
E._M. MOSKAL
KODAI MATH. SEM. REP
28 (1977), 115-128

ON THE TRIDEGREE OF FORMS ON /"-MANIFOLDS

BY EDWARD M. MOSKAL

1. Introduction

The motivation for the material presented here is twofold. Firstly, the
remarkable correspondence between Kaehlerian and Sasakian geometries has,
up to now, been lacking a result analogous to the fact that a compact Kae-
hlerian manifold of complex dimension n and having strictly positive sectional
curvatures cannot carry a non-trivial harmonic r-form of bidegree (r, 0) for
l^r^n. This situation is examined and resolved in § 4 and §5.

Secondly, several authors have used a definition of "tridegree" which is, in
fact, not well-defined, yielding possible difficulties. A proper definition is made
in § 3, some consequences discussed in § 6 and the above-mentioned problems
clarified in § 7.

2. Preliminaries

Let M be a smooth manifold. An /-structure on M is a smooth linear
transformation field /=£θ satisfying

/3+/=0,

and having constant (necessarily even) rank 2n([ll, 12]). A smooth manifold
carrying an /-structure of rank 2n will be termed a (2n+s)-dimensional f-mam-
fold. If 3£(M) is the space of smooth vector fields on M, complementary pro-
jection operators / and m are defined by

/=-/«, m-/2+/,

yielding complementary distributions L=/(3?(M)), M— ra(3?(M)) where L has
dimension 2n—rank/. An /-structure on M is integrable ([5]) if the Nijenhuis
torsion of / vanishes (see § 6).

A (2n+s)-dimensional /-manifold M has a complemented framing if there
exist s vector fields Ea and s 1-forms rf, α=l, •••, s, satisfying

)=δ and m=

(δβ is the "Kronecker delta" and here, as in the sequel, the summation conven-
tion is employed). With such a complemented framing, M becomes a framed
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/- manifold. A framed /-manifold is normal if

where [/, /] if the Nijenhuis torsion of / (see § 6).
A framed /-manifold M becomes a metric framed f -manifold if there exists

a Riemannian structure g satisfying

g(fXJY)=g(X, Y)-T,ηa(X}η\Y)
oc

for all X, Y in 3?(M). It readily follows that L and JM are orthogonal distri-
butions and {Ea(x)} is an orthonormal basis of 3i(x) for all x in M. The
fundamental 2-form F of a metric framed /-manifold is given by

F(X,Y)=2g(X,fY).

Finally, an operator F on the space Λ(M) of forms on an /-manifold M is
given by

(Fa}(Xlt - , XJ= ΣX^, - , /*„ - , *p) ,

for α a ί-form (aεΛp(M$ and Zα, — , Zp in
A Sasakian manifold is a normal metric framed (2n+l)-dimensional /-mani-

fold with /-structure φ of rank 2n and fundamental 2-form Φ which satisfies

where (E, η) gives the complemented framing. If x is any point of a Sasakian
manifold M, a φ- frame at A: is an orthonormal basis {X19 ••• , ^2n+ι} of TX(M\
the tangent space at x, where

In the sequel, when giving the components of tensors and forms with respect
to a 0-frame, indices A, B, C, ••• take values in {1, 2, — , 2n, 2n+l=Λ}, a, β, γ, •••
values in {1, 2, ••• , 2n} and f, , k, ••• values in {1, 2, ••• , n} .

In a later section, we shall need the following known relations ([7], [8])
satisfied by the components of the Riemannian curvature tensor of a Sasakian
manifold with respect to an arbitrary 0-f rame :

(2.1) ^tjfe*i z =~^tjA?i* —

ί̂, , k, l^n, l^α, β^2n, i*=i+n, etc .

The complexification of a real vector space V will be denoted by Vc and,
if / is a linear operator on F, we denote by / the extension to Vc.
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3. The trigraded structure in Λ(M)C

Because the results of this section closely parallel a corresponding section
in [3], few details will be given.

