f^{2}Y,f^{2}X,X_{1},\cdots,X_{r-2}) \\ &= (\tilde{F}^{2}\alpha)(Y,X,X_{1},\cdots,X_{r-2}) + (\tilde{F}^{2}\alpha)(fY,fX,X_{1},\cdots,X_{r-2}) \\ \end{split}$$

$$=\lambda\alpha(Y, X, X_1, \cdots, X_{r-2}) + \lambda\alpha(fY, fX, X_1, \cdots, X_{r-2})$$
$$=\lambda\alpha_{X,Y}(X_1, \cdots, X_{r-2}),$$

where we have used the facts that $f^2 = -I + m$ and $\alpha(Y_1, \dots, Y_r) = 0$ if any of the $Y_i \in \mathcal{M}$.

COROLLARY Let
$$\alpha \in \Lambda_{r(r),0}(M)$$
, $X, Y \in \mathfrak{X}(M)$. Then $\alpha_{X,Y}=0$.

Proof. From the lemma, $\tilde{F}^2 \alpha = -r^2 \alpha$ implies $\tilde{F}^2 \alpha_{X,Y} = -r^2 \alpha_{X,Y}$. But since $r \in \{r-2, r-4, \dots, \varepsilon(r-2)\}$, we must have $\alpha_{X,Y} = 0$.

Note that $\alpha_{X,Y}=0$ says that α is pure in its first two variables and, since α is skew-symmetric, it is pure in any two variables.

5. Harmonic forms on compact Sasakian manifolds

Let M be a compact (2n+1)-dimensional Sasakian manifold with f-structure ϕ , complemented framing (E, η) and metric g. In studying harmonic forms on M, we have the following useful lemmas.

LEMMA 5.1 (Tachibana [9]). Let α be a harmonic r-form, $r \leq n$, on a compact (2n+1)-dimensional Sasakian manifold M. Then $\epsilon_{\mathbf{E}} \alpha = 0$.

LEMMA 5.2 (Tachibana [9]). Let α be a harmonic r-form, $r \leq n$, on a compact (2n+1)-dimensional Sasakian manifold M. Then the r-form $\tilde{\Phi}\alpha$ is also harmonic.

If now α is a harmonic *r*-form on M, $r \leq n$, then $\alpha \in \Lambda_{r,0}(M)$. From the decomposition of $\Lambda_{r,0}(M)$ given by Theorem 4.2, we can uniquely write

$$\alpha = \alpha_r + \alpha_{r-2} + \cdots + \alpha_{\varepsilon(r)}$$

where $\alpha_s \in \Lambda_{r(s),0}(M)$, i.e., $\tilde{\Phi}^2 \alpha_s = -s^2 \alpha_s$. By uniqueness, the equations

(

can be solved to express each α_s as a linear combination of α , $\tilde{\Phi}^2 \alpha$, $\tilde{\Phi}^4 \alpha$, \cdots , $\tilde{\Phi}^{r-\epsilon(r)}\alpha$, each of which is harmonic, by Lemma 5.2. If we denote by $H_{r(s)}(M)$ the space of all harmonic forms of degree r and semidegree s on M, we then get the

PROPOSITION 5.3 The space $H_r(M)$ of all harmonic r-forms, $r \leq n$, on a compact Sasakian manifold M of dimension 2n+1 can be decomposed as

$$H_{r}(M) = \sum_{\mathcal{S} \in \{\tau, \tau-2, \cdots, \epsilon(\tau)\}} H_{r(s)}(M) \quad (\text{direct sum})$$

where $H_{r(s)}(M)$ is the space of harmonic r-forms of semidegree s.

We note that this generalizes the well-known decomposition of harmonic 2-forms on a Sasakian manifold ([7], [10]) and is the analogue of the decomposition of harmonic forms on Kaehler manifolds into harmonic forms of various bidegrees.

If we set $b_{r(s)}(M) = \dim H_{r(s)}(M)$ and $b_r(M) = \dim H_r(M)$ (the r^{th} Betti number of M), we have the

COROLLARY 5.4 With the same conditions on r and M as in Proposition 5.3,

 $b_r(M) = b_{r(r)}(M) + b_{r(r-2)}(M) + \cdots + b_{r(\varepsilon(r))}(M)$.

