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ON [-ADIC REPRESENTATIONS ATTACHED TO CERTAIN
ABELIAN VARIETIES OVER ALGEBRAIC
NUMBER FIELDS

By TETSUO NAKAMURA

Let K be a field and let A be an abelian variety defined over K, of dimen-
sion g. Let [ be a prime number different from the characteristic of K and let
T,(A) be the Tate module of A. Let V,(A)=T,(A)RzQ,. The Galois group
Gx=Gal (K,/K) operates both on T,(A) and V,(A). Write End (4) and Endg(A)
for the rings of all endomorphisms of A and of K-endomorphisms of A, respec-
tively. Then it is well known that the canonical map

ey Q,QEndg(A) —> Ende(Vi(A))

is injective. It is conjectured that the map (1) is bijective for a field K which is
finitely generated over the prime field. Tate [8] has proved this in case K is
a finite field.

Let K be an algebraic number field. Let v be a place of K. We denote by
K, the completion of K with respect to v and by £k, its residue field. Let [ be
a prime number different from the characteristic p, of k,. If A has good reduc-
tion at v, we have the following canonical commuting diagram of injective

homomorphisms
Q,®Endx(A) —> End (V,(A))

l )

Q,®End,,(4,) —> End (V,(4,)),

where ;1,, is the' reduction of A at v. Since the Galois module V,(A4) is un-
ramified at v, the natural operations of Gx and G,, are compatible in the dia-
gram. In this paper we shall consider that Endgz(A)XQ, is embedded in
End (V,(A)) and identify End(V,(A)) with M,,(Q,), the total matrix ring of
degree 2g over Q,.

Now consider an abelian variety A defined over an algebraic number field
K, satisfying the following two properties:

(Pl) E=End (4A)®Q=Endx(A)®Q is a totally real field of degree g over Q.

(P2) There exist two places v, and v, of K where A has good reduction
such that E;=End,,(4,,)®Q=End(4,,)®Q (i=1.2) are fields of degree 2g over
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Q and such that they are not isomorphic over E.

For such an abelian variety A we shall prove the following ; for every prime
number I, V,(A) is a semi-simple Gg-module and the map (1) is bijective. Ap-
plying the above result, it is possible to determine the l-adic Lie algebra of
0(Gg), where p, is a [-adic representation attached to A. For an abelian variety
A which satisfies (P1), Ribet [4] has obtained the similar results assuming, in-
stead of (P2), that A does not have everywhere potential good reduction.

It should be noted that the condition (P2) is not so much extraordinary for
simple abelian varieties which satisfy (P1). The jacobian varieties of the elliptic
modular function fields corresponding to the groups I7,(23), 17,(29), I'y(31), (They
are all of dimension 2.) and I'y(41) (of dimension 3) satisfy (P1) and (P2). (cf.
Doi [2]. Matsui [3]) Also abelian varieties in Casselman [1], which will be
treated in the last of the paper, satisfy these properties.

1. Let K be an algebraic number field and let A be an abelian variety of
dimension g defined over K such that (P1) and (P2) are satisfied. Let [ be a
prime number. Let E,=FERQ,= HEI, where 4 ranges over all places of E lying

above [ and E; is the completion of £ at 4. Since V,(A) is a free module of
rank 2 over E,=End (4)®Q,, V,(A) is canonically decomposed as E V; where

each V; is a E;-space of dimension 2. As V, is a Gg-module, it defines A-adic
representation p;: Gg—Aut(V,). (p;), where 2 runs over all places of E, forms
a compatible system of E-rational 2-adic representations of degree 2. (For details
of the above facts, see Shimura [6], § 7.6, Serre [5], I-13 and Ribet [4], Chap.
I, II.) It is a result of Tate [9] and Raynaud (unpublished) that V,(A) is a
Hodge-Tate module. (For Hodge-Tate modules and representations, see Serre,
1. c., Chap. IIL)

LEMMA 1. Let A be a place of E and p; be as above. If the semi-simplifica-
twon Py of py is abelian, then o, 1s a locally algebraic representation n the sense
of Serre, L. c..

Proof. Regarding V, as a vector space over Q,, we denote it by W. Then
from the natural injection «: Aut(V;)—Aut(W), we obtain an algebraic mor-
phism @ : GLy,—GLy, which is defined over E;. Let 5: Gg—Aut (W) be defined
by p=acp,;. Then 7 is a semi-simple abelian [-adic representation. Since sub-
modules and quotient modules of a Hodge-Tate module are also Hodge-Tate
modules, 7 is locally algebraic. (cf. Serre, l.c.) Therefore there exists an alge-
braic morphism v : T—GLy, defined over Q;, such that r(x™!)=n»o1(x) for x€ K}
=(K®Q,)* close enough to 1, where T is a Q,-torus such that 7(Q,)=(KXQ,)*
and where i;: Ki—Gx® is the canonical homomorphism of class field theory.
By definition of 7, the image of some open neighborhood of 1 in K by xoi,
which is Zariski dense in Im(r), is contained in the image of @. This shows
that there exists a morphism f:7T—GLy, defined over E; such that r=daof.
Hence we have that f(x ')=p,oi(x) for x= K, close enough to 1. Thus our
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lemma is proved.

COROLLARY. If there exists a place A, of E such that p,, is abelian, then for
every place 2, p, is abelian.

Proof. By Lemma 1, p,, is a locally algebraic abelian semi-simple repre-
sentation. Since (p;) forms a compatible system of semi-simple A-adic repre-
sentations, they come from an E-linear representation of some S,. (cf. Serre [5],
III-16) Therefore, for every A, p; is abelian.