Let M be a (2ft+s)-dimensional /-manifold. The linear transformation field
/, acting as an operator on 3C(M)C, has eigenvalues 0, i and — i with correspond-
ing eigenspaces 3?0(M), 3?ί(M) and 3?_ί(M), respectively, yielding the direct sum
decomposition

Clearly, 3?0(M)=^C and 3Ci(M}®X_i(M)=Lc, where JU, and L are the distribu-
tions given is § 2. The projection operators corresponding to eigenvalues 0, i

and —i are P0, P and P, respectively, and are given by P0=m, P=--(l—if\

On ΛP(M}C we defined operators ΠλjtttVt 0^2, μ^n, O^i^s, λ+μ+v=p, by

2 1 „ i .. i Σ (sgn σ)αΛ\ μ\v \ cf£Sp

i * 0-

for arbitrary αε/lp(M)c, Aj, ••• , Zpe3f(M)c, where 5P is the group of all permu-
tations on {1, ••• ,p}. If deg aφλ+μ+v, we set Π^μjVa=Q, thereby defining the
operators ΠλjμιV on all of Λ(M}C. It is easy to check that these operators are
projections, that is,

Πι)μ,voΠλ, tμ, )V, = δλλ, dμμ, δvv, Πλ,μ,v ,

Setting Λλ^v(M}=Πλ,μ,vΛ(M)c, we get

Λ(Mγ= Σ Λλ^v(M) (direct sum) .
'^'

Furthermore, if aεΛλ^v(M) and βεΛλ,ίμ,ίV,(M}, it is easily checked that αΛ/5e
Λλ+λ,ίf(+μ,ίV+υ,(M), where A2i^v(M)= {0} if λ>n, μ>n or v>s. Thus we have

THEOREM 3.1 In a (2nJ

Γs)-dimensιonal f-mamfold M, the algebra Λ(MY of
complex-valued forms on M carries a trigraded structure with two grades of degree
n and one of degree s.

Remarks. The case of s— 0, an almost complex manifold, is well known
(see, for example, [6, chapter 3]). The case of s— 1, an almost contact manifold,
was considered by Fujitani ([3]) who considered manifolds with more structure,
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but, in this context, only the almost contact structure is required. Finally,

note that for a framed /-manifold we can write P=-iy-{I—-ηa®EζX—ιf}ί Pj—

-^{I~ηa®Ea+if} and P,=ηa®Ea.

In the next section we will require the following

LEMMA 3.2 If aG:ΛλιμιV(M\ then Fa=i(λ—μ)a.

Proof. Let a<^Λλ^μ^(M}. Then Πλjμ>va—a. For arbitrary

X19 ••• , Xp<EΞT(Mγ, p=λ+μ+v ,

~λ\μ\v\

+μ) t * θXσζλ+μ+l)> '" j * O

;ι „ i „ I Σ (sgn σ) [Σ a(PXσw, — , *•
Λl ίίlUl σεSπ k=l

4" _Σ <^(P^ί7Cl); " >

A similar calculation yields

for (^7, ^r, v')Φ(λ, μ, v), λ'+μ'+v'—t), proving the lemma.

4. The semidegree of a form on M

In order to get something corresponding to a trigrading in Λ(M\ the last
section does not provide entirely satisfactory answers since, clearly, Hι,μ,» is a
real operator only when λ=μ. Partial answers are available, however. To
begin, the projections / and m on X(M) can yield a bigrading. Operators Πλ>μ,
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=p, are defined on ΛP(M) by

— , Xp) = * . Σ (sgn σ)α(LYσ(1), ••• , IX0^9
Λ 1 V i <rε,Sp

for arbitrary αe^(M), X lf — , XP^2C(M). If deg α^Λ+y, we set Πλ,va— 0,
defining //^;v on all of Λ(M). Again it is easily verified that these operators
are projections. Thus, setting Λλ.μ(M}=Πλ,μΛ(M\ we get

Λ(M)= Σ Λλ,μ(M) (direct sum) .

Again, if a^Λλ.v(M) and β<^Λλ,;v,(M), then a/\β^Λλ+λ,;v+v,(M\ Thus we have

THEOREM 4.1 On a (2n+s) -dimensional f -manifold M, the algebra Λ(M} of
forms on M carries a bigraded structure with one grade of degree 2n and one of
degree s.