For the rest of this section we shall concern ourselves with $H_{r(r)}(M)$ and $b_{r(r)}(M)$ for $2 \leq r \leq n$, dim M = 2n+1. First we consider the familiar Bochner-Lichnerowicz form F_r on $\Lambda_r(M)$,

$$F_{r}(\alpha)_{x} = \sum_{\substack{A,B \\ C_{1},\cdots,C_{r-1}}} R_{AB} \alpha_{AC_{1}\cdots C_{r-1}} \alpha_{BC_{1}\cdots C_{r-1}} -\frac{1}{2^{-}} (r-1) \sum_{\substack{A,B,C,D \\ E_{1},\cdots,E_{r-2}}} R_{ABCD} \alpha_{ABE_{1}\cdots E_{r-2}} \alpha_{CDE_{1}\cdots E_{r-2}},$$

where x is an arbitrary point of M and the components of the r-form α and of the Riemannian and Ricci curvature tensors are given with respect to an arbitrary orthonormal basis of $T_x(M)$.

LEMMA 5.5 If $\alpha \in \Lambda_{r(r),0}(M)$, $r \ge 2$, and x is an arbitrary point of M, there exists a ϕ -frame at x with respect to which

$$\begin{split} F_r(\alpha)_x &= (2-r) \sum_{\sigma_k} (\alpha_{\sigma_1 \cdots \sigma_r})^2 + 2 \sum_{\iota, \tau_k} (K_{ii^*} + \sum_{j \neq \iota} (K_{\iota_j} + K_{\iota_j *})) (\alpha_{\iota\tau_1 \cdots \tau_{r-1}})^2 \\ &= (2-r) \sum_{\langle \sigma \rangle} \alpha_{\langle \sigma \rangle}^2 + 2 \sum_{\iota, \langle \tau \rangle} (K_{ii^*} + \sum_{j \neq \iota} (K_{\iota_j} + K_{\iota_j *})) \alpha_{\iota^2(\tau)}^2 , \end{split}$$

where K_{AB} denotes the sectional curvature of the section spanned by $\{X_A, X_B\} \subset \{X_{\sigma}, X_A\}$, the required ϕ -frame at x.

Proof. With respect to an arbitrary ϕ -frame at x,

$$\sum_{\substack{A,B,\\C_{k}}} R_{AB} \alpha_{AC_{1}\cdots C_{r-1}} \alpha_{BC_{1}\cdots C_{r-1}} = \sum_{\substack{\lambda,\mu,\\(\sigma)}} R_{\lambda\mu} \alpha_{\lambda(\sigma)} \alpha_{\mu(\sigma)},$$

and

(5.1)
$$\sum_{\substack{A,B,C,P,E_k\\E_k}} R_{ABCD} \alpha_{ABE_1 \cdots E_{\tau-2}} \alpha_{CDE_1 \cdots E_{\tau-2}} = \sum_{\substack{\lambda,\mu,\nu,\sigma\\(\tau)}} R_{\lambda\mu\nu\sigma} \alpha_{\lambda\mu(\tau)} \alpha_{\nu\sigma(\tau)}$$
$$= \sum_{\substack{i,j,k,l\\(\tau)}} [R_{ijkl} \alpha_{ij(\tau)} \alpha_{kl(\tau)} + R_{ijkl*} \alpha_{ij(\tau)} \alpha_{kl*(\tau)} + R_{ijk*l} \alpha_{ij(\tau)} \alpha_{k*l(\tau)}]$$

 $+\cdots+R_{i*j*k*l*}\alpha_{i*j*(\tau)}\alpha_{k*l*(\tau)}].$

If $\alpha \in \Lambda_{r(r),0}(M)$, Corollary 4.4 implies that the components of α with respect to a ϕ -frame satisfy

(5.2)
$$\alpha_{i*j*(\tau)} = -\alpha_{ij(\tau)}, \qquad \alpha_{i*j(\tau)} = \alpha_{ij*(\tau)}$$

Using relations (2.1), (5.2), the symmetries of R_{ABCD} and the skew-symmetry of α , the right-hand side of (5.1) becomes

$$2\sum_{\substack{i,j,k,l,\\ (\tau)}} (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) (\alpha_{ij(\tau)}\alpha_{kl(\tau)} + \alpha_{ij*(\tau)}\alpha_{kl*(\tau)}) = 2\sum_{(\sigma)} \alpha_{(\sigma)}^{2}.$$