Now let F; be the Q;-subalgebra generated by pi(Gg) in End (V;), and let
F,= HF 2 (direct sum in End (V,(A)) Then F, is the Q;-subalgebra generated

by p(Gg) in End (V,(A4)).
LEMMA 2. Let F; be as above. Then F;DE,.

Proof. For a place v of K where A has good reduction, let ¢, be a Fro-
benius element in Gx with respect to v. If #p,, pi(o,) corresponds to the Fro-
benius endomorphism f, of A, relative to k,. Denote by a, the trace of pi(g,)
for 2|l. Then a,€E and it is independent of the choice of [ (#p,) and 4. Let
@ be the field over Q generated by all a,, Then ®CE. Let S be any finite
set of Dlaces of K which contains all places of K where A has bad reduction.
Then Cebotarev’s density theorem shows that @=Q({a,}.«s). Now by (P2) we
have Q(fvi—f-f-,,i):E (i=1, 2), hence ®=E. Therefore we have F,;DE,.

PROPOSITION 1. p; is not abelian for each place 2 of E.

Proof. Let I (#py, Dv,) be a prime number such that E,®Q, and E,RQ,
are not isomorphic as EQQ,-algebras. The existence of such a [ is obvious
because of (P2) and Cebotarev’s density theorem. In view of the corollary of
Lemma 1, it suffices to show that p, is not abelian, since p; is the direct sum
of p, (considered as [-adic representation). Now suppose p, is abelian. Since
FDE®Q, (i=1, 2) by (P2), we have that the semi-simplification F, of F, con-
tains E;®Q,. Therefore we have F,=E,QQ,=FE,®Q,. However the choice of !
gives a contradiction and hence p, is not abelian. This completes the proof.

THEOREM 1. For every rational prime [, V,(A) is a semi-simple Gg-module
and the map (1) is bijective.

Proof. By Proposition 1, we can easily deduce that V; is a simple E;[Gx]-
module and, therefore, V; is a semi-simple Q,[Gx]-module; so V,(A) is semi-
simple. Hence to complete the proof it suffices to show that the commutor of
F, is E, and hence that the commutor of F, in Endq,(V;) (=all endomorphisms
of V; considered as Q;-space) is E,, which is clear by Lemma 2 and Proposition 1.

Remark. The assertion of Theorem 1 remains true even if K is replaced
by a finite extension of K, since (P1) and (P2) are unchanged.



ON [-ADIC REPRESENTATIONS ATTACHED TO ABELIAN VARIETIES 113

THEOREM 2. For each prune number [, let g, be the l-adic Lie algebra of
0dGx) in Myy(Qy). Then

8,=Q,- IP( AG?[ 8l,(E),

where I is the umt matrix and where QIZ(EA)z{(CZ Z)eMz(Ex)la—l—d:O} and

8(,(E;) are diagonally embedded in M,,(Q,) in the obvious manner. (Theorem 2
follows from Theorem 1 directly, but we omit its proof since it 1s essentially con-
lained in Ribet [4], Chap. IV.)

Remark. Let G, be the canonical image of p,(Gx) in Aut (T,(A)/IT,(A)).
Then Ribet [4], Chap. V, determined G, for almost all [ if A satisfies (P1) and
does not have everywhere potential good reduction. It is still true if A satisfies
(P1) and (P2). The proof in Ribet, l.c., is clearly applicable to our case by the
preceding considerations.

2. Let N be a prime such that N=1 (mod. 4); let k&=Q(+/N) and let ¢(a)
=(%) be the Legendre symbol. Then there exist an abelian variety A defined

over Q and an abelian subvariety A’ defined over k such that A’+A*=A and
A is isogenous to A’X A’ over k, where ¢ is the generator of Gal (¢/Q). Further
there exists a CM field K of degree dim (A) with an embedding 6 : K—End (A)®Q.
Let K’ be the maximal real subfield of K. Then we can define an embedding
¢’ of K’ into End (A4)®Q so that 6'(s) is the restriction of 4(s) to A’ for every
s€K’. Let p (+N) be a prime and p be a prime ideal of % dividing p. Let
the tilde denote reduction modp. Let =z, be the Frobenius endomorphism of A
of degree p and 73} be the element of End(A4) such that z,-75=p. Then we
have m,+¢(p)-nf=0(a,), where a, is the eigen value of the Hecke operator
acting on the cusp form associated to A. (For these abelian varieties, see Shi-
mura [6], Chap. 7, and Casselman [1].) If N=29, 53, 61, 73, 89, or 97, A’ is
simple and not of CM type (so A’ satisfies (P1).) and Casselman (lL.c.) proved
that A’ has good reduction at each place of k. Now let N=73. Then K’

=Q(~5) and dim A’=2. We show that in this case A’ satisfies (P2). For p=2
and 3, g, satisfy the equations X*+X—1=0 and X*—X—1=0, respectively. (cf.
Wada [9]) Since ¢(2)=¢(3)=1, we can compute 7, and 7. Then Q(z,)/Q and
Q(,)/Q are not Galois extensions and the prime ideal (41) is ramified in Q(z,)/Q
and unramified in Q(75)/Q. These facts show that A’ satisfies (P2).

If N=97, then dim(A’)=3 and a, satisfy the equation X*—3X—1=0 for
p=2 and p=3. (cf. [9]) In this case we also easily see that A’ satisfies (P1)
and (P2).
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