As operators on 3f(M)c, we clearly have l=P+P, m=P0ί and hence Πλ ,v

= Σ Πλ,,μ,ιV and
λ' +μ' =v

γ= Σ Λλ, μ,v(M) (direct sum).
' '

To further decompose Λ(M\ we can use Lemma 3.2 and the fact that Λλlv(M)
C Σ Λλ, μ, V(M). Each Λλ,ίμ,jV,(M) is a space of eigenvectors of F with

λ'+μ'=λ

eigenvalue i(λ'— μ') Thus Aλ,ίμ.ίV(M} consists of eigenvectors of F2 with real
eigenvalues —(λ'—μ'Y. Hence P2" has only real eigenvalues when operating on
Λλ μ(M\ namely, — μ2 where μ<^{λ, λ—2, ••• , ε(/Γ)}, where ε(^)=0 or 1 and ε(λ)
Ξ^(mod2). If αe^;υ(M) and F2a= — μ2a, we shall say that a has semidegree
μ. If we denote by ΛχμΓtV(M) the space of all vectors in Λλ>v(M) having
semidegree μ, the above discussion yields

ΛΛ.V(M)= Σ ^cea)+*),y(M) (direct sum)

Hence we have

THEOREM 4.2 The algebra Λ(M) of forms on an f-manifold M of dimension
2n-\-s can be decomposed into a direct sum Σ ^CAO ,y(M), where 0^^^2n, O^ygs,

λ, μ,v

μ(= {λ, λ—2, •••, ε(λ)}. The subscripts λ and v give the bigrading on Λ(M) and — μ2

is an eigenvalue of the operator F2.

Remarks The simplest case where the notion of semidegree has any mean-
ing is for forms in A2;Q(M\ where the semidegree could be 0 or 2. If α e

), an easy calculation yields

(F2a}(X, Y}=-2a(X, Y)+2a(fX, f Y ) .
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(In this calculation we use a(mX, Y) = a(X, mY) — 0, since v=0). If a is of
semidegree 2, then F2a= — 4α, and hence a(X, Y}+a(fX, /Y)= 0, or α is £wr£.
If a is of semidegree 0, then F2α=0 and hence a(X, Y)—a(fX,fY)=Q, or α is
hybrid. Thus semidegree generalizes the notions of purity and hybridicity of
2-forms. We note that it is known that the 2-f orm F is hybrid and hence that
it is in Λ2CO),o(M).

In our application of the notion of semidegree we shall want a characteri-
zation of forms in ΛrCr),0(M). Let αeΛ r.0(M), X, FeSf(M). We denote by
<*x,γ the (r— 2)-form (i

LEMMA 4.3 Let αeΛ r,o(M), r^2, with P2a=λa, and let X, Y^3C(M). Then
a x , γ ξ Ξ Λ r _ 2 ι Q ( M ) , with F2aXfY=λaXtY

Proof. We have aXyY<=Ar_2(M). To show aXίY^Ar.2,0(M), we need only
show that iE<XχjY=Q for arbitrary E^M. But

since αe
Now let X19 •.• , *r_2e=3?(Af). Then

2Σ

fXl, '" , /^j, " ,

= -(r-2)ax,γ(X1, - , Zr_2)+ 2Σ <Xχ,γ(Xί9 - ,

= -(r-2)a(Y, X, Xlt - , Xτ.t)-(r-2)a(fY, fX, Xlt - , Xr.t)

+ ι<ί2Σr_2α(F, X, Xlt - , /̂ ,, - , /*„ - , Xr.t)

+ 2Σ <*(fY,fX,X1, ,fXί, ,fX), >,Xr-t')l^ι<j^r-2

=(^2α)(F, Z, Zα> - , Xr.ί}+(Fίa}(fY, fX, Xlt - , Xr.t)

+2a(Y, X, Xlt - , Xr.,)+2a(fY, fX, Xlt - , Xr.t)

-2Σ a(fY, X, Xlt - , f X l f - , Xr-z)-2±Za(Y, fX, X,, - , fXt, - , Xr.t)
r=l 1=1

-2a(fY, fX, Xlt - , λ;.2)-2Σ2α(/2r, /Z, ̂ 1; - , fXt, -, Xr_J
1=1

-2JJ «(/r, /2Z, Xlf - ,

=(F2α)(F, X, Xίt - , Zr_2
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= λa(Y, X, X,, - , Xr_J+λa(fY, fX, Xlt - , Xr.ύ

where we have used the facts that /2— — I+m and a(Ylt ••• , Yr)=Q if any of
the

COROLLARY Let αeΛr(r),0(M), X, Y^T(M). Then aΣfY=0.