If R_1 is the Ricci mean curvature transformation of M, it is known that $R_1\phi X = \phi R_1 X$. Hence there exists a ϕ -frame with respect to which the only non-zero components of R_1 are $R_{ii} = R_{i*i*}$ and $R_{dd} = 2n$. Furthermore,

$$R_{ii} = \sum_{A} R_{iAiA}$$
$$= K_{id} + K_{ii*} + \sum_{j \neq i} (K_{ij} + K_{ij*})$$
$$= 1 + K_{ii*} + \sum_{j \neq i} (K_{ij} + K_{ij*}).$$

With respect to such at ϕ -frame at x, we get

$$\begin{split} F_{r}(\alpha)_{x} &= \sum_{\iota,(\tau)} (1 + K_{ii*} + \sum_{j \neq \iota} (K_{\iota j} + K_{ij*})) (\alpha_{\iota}^{2}(\tau) + \alpha_{\iota*(\tau)}^{2}) - (r-1) \sum_{\langle \sigma \rangle} \alpha_{\langle \sigma \rangle}^{2} \\ &= 2 \sum_{\iota,(\tau)} (1 + K_{ii*} + \sum_{j \neq \iota} (K_{\iota j} + K_{ij*})) \alpha_{\iota(\tau)}^{2} - (r-1) \sum_{\langle \sigma \rangle} \alpha_{\langle \sigma \rangle}^{2} \\ &= (2 - r) \sum_{\langle \sigma \rangle} \alpha_{\langle \sigma \rangle}^{2} + 2 \sum_{\iota,(\tau)} (K_{ii*} + \sum_{j \neq \iota} (K_{\iota j} + K_{\iota j*})) \alpha_{\iota(\tau)}^{2} , \end{split}$$

proving the lemma.

Now consider the effects of an *L*-homothety ([10]) $g \mapsto \bar{g}$ on $M \quad \bar{g} = cg + (c^2 - c)\eta \otimes \eta, \ \bar{\phi} = \phi, \ \bar{\eta} = c\eta, \ \bar{E} = c^{-1}E, \ c \text{ a constant } > 0.$

LEMMA 5.6 (Tanno [10]). If α is a harmonic r-form on M, $r \leq n$, and $g \mapsto \overline{g}$ is an L-homothety, then α is harmonic with respect to \overline{g} .

LEMMA 5.7 If $\alpha \in \Lambda_{r(s),q}(M)$ and $g \mapsto \overline{g}$ is an L-homothety, then α remains in $\Lambda_{r(s),q}(M)$.

Proof. Under an L-homothety, ϕ remains unchanged, and hence $\tilde{\Phi}$ remains unchanged. Also the distributions L and M are invariant.

Under an *L*-homothety we have the following changes in sectional curvatures ([7], [10]). If $K_{\lambda\mu}$ denotes the sectional curvatures with respect to *g* of sections determined by vectors in a ϕ -frame { $E(x), X_i, X_{i*}$ } at *x* and, similarly, $\bar{K}_{\lambda\mu}$ with respect to \bar{g} (and { $E(x)=c^{-1}E(x), \bar{X}_i=c^{-1/2}X_i, X_{i*}=c^{-1/2}X_{i*}$ }), then

$$\bar{K}_{ii*} = c^{-1} \{ K_{ii*} + 3(1-c) \}, \quad i=1, \dots, n,$$

$$\bar{K}_{ij} = c^{-1} K_{ij}, \quad i, j=1, \dots, n, \quad i \neq j,$$

$$\bar{K}_{ij*} = c^{-1} K_{ij*}, \qquad i, j = 1, \cdots, n, \qquad i \neq j$$

With respect to \bar{g} , the Bochner-Lichnerowicz form \bar{F}_r , operating on α at x and using a ϕ -frame as in Lemma 5.5, thus takes the form