Proof. From the lemma, Fza=—r2a implies F2aχ,γ= — r2<XχίY. But since
r<$ {r— 2, r— 4, •-• , ε(r— 2)}, we must have aXjY=Q.

Note that aXίY— 0 says that a is pure in its first two variables and, since
a is skew-symmetric, it is pure in any two variables.

5. Harmonic forms on compact Sasakian manifolds

Let M be a compact (2n-f l)-dimensional Sasakian manifold with /-structure
φ, complemented framing (E, η) and metric g. In studying harmonic forms on
M, we have the following useful lemmas.

LEMMA 5.1 (Tachibana [9]). Let a be a harmonic r-form, r^n, on a compact
(2n+l)-dimensional Sasakian manifold M. Then tEa=Q.

LEMMA 5.2 (Tachibana [9]). Let a be a harmonic r-form, r^n, on a compact
(2n+l)- dimensional Sasakian manifold M. Then the r-form Φa is also harmonic.

If now a is a harmonic r-form on M, rfgn, then αe./fr,0(M). From the
decomposition of Λr>Q(M) given by Theorem 4.2, we can uniquely write

α=αr+αr_2+ — +<*ecr)

where αseyl r(s)>0(M), i.e., Φ2as=— szas. By uniqueness, the equations

a=ar+ar_2-\ ---- -+-tfe(7θ+2-f αe(r)

0*a=-r*ar-(r-2Yar_2 ----- (ε(r)+2)2αε(r)+2-(ε(r))2αε(r)

Φ4α=r4αr+(r-2)4αr_2+ - +(ε(r)+2)4αe(r)+2+(ε(r))4αε(r)

can be solved to express each as as a linear combination of α, Φ2a, Φ*a, ••-,
Φr~£(r)α, each of which is harmonic, by Lemma 5.2. If we denote by //r(s)(M)
the space of all harmonic forms of degree r and semidegree s on M, we then
get the

PROPOSITION 5.3 The space Hr(M) of all harmonic r-forms, r^n, on a com-
pact Sasakian manifold M of dimension 2n-j-l can be decomposed as

Hr(M}= Σ #r<S)(M) (direct sum)
Sβ{r,r-2,-,e(r)}
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where Hr^(M) is the space of harmonic r-forms of semidegree s.

We note that this generalizes the well-known decomposition of harmonic
2-forms on a Sasakian manifold ([7], [10]) and is the analogue of the decom-
position of harmonic forms on Kaehler manifolds into harmonic forms of various
bidegrees.

If we set ftr(rt(M)=dim Hr^(M) and ^.(M)=dim#r(M)(the rth Betti number
of M), we have the

COROLLARY 5.4 With the same conditions on r and M as in Proposition 5.3,

For the rest of this section we shall concern ourselves with #r(r)(M) and
6r(r)(M) for 2^r^n, dimM=2n+l. First we consider the familiar Bochner-
Lichnerowicz form Fr on Λr(M},

Fr^x— Σ RABaACi-Cr-iaBCi-Cr-l
Λ,B

σ l f ...σr_ι

o ~ V ~ ~ l ) Σ ^ABCDaABEι-Er-2aCDEι Er-2 >
" A,B,C,D

E1, ,Er-2

where x is an arbitrary point of M and the components of the r-form a and
of the Riemannian and Ricci curvature tensors are given with respect to an
arbitrary orthonormal basis of TX(M)<

LEMMA 5.5 // αeylr(r),0(M), rΞ>2, and x is an arbitrary point of M, there
exists a φ-frame at x with respect to which

Fr(ά)t=(2-r) Σ (« r̂)'+2 Σ (Kti.+ Σ (ΛΓtJ+ΛΓlJ .))(«tr,..rr.1)
2

σk ι,τk jφi

=(2-r) Σ aw*+2 Σ (Ktt.+ Σ (Kt,+Ktj. fiat'm ,
(σ) t,(r) jφi

where KAB denotes the sectional curvature of the section spanned by {XA, XB}^
{Xσ, XΔ], the required φ-frame at x.

Proof. With respect to an arbitrary 0-frame at x,

Σ
A,B,

and

(5.1) Σ f^ABCD0ίABEι-Er-2(XCDEι-Er-2— Σ
A,B,C,D, λ,μ,v,σ

Ek (τ)

— Σ \_Rιjklaιj(.τ^kl
l ' '
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If αeΛ rCr),0(M), Corollary 4.4 implies that the components of a with respect
to a 0-frame satisfy

Using relations (2.1), (5.2), the symmetries of RABCD and the skew-symmetry of
a, the right-hand side of (5.1) becomes

2 Σ (^Λi-^ί^fe)(αt^r)^H(r) + ̂ t;*Cr)«^*Cτ))^2Σ;^Cα)2.

''to'' (<7)

If !̂ is the Ricci mean curvature transformation of M, it is known that
R1φX=φR1X. Hence there exists a 0-frame with respect to which the only
non-zero components of R^ are Rii=Rl*l* and R^=2n. Furthermore,

U — Σ
A

- Σ (
JΦI

With respect to such at 0-frame at x, we get

Fr(α),= Σ (!+#„* + Σ (^+^ *))(^2cr) + αΛcr))-(r-l) Σ
i, CO 3ΦI Cα)

-2 Σ (!+#«* + Σ (K,,+/f,,*))α,?r>-(r-l) Σ α?rtί,(r) )φι ίσ)

=(2-r) Σ αc,)2+2 Σ (ΛΓ«*+ Σ (ΛΓ8,+^*))αΛ, ,
(<O i, CO j^i

proving the lemma.
Now consider the effects of an L-homothety ([10]) g*-*g on M g=cg+

(c2—c)η(g)η, φ=φ, η = cη, E—c~lE, c a constant >0.

LEMMA 5.6 (Tanno [10]). If a is a harmonic r-form on M, r^n, and g^g
is an L-homothety, then a is harmonic with respect to g.

LEMMA 5.7 // a<=Λr^,q(M) and g^g is an L-homothety, then a remains in

Proof. Under an L-homothety, φ remains unchanged, and hence Φ remains
unchanged. Also the distributions L and M are invariant.

Under an L-homothety we have the following changes in sectional cur-
vatures ([7], [10]). If Kλμ denotes the sectional curvatures with respect to g
of sections determined by vectors in a ^-frame {E(x\ Xt, Xτ*} at x and, similarly,
Kλμ with respect to g (and {E(x)=c~lE(x\ Zt=c-l'2Xt, X^=c~1/2Xt*}), then
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Klj^=c-1Klj^ z, 7=1, — , n,

With respect to g, the Bochner-Lichnerowicz form Fr, operating on a at x and
using a 0-frame as in Lemma 5.5, thus takes the form

x=(2-r) Σ «?„ + Σ (#„*+ Σ (
(<O ϊ.CO j^t

-(2-r) Σ %)+2r1 Σ (#«*+3(l-c)+ Σ

=c-M3-(l+r)c} Σ α?Λ+2c-> Σ {Kit*+ Σ
(α) t.tO j^i

If there is a constant C such that Ku*+ ^Σ(Kτj+Kτj^)^C for all i and all
*£ι

we get
Σ <*?
(σ)

q _ι_ /~* _

and, if C>— 3, we can choose c to satisfy 0<c< — ΊΓΓ~> yielding -Fr(
α)*^0,

with equality only if a=Q. From this it follows that there are no harmonic
r-forms of semidegree r on M. Thus we have

THEOREM 5.8 Let M be a compact Sasakian manifold of dimension
and let 2^r^n. Then under any of the following conditions on sectional curva-
ture K, i here are no harmonic r-forms of semidegree r on M :

_ o
(a) K(X, Y)> 2 i f°r any orthonormal vectors X, Y at any point,

(b) K(X, φX)>-3 for any unit vector X^L(x) at any point x and K(X, Y}
+K(X, 0Γ)>0 for any orthonormal triple {X, Y, φY} at any point x

_ q
(c) K(X, φX}> 9 _.ι for any unit vector X^L(x} at any point x and

K(X, Y}+K(X, φY}> 2^1 for any orthonormal triple {X, Y, φY} at x,

(d) R^X, X)=g(R1X, X)>—2 for any unit vector X.
In particular, if M has strictly positive sectional curvatures, then £r(r)(M)=0.