$$\begin{split} \bar{F}_{r}(\alpha)_{x} &= (2-r) \sum_{(\sigma)} \bar{\alpha}_{(\sigma)}^{2} + \sum_{\iota,(\tau)} \left(K_{ii*} + \sum_{j \neq \iota} (\bar{K}_{\iota j} + \bar{K}_{\iota j*})) \bar{\alpha}_{i(\tau)}^{2} \\ &= (2-r) \sum_{(\sigma)} \bar{\alpha}_{(\sigma)}^{2} + 2c^{-1} \sum_{\iota,(\tau)} \left(K_{ii*} + 3(1-c) + \sum_{j \neq \iota} (K_{\iota j} + K_{\iota j*}) \right) \bar{\alpha}_{i(\tau)}^{2} \\ &= c^{-1} \{ 3 - (1+r)c \} \sum_{(\sigma)} \bar{\alpha}_{(\sigma)}^{2} + 2c^{-1} \sum_{\iota,(\tau)} \{ K_{ii*} + \sum_{j \neq \iota} \left(K_{\iota j} + K_{\iota j*} \right) \} \bar{\alpha}_{i(\tau)}^{2} \end{split}$$

If there is a constant C such that $K_{ii*} + \sum_{j \neq i} (K_{ij} + K_{ij*}) \ge C$ for all i and all x, we get

$$\bar{F}_r(\alpha)_x \ge c^{-1} \{3 + (1 - r)c + C\} \sum_{(\sigma)} \bar{\alpha}^2_{(\sigma)}$$

and, if C>-3, we can choose c to satisfy $0 < c < \frac{3+C}{r+1}$, yielding $\bar{F}_r(\alpha)_x \ge 0$, with equality only if $\alpha=0$. From this it follows that there are no harmonic r-forms of semidegree r on M. Thus we have

THEOREM 5.8 Let M be a compact Sasakian manifold of dimension $2n+1 \ge 5$, and let $2 \le r \le n$. Then under any of the following conditions on sectional curvature K, where are no harmonic r-forms of semidegree r on M:

(a) $K(X, Y) > \frac{-3}{2n-1}$ for any orthonormal vectors X, Y at any point,

(b) $K(X, \phi X) > -3$ for any unit vector $X \in L(x)$ at any point x and $K(X, Y) + K(X, \phi Y) > 0$ for any orthonormal triple $\{X, Y, \phi Y\}$ at any point x

(c) $K(X, \phi X) > \frac{-3}{2n-1}$ for any unit vector $X \in L(x)$ at any point x and

 $K(X, Y) + K(X, \phi Y) > \frac{-6}{2n-1}$ for any orthonormal triple $\{X, Y, \phi Y\}$ at x,

(d) $R_1(X, X) = g(R_1X, X) > -2$ for any unit vector X.

In particular, if M has strictly positive sectional curvatures, then $b_{r(r)}(M)=0$.

Proof. It is easily checked that under all conditions, if we take any ϕ -frame at any point of M, then $K_{ii*} + \sum_{j \neq i} (K_{ij} + K_{ij*}) > -3$. The theorem then follows from the preceding discussion.

Remarks. The case r=2 was done by Tanno ([10]). Note that the theorem is the Sasakian analogue of the well-known result that a compact Kachlerian manifold can carry no harmonic r-forms of bidegree (r, 0) if the manifold has strictly positive sectional curvatures and $0 < r \le \dim_c M$.

6. Integrability and Normality of f-structures

Let *M* be a (2n+s)-dimensional framed *f*-manifold with framing $\{(E_{\alpha}, \eta^{\alpha}) | \alpha = 1, \dots, s\}$. The structure *f* is integrable if and only if [f, f]=0 ([5]), where

$$[f, f](X, Y) = [fX, fY] + f^{2}[X, Y] - f[fX, Y] - f[X, fY],$$

and is normal if and only if $[f, f] + d\eta^{\alpha} \otimes E_{\alpha} = 0$. In this section we consider the consequences of these concepts on the decompositions of $\mathfrak{X}(M)^c$ and $\Lambda(M)^c$.

THEOREM 6.1 Let M be a (2n+s)-dimensional f-manifold. Then f is integrable if and only if the distributions $\mathfrak{X}_i, \mathfrak{X}_i \oplus \mathfrak{X}_0, \mathfrak{X}_i \oplus \mathfrak{X}_{-i}, \mathfrak{X}_0$ are all involutive.