Proof. It is easily checked that under all conditions, if we take any 0-frame
at any point of M, then KM+ Σ (KtJ+Ktj*)>— 3. The theorem then follows

from the preceding discussion.

Remarks. The case r=2 was done by Tanno ([10]). Note that the theorem
is the Sasakian analogue of the well-known result that a compact Kachlerian
manifold can carry no harmonic r-forms of bidegree (r, 0) if the manifold has
strictly positive sectional curvatures and 0<r^dimcM.

6. Integrability and Normality of f-structures

Let M be a (2n+s)-dimensional framed /-manifold with framing {(£"«, ηa)\a
= 1, ••• , s}. The structure / is integrable if and only if [/,/]= 0 ([5]), where
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and is normal if and only if [/,/] + dηa(g)EΛ=Q. In this section we consider
the consequences of these concepts on the decompositions of 3?(M)C and Λ(M)C.

THEOREM 6.1 Let M be a (2n+s)-dimensional f -manifold. Then f is m-
tegrable if and only if the distributions 3£t, TtQ)I£Q, 3^03 ,̂ T0 are all involutive.

Proof. Suppose the /-structure is integrable. It is known ([5]) that L and
M are both involutive, then. Hence 3^03^— Lc and X0=^c are involutive.
If X, re2\, then fX=ιX,fY=iY, and

=-2ι{flX, Yl-HX, O ,
where we have used m[_X, r]=0 and hence /[X, F]=CX, F]. From [/,/]=0
it follows that [_X, Y^T,. Similarly, if Ze=2\, Y^T0, then

flίX, Yl=illX, Yl

and [Z, y]eSfi03f0. From this and the above, ^iφ^o is involutive.
Conversely, suppose the given distributions are involutive. Trivially, then,

so are 3?_t and .̂̂ 0^0. If X, Y are arbitrary in T(M)C, we can write X—
*1+X_t+*0> Y=Yi+Y-l+Yo where Zt, F^^, Z_t, Y.teX-l9 X0, Y^X*.
Substituting into l f , f l ( X , Y) and using fXt=iXt, etc., yields [/, /](Z, K)=0.

THEOREM 6.2 Lei M 6^ an integrable (2nJ

Γs')-dimensional f -manifold. Then
for all λ, μ, v with O^Λ, μ^n, O^vgs,

^Proof. Consider first the case of Λ=l, μ=v=Q. Let a^Λ^M}. If X, Y
^, then da(X, Y) = Xa(Y)-Ya(X)-a(tX, O = 0, since α(X) = α(r) =
, F])— 0 (using the proof of theorem 6.1). Hence Π0)2ί()da=Q. Similarly,

Π0,0ίίda=Πo,1,lda=Q and cίαeyl2,0,0(M)0Λ,ι,o(M)0/ί1,o,1(M). Similarly,
(M)®Λ,2,o(M)0Λ,ι,ι(M) and ^Λ,o,ι(M)cJ1

If a^Λλ^v(M\ then α can be written locally as

a=atl/\

where aik^Λl

and hence, locally,

(6.1) dα= Σ(— l)*'1^^ ••• Adaίk/\

Σ (—

Σ (— l)^^*"1^^ — Λα_ l Λ Λα 0 1 Λ — /\daokA
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If r€ΞΛ1>0,0(M), β*ΞΛλ_ljμίV(M\ then

Similarly, we show that all terms in (6.1) are in the required space, completing
the proof.