Proof. Suppose the *f*-structure is integrable. It is known ([5]) that L and \mathcal{M} are both involutive, then. Hence $\mathcal{X}_{i} \oplus \mathcal{X}_{-i} = L^{c}$ and $\mathcal{X}_{0} = \mathcal{M}^{c}$ are involutive. If X, $Y \in \mathcal{X}_{i}$, then fX = iX, fY = iY, and

$$[f, f](X, Y) = -[X, Y] - l[X, Y] - if[X, Y] - if[X, Y]$$
$$= -2i\{f[X, Y] - i[X, Y]\},$$

where we have used m[X, Y]=0 and hence l[X, Y]=[X, Y]. From [f, f]=0it follows that $[X, Y] \in \mathfrak{X}_{i}$. Similarly, if $X \in \mathfrak{X}_{i}$, $Y \in \mathfrak{X}_{0}$, then

$$fl[X, Y] = il[X, Y]$$

and $[X, Y] \in \mathfrak{X}_i \oplus \mathfrak{X}_0$. From this and the above, $\mathfrak{X}_i \oplus \mathfrak{X}_0$ is involutive.

Conversely, suppose the given distributions are involutive. Trivially, then, so are \mathscr{X}_{-i} and $\mathscr{X}_{-i} \oplus \mathscr{X}_{0}$. If X, Y are arbitrary in $\mathscr{X}(M)^{c}$, we can write X = $X_i + X_{-i} + X_0, \quad Y = Y_i + Y_{-i} + Y_0 \text{ where } X_i, \quad Y_i \in \mathfrak{X}_i, \quad X_{-i}, \quad Y_{-i} \in \mathfrak{X}_{-i}, \quad X_0, \quad Y_0 \in \mathfrak{X}_0.$ Substituting into [f, f](X, Y) and using $fX_i = iX_i$, etc., yields [f, f](X, Y) = 0.

THEOREM 6.2 Let M be an integrable (2n+s)-dimensional f-manifold. Then for all λ, μ, ν with $0 \leq \lambda, \mu \leq n, 0 \leq \nu \leq s$,

$$d\Lambda_{\lambda,\mu,\nu}(M) \subset \Lambda_{\lambda+1,\mu,\nu}(M) \oplus \Lambda_{\lambda,\mu+1,\nu}(M) \oplus \Lambda_{\lambda,\mu,\nu+1}(M)$$

Proof. Consider first the case of $\lambda = 1$, $\mu = \nu = 0$. Let $\alpha \in \Lambda_{1,0,0}(M)$. If X, Y $\in \mathfrak{X}_{-1}$, then $d\alpha(X, Y) = X\alpha(Y) - Y\alpha(X) - \alpha([X, Y]) = 0$, since $\alpha(X) = \alpha(Y) = \alpha(Y) = \alpha(X) - \alpha(X) - \alpha(Y) = \alpha(Y) = \alpha(Y) - \alpha(Y) = \alpha(Y) - \alpha(Y) = \alpha(Y) - \alpha(Y) - \alpha(Y) = \alpha(Y) - \alpha(Y) - \alpha(Y) - \alpha(Y) = \alpha(Y) - \alpha(Y) - \alpha(Y) - \alpha(Y) - \alpha(Y) = \alpha(Y) - \alpha(Y) -$ $\alpha([X, Y])=0$ (using the proof of theorem 6.1). Hence $\Pi_{0,2,0}d\alpha=0$. Similarly, $\Pi_{0,0,2} d\alpha = \Pi_{0,1,1} d\alpha = 0 \text{ and } d\alpha \in \Lambda_{2,0,0}(M) \oplus \Lambda_{1,1,0}(M) \oplus \Lambda_{1,0,1}(M). \text{ Similarly, } d\Lambda_{0,1,0}(M)$ $\subset \Lambda_{1,1,0}(M) \oplus \Lambda_{0,2,0}(M) \oplus \Lambda_{0,1,1}(M) \text{ and } d\Lambda_{0,0,1}(M) \subset \Lambda_{1,0,1}(M) \oplus \Lambda_{0,1,1}(M) \oplus \Lambda_{0,0,2}(M)$ If $\alpha \in \Lambda_{\lambda,\mu,\nu}(M)$, then α can be written locally as

$$\alpha = \alpha_{i1} \wedge \cdots \wedge \alpha_{i\lambda} \wedge \alpha_{-i1} \wedge \cdots \wedge \alpha_{-i\mu} \wedge \alpha_{01} \wedge \cdots \wedge \alpha_{0\nu}$$

where $\alpha_{ik} \in \Lambda_{1,0,0}(M)$, $1 \leq k \leq \lambda$, $\alpha_{-ik} \in \Lambda_{0,1,0}(M)$, $1 \leq k \leq \mu$, $\alpha_{0k} \in \Lambda_{0,0,1}(M)$, $1 \leq k \leq \nu$, and hence, locally,