THEOREM 6.3 Let M be a framed f -manifold of dimension 2n-fs with com-
plemented framing {(EΛ, ηa)\a— 1, ••• , s}. Then the /-structure is normal if and
only if the following conditions hold:

(i) for all X,

(ii) for all X<ΞTτ, αe {1, ••• , s}, [_X, Ea~]

(iii) for all a, βtΞ {1, - , s}, [£β> Eβl=Q

Proof. Suppose / is normal. If X, FGΞ^, then fX=iX, fY=iY, ηa(X}=

Hence /[Z, F]=f[Z, F], proving (i). Similarly, if ^€=3?t, then

proving (ii). If α, ^8e {1, ••• , s}, then

Λ, Eβ)Er

proving (iii).
Conversely, if (i), (ii) and (iii) hold, then by taking complex conjugates, we

also get

(iv) for all X,

(v) for all Xe2L t, αe{l, - , s},

If X, Fe^(M)c^(M)c, then A'=Xi+X_1+^(X)£:Λ, y=yi+y.ί+ιyβ(y)£:Λ, where

lf X.τ, F_ ΐ eIT_ l . Putting these decompositions of X and Y into ([/, /]
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, Y\ using (i)-(v) and performing a straightforward, but tedious,
computation yields ([/, /] -f dηa(g)E)(X, Y)=0. Hence / is a normal structure.

THEOREM 6.4 Let M be a (2n-\-s)-dimensιonal framed f -manifold with com-
plemented framing {(Ea, ηa)\a=l, ••• , s}. If f is normal, then for all λ, μ, v with

^s, we have

Proof. As in the proof of Theorem 6.2, it is sufficient to consider dω where
ωeΞΛM)0(M) or 4>,1>0(M) or Λ,0,ι(M). Let ωeΛM,0(M). If X, Fe3?_t, then by
the proof of Theorem 6.3, [Z, F]e^_, and hence ω(X)=ω(Y)=ω(lX, r])=0,
from which it follows that dω(X, F)=0 and Π0j2j0dω=Q. Similarly, we can show
that for any Xe3f_ t, a, /3e {1, ••• , s}, dω(X, EΛ)=0 and dω(EΛ, Eβ)=0. Since
{Ea} spans the distribution 3?0, it follows that Π0jl)ιdω=Q=Π0)()ί2dω. Hence

Similarly, if ωeΛ0, l f0(M), then
If ω<ΞΛ0>0,ι(M), we can similarly show that Π2ί0y()=dω=Q=Π0ί2)Qdω, and

hence dωGΛlilt0(M)®Λlt0tl(M)®A0tltl(M)®Λ0t0t2(M). (Note that we cannot show
ΠlflfQdω=Q because normality will permit PQ[X, 7]^0 for X^3Cτ, 7eIT_l.)

The rest of the proof proceeds as in Theorem 6.2.

Remark. D. E. Blair has constructed a space H2n+s ([!]) which carries a
normal framed metric /-structure on which each of the forms ηa^ΛQ^^(M\
a=l, -" , s, satisfies dηa=F. Hence dηa^.Λljl^(M}.

7. Some remarks

Both D. E. Blair and S. I. Goldberg ([2], [4]) have decomposed the differen-
tial operator d on an /-manifold M as

(7.1) d=d'+d"+d°

where it is clear from the context that if αeΛ^y(M), then d'a^Λv+lιμιV(M\
d"a^Λλ,μ+^v(M\ Λ*eΛ^y+1(M). Two problems that arise concern whether
or not the operators are well-defined and the validity of (7.1).

The operators d', d" and d° can be defined precisely, using the results of
§3, by

d'= Σ 77^,^0^0/7^, d"= Σ Πλjμ+ltVodoΠitμtV,
λ,μ,v λ,μ,v

d°= Σ Πλ,μ,^odoΠλ>μ,υ.
λ,μ,v

The validity of the relation (7.1) is more difficult. Theorem 6.2 yields the fact
that (7.1) is true if the /-structure is integrable, but Theorem 6.4 and the
remark following show the falsity of (7.1) in general.

The paper [2] uses (7.1) when dealing with a cosympletic manifold M, i.e.,
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a (2tt+l)-dimensional metric /-manifold where / has rank 2n and there is a
framing {E, η}. Among the conditions assumed are the normality of /, [/,/]
+dη®E=Q, and the closure of ηt dη=Q. It follows that [/, /]=0, / is inte-
grable, and (7.1) is valid.

In [4], S. I. Goldberg assumes the integrability of / in all of his major
theorems; however, some of the lemmas are false as stated. The additional
assumption of the integrability of / removes all of these problems.
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