(6.1)
$$d\alpha = \sum_{k=1}^{\lambda} (-1)^{k-1} \alpha_{i1} \wedge \cdots \wedge d\alpha_{ik} \wedge \cdots \wedge \alpha_{i\lambda} \wedge \alpha_{-i1} \wedge \cdots \wedge \alpha_{0\nu} \\ + \sum_{k=1}^{u} (-1)^{\lambda+k-1} \alpha_{i1} \wedge \cdots \wedge \alpha_{i\lambda} \wedge \alpha_{-i1} \wedge \cdots \wedge d\alpha_{-ik} \wedge \cdots \wedge \alpha_{-i\mu} \wedge \alpha_{0\nu} \\ + \sum_{k=1}^{\nu} (-1)^{\lambda+\mu+k-1} \alpha_{i1} \wedge \cdots \wedge \alpha_{-i\mu} \wedge \alpha_{01} \wedge \cdots \wedge d\alpha_{0k} \wedge \cdots \wedge \alpha_{0\nu}$$

If
$$\gamma \in \Lambda_{1,0,0}(M)$$
, $\beta \in \Lambda_{\lambda-1,\mu,\nu}(M)$, then
 $d\gamma \wedge \beta \in d\Lambda_{1,0,0}(M) \wedge \Lambda_{\lambda-1,\mu,\nu}(M)$
 $\subset \{\Lambda_{2,0,0}(M) \oplus \Lambda_{1,1,0}(M) \oplus \Lambda_{1,0,1}(M)\} \wedge \Lambda_{\lambda-1,\mu,\nu}(M)$
 $\subset \Lambda_{\lambda+1,\mu,\nu}(M) \oplus \Lambda_{\lambda,\mu+1,\nu}(M) \oplus \Lambda_{\lambda,\mu,\nu+1}(M)$.

Similarly, we show that all terms in (6.1) are in the required space, completing the proof.

THEOREM 6.3 Let M be a framed f-manifold of dimension 2n+s with complemented framing $\{(E_{\alpha}, \eta^{\alpha}) | \alpha = 1, \dots, s\}$. Then the f-structure is normal if and only if the following conditions hold:

- (i) for all $X, Y \in \mathcal{X}_i$, $[X, Y] \in \mathcal{X}_i$.
- (ii) for all $X \in \mathcal{X}_i$, $\alpha \in \{1, \dots, s\}$, $[X, E_\alpha] \in \mathcal{X}_i$
- (iii) for all $\alpha, \beta \in \{1, \dots, s\}, [E_{\alpha}, E_{\beta}]=0$

Proof. Suppose f is normal. If X, $Y \in \mathcal{X}_i$, then fX = iX, fY = iY, $\eta^{\alpha}(X) = \eta^{\alpha}(Y) = 0$,

$$0 = [fX, fY] + f^{2}[X, Y] - f[fX, Y] - f[X, fY] + d\eta^{\alpha}(X, Y)E_{\alpha}$$

= -[X, Y] - l[X, Y] - 2ıf[X, Y] - m[X, Y]
= -2ı{f[X, Y] - i[X, Y]}.

Hence f[X, Y] = i[X, Y], proving (i). Similarly, if $X \in \mathcal{X}_i$, then

$$0 = [fX, fE_{\alpha}] + f^{2}[X, E_{\alpha}] - f[fX, E_{\alpha}] - f[X, fE_{\alpha}] + d\eta^{\beta}(X, E_{\alpha})E_{\beta}$$
$$= -l[X, E_{\alpha}] - if[X, E_{\alpha}] - m[X, E_{\alpha}]$$
$$- i\{f[X, E_{\alpha}] - i[X, E_{\alpha}]\},$$

proving (ii). If $\alpha, \beta \in \{1, \dots, s\}$, then

$$0 = [fE_{\alpha}, fE_{\beta}] + f^{2}[E_{\alpha}, E_{\beta}] - f[fE_{\alpha}, E_{\beta}] - f[E_{\alpha}, fE_{\beta}] + d\eta^{\gamma}(E_{\alpha}, E_{\beta})E_{\gamma}$$
$$= -[E_{\alpha}, E_{\beta}],$$

proving (iii).

Conversely, if (i), (ii) and (iii) hold, then by taking complex conjugates, we also get

(iv) for all
$$X, Y \in \mathscr{X}_{-1}$$
, $[X, Y] \in \mathscr{X}_{-1}$,
(v) for all $X \in \mathscr{X}_{-1}$, $\alpha \in \{1, \dots, s\}$, $[X, E_{\alpha}] \in \mathscr{X}_{-1}$.

If $X, Y \in \mathfrak{X}(M) \subset \mathfrak{X}(M)^c$, then $X = X_i + X_{-i} + \eta^{\alpha}(X)E_{\alpha}$, $Y = Y_i + Y_{-i} + \eta^{\alpha}(Y)E_{\alpha}$, where $X_i, Y_i \in \mathfrak{X}_i, X_{-i}, Y_{-i} \in \mathfrak{X}_{-i}$. Putting these decompositions of X and Y into ([f, f])

 $+d\eta^{\alpha}\otimes E)(X, Y)$, using (i)-(v) and performing a straightforward, but tedious, computation yields $([f, f] + d\eta^{\alpha} \otimes E)(X, Y) = 0$. Hence f is a normal structure.

THEOREM 6.4 Let M be a (2n+s)-dimensional framed f-manifold with complemented framing $\{(E_{\alpha}, \eta^{\alpha}) | \alpha = 1, \dots, s\}$. If f is normal, then for all λ, μ, ν with $0 \leq \lambda \leq n, 0 \leq \mu \leq n, 0 \leq \nu \leq s$, we have

 $d\Lambda_{\lambda,\mu,\nu}(M) \subset \Lambda_{\lambda+1,\mu,\nu}(M) \oplus \Lambda_{\lambda,\mu+1,\nu}(M) \oplus \Lambda_{\lambda,\mu,\nu+1}(M) \oplus \Lambda_{\lambda+1,\mu+1,\nu-1}(M) .$

Proof. As in the proof of Theorem 6.2, it is sufficient to consider $d\omega$ where $\omega \in \Lambda_{1,0,0}(M)$ or $\Lambda_{0,1,0}(M)$ or $\Lambda_{0,0,1}(M)$. Let $\omega \in \Lambda_{1,0,0}(M)$. If $X, Y \in \mathscr{X}_{-1}$, then by the proof of Theorem 6.3, $[X, Y] \in \mathscr{X}_{-1}$ and hence $\omega(X) = \omega(Y) = \omega([X, Y]) = 0$, from which it follows that $d\omega(X, Y) = 0$ and $\Pi_{0,2,0}d\omega = 0$. Similarly, we can show that for any $X \in \mathscr{X}_{-1}$, $\alpha, \beta \in \{1, \dots, s\}$, $d\omega(X, E_{\alpha}) = 0$ and $d\omega(E_{\alpha}, E_{\beta}) = 0$. Since $\{E_{\alpha}\}$ spans the distribution \mathscr{X}_{0} , it follows that $\Pi_{0,1,1}d\omega = 0 = \Pi_{0,0,2}d\omega$. Hence $d\omega \in \Lambda_{2,0,0}(M) \oplus \Lambda_{1,1,0}(M) \oplus \Lambda_{1,0,1}(M)$.

Similarly, if $\omega \in \Lambda_{0,1,0}(M)$, then $d\omega \in \Lambda_{1,1,0}(M) \oplus \Lambda_{0,2,0}(M) \oplus \Lambda_{0,1,1}(M)$.

If $\omega \in \Lambda_{0,0,1}(M)$, we can similarly show that $\Pi_{2,0,0} = d\omega = 0 = \Pi_{0,2,0} d\omega$, and hence $d\omega \in \Lambda_{1,1,0}(M) \oplus \Lambda_{1,0,1}(M) \oplus \Lambda_{0,1,1}(M) \oplus \Lambda_{0,0,2}(M)$. (Note that we cannot show $\Pi_{1,1,0} d\omega = 0$ because normality will permit $P_0[X, Y] \neq 0$ for $X \in \mathcal{X}_i$, $Y \in \mathcal{X}_{-i}$.)

The rest of the proof proceeds as in Theorem 6.2.

Remark. D. E. Blair has constructed a space H^{2n+s} ([1]) which carries a normal framed metric *f*-structure on which each of the forms $\eta^{\alpha} \in \Lambda_{0,0,1}(M)$, $\alpha=1, \dots, s$, satisfies $d\eta^{\alpha}=F$. Hence $d\eta^{\alpha} \in \Lambda_{1,1,0}(M)$.

7. Some remarks

Both D. E. Blair and S. I. Goldberg ([2], [4]) have decomposed the differential operator d on an f-manifold M as

(7.1)
$$d = d' + d'' + d^0$$

where it is clear from the context that if $\alpha \in \Lambda_{\lambda,\mu,\nu}(M)$, then $d'\alpha \in \Lambda_{\nu+1,\mu,\nu}(M)$, $d''\alpha \in \Lambda_{\lambda,\mu+1,\nu}(M)$, $d^{o}\alpha \in \Lambda_{\lambda,\mu,\nu+1}(M)$. Two problems that arise concern whether or not the operators are well-defined and the validity of (7.1).

The operators d', d'' and d^0 can be defined precisely, using the results of § 3, by

$$d' = \sum_{\lambda,\mu,\nu} \prod_{\lambda+1,\mu,\nu} d \circ \prod_{\lambda,\mu,\nu}, \qquad d'' = \sum_{\lambda,\mu,\nu} \prod_{\lambda,\mu+1,\nu} d \circ \prod_{\lambda,\mu,\nu}, d^{0} = \sum_{\lambda,\mu,\nu} \prod_{\lambda,\mu,\nu+1} d \circ \prod_{\lambda,\mu,\nu}.$$

The validity of the relation (7.1) is more difficult. Theorem 6.2 yields the fact that (7.1) is true if the *f*-structure is integrable, but Theorem 6.4 and the remark following show the falsity of (7.1) in general.

The paper [2] uses (7.1) when dealing with a cosympletic manifold M, i.e.,

a (2n+1)-dimensional metric *f*-manifold where *f* has rank 2n and there is a framing $\{E, \eta\}$. Among the conditions assumed are the normality of *f*, $[f, f] + d\eta \otimes E = 0$, and the closure of η , $d\eta = 0$. It follows that [f, f] = 0, *f* is integrable, and (7.1) is valid.

In [4], S. I. Goldberg assumes the integrability of f in all of his major theorems; however, some of the lemmas are false as stated. The additional assumption of the integrability of f removes all of these problems.

References

- [1] D. E. BLAIR, Geometry of manifolds with structure group $u(n) \times O(s)$, J. Differential Geometry, 4 (1970), 155-167.
- [2] D.E. BLAIR AND S.I. GOLDBERG, Topology of almost contact manifolds, J. Differential Geometry, 1 (1967), 347-354.
- [3] T. FUJITANI, Complex-valued differential forms on normal contact Riemannian manifolds, Tôhoku Math. J., 18 (1966), 349-361.
- [4] S. I. GOLDBERG, A generalization of Kaehler geometry, J. Differential Geometry, 6 (1972), 343-355.
- [5] S. ISHIHARA AND K. YANO, On integrability of a structure f satisfying f^3+f =0. Quart. J. Math. Oxford (2), 15 (1964), 217-222.
- [6] Y. MATSUSHIMA, Differentiable Manifolds. Decker (Pure and Applied Mathematics), New York, 1972.
- [7] E. M. MOSKAL, Contact manifolds of positive curvature, Thesis, University of Illinois, 1966.
- [8] S. SASAKI, Almost Contact Manifolds (Part III), Lecture Notes, Math. Institute, Tôhoku Univ. (1968).
- [9] S. TACHIBANA, On harmonic tensors in compact Sasakian spaces, Tôhoku Math. J., 17 (1965), 271-284.
- [10] S. TANNO, The topology of contact Riemannian manifolds, Illinois J. Math., 12 (1968), 700-717.
- [11] K. YANO, On structure f satisfying $f^3+f=0$, Tech. Rep. No. 2, June 20 (1961), Univ. of Washington.
- [12] K. YANO, On a structure defined by tensor field of type (1,1) satisfying $f^3 + f=0$, Tensor N. S., 14 (1963), 99-109.

UNIVERSITY OF WATERLOO WATERLOO, ONTARIO