A BOUND FOR THE NUMBER OF AUTOMORPHISMS OF A FINITE RIEMANN SURFACE

By Steffen Timmann

1. Introduction.

An automorphism of a Riemann surface X is a $1-1$ conformal mapping of X onto itself. Let $N(g)$ be the order of the largest group of automorphisms a compact Riemann surface of genus g can admit. Similarly we denote by $N(g, k)$ the maximal order of an automorphism group of a finite (i. e. compact bordered) Riemann surface of genus g with k boundary components; in particular $N(g, 0)$ $=N(g)$. In this paper the following bound will be proved:

$$
N(g, k) \geqq \max \left(6,(g / 2)^{1 / 2}\right) \quad \text { for all } \quad g, k \geqq 0,
$$

and 6 cannot be replaced by a larger constant. This improves the lower bound $N(g, k) \geqq 4$ given by R. Tsuji [8].

2. Known results.

A. Hurwitz [3] proved $N(g) \leqq 84(g-1)$ for $g \geqq 2$ and A. M. Macbeath [5] showed that this bound is attained for infinitely many values of g. R.D. M. Accola [1] and C. Maclachlan [6] proved independently that $N(g) \geqq 8(g+1)$ and this lower bound is also exact for an infinite number of g 's.

Automorphisms of finite Riemann surfaces were studied by M. Heins, K. Oikawa, R. Tsuji, T. Kato and others. M. Heins (for the case $g=0$) and K. Oikawa proved that $N(g, k)$ equals the maximal order of an automorphism group of a compact Riemann surface X_{g} of genus g being punctured in k distinct points ([2], [7]). They showed that a finite Riemann surface $X_{g, k}$ of genus g with k boundary components can be imbedded into a compact Riemann surface X_{g} in such a manner that the automorphisms of $X_{g, k}$ can be continued to automorphisms of the punctured surface $X_{g, k}^{\prime}=X_{g}-\left\{P_{1}, \cdots, P_{k}\right\}$ where the P_{j} are suitably chosen distinct points of X_{g}. On the other hand if we endow the Riemann surface $X_{g}(g>1)$ with the Poincaré metric then the automorphisms of X_{g} are isometries. Hence there are discs D_{\jmath} with equal radius and midpoint P_{j} such that the automorphisms of $X_{g, k}^{\prime}$ are also automorphisms of the finite Riemann surface $X_{g, k}=X_{g, k}^{\prime}-\cup D_{\jmath}$. The cases $g=0,1$ can be treated similarly.

It follows that $N(g, k)$ is the order of the largest automorphism group G operating on a compact Riemann surface X_{g} of genus g such that there are k distinct points P_{1}, \cdots, P_{k} in X_{g} being permuted by G. The inequality $N(g, k) \leqq N(g)$ is now trivial.

For some specific values of g or k the maximal order $N(g, k)$ has been determined completely. M. Heins [2] treated the case $g=0$. Of course

$$
N(0, k)=\infty \quad \text { for } \quad k=0,1,2 .
$$

Heins proved:

$$
\begin{aligned}
& N(0, k)=2 k \quad \text { for } \quad k \geqq 3, k \neq 4,6,8,12,20, \\
& N(0,4)=12, \\
& N(0,6)=N(0,8)=24, \\
& N(0,12)=N(0,20)=60 .
\end{aligned}
$$

Using a modification of Hurwitz' method [3] K. Oikawa [7] found the upper bound

$$
\begin{equation*}
N(g, k) \leqq 12(g-1)+6 k \quad \text { for } \quad 2 g+k \geqq 3 . \tag{1}
\end{equation*}
$$

In addition he calculated $N(1, k)$ for $k \geqq 1$ explicitly :

$$
N(1, k)= \begin{cases}6 k & \text { for } k=m^{2}+3 n^{2} \\ 4 k & \text { for } k=m^{2}+n^{2} \text { but not of the form } m^{2}+3 n^{2} \\ 3 k & \text { for } k=2\left(m^{2}+3 n^{2}\right) \text { but not of the form } m^{2}+n^{2} \\ 2 k & \text { for all other } k \geqq 1 .\end{cases}
$$

Hence Oikawa's bound (1) is attained for $g=1$ and infinitely many k. By looking closely at Hurwitz' proof [3] of $N(g) \leqq 84(g-1)$ one sees that Oikawa's bound is also exact for $k=12(g-1)$ and all values of g for which $N(g)=84(g-1)$. If G is an automorphism group of order $84(g-1)$ operating on X_{g} then X_{g} viewed as a covering surface of X_{g} / G has $12(g-1)$ branch points of order 7 (and others of order 2 and 3) and the branch points of order 7 are permuted by G.
R. Tsuji [8] studied hyperelliptic Riemann surfaces and determined $N(2, k)$ completely by showing that $N(2, k)$ is a periodic function of k with period 120 and giving a table of the first 120 values of $N(2, k)$. From his results it follows in particular that

$$
N(2,59)=6 \leqq N(2, k) \leqq 48=N(2,6) .
$$

R. Tsuji also proved the best lower bound known so far valid for all g and k :

$$
\begin{equation*}
N(g, k) \geqq 4 . \tag{2}
\end{equation*}
$$

Actually he proved this for hyperelliptic Riemmann surfaces ; so for every $g \geqq 2$, $k \geqq 0$ there is a hyperelliptic surface X_{g} admitting an automorphism group at
least of order 4 which permutes k distinct points of X_{g}.
T. Kato [4] found the exact values of $N(g, k)$ for $k=1,2,3$ and $g \geqq 1$. He proved that

$$
\begin{aligned}
& N(g, 1)=4 g+2 \quad \text { for } g \geqq 1, \\
& N(g, 2)=8 g \quad \text { for } g \geqq 1 \text {, } \\
& \left.N(g, 3)=\left\{\begin{array}{ll}
12 g+6 & \text { for } g=0,1 \\
6 g+3 & \text { for } g \neq 0,1 \text { and } j^{2}+\jmath+1 \equiv 0(\bmod 2 g+1) \\
\text { has a solution }
\end{array}\right] \begin{array}{ll}
& \begin{array}{ll}
\text { for } g \equiv 1(\bmod 9) \text { and } j^{2}+J+1 \equiv 0(\bmod 2 g+1) \\
\text { does not have a solution }
\end{array} \\
4 g+6 & \text { for } g \equiv 0(\bmod 3) \text { and } j^{2}+J+1 \equiv 0(\bmod 2 g+1) \\
\text { does not have a solution }
\end{array}\right]\left(\begin{array}{ll}
(24 g+12) / 5 \quad \text { for } g=2,7 \\
4 g+2 & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

All the above results have been obtained by different methods suited for the special values of g and k. In the following paragraph two lower bounds for $N(g, k)$ valid for all g and k will be given that improve Tsuji's bound (2).

3. Two new lower bounds.

Proposition 1. $N(g, k) \geqq 6$ for all $g, k \geqq 0$ and 6 cannot be replaced by a larger constant.

Proof. The second statement follows immediately from ([2], [7], [8])

$$
N(0,3)=N(1,1)=N(2,59)=6 .
$$

To prove the first statement it is sufficient to construct for given $g, k \geqq 0$ a compact Riemann surface X_{g} of genus g with an automorphism φ of order 6 permuting a set of k mutually distinct points of X_{g}. Because of $N(g, k) \geqq 6$ for $k=0,1$ or $g=0,1$ ([1], [4]) we may suppose that $k>1, g>1$. The following three cases will be treated parallel:
a) $2 g=3 \mathrm{~h}$
b) $2 g+1=3 h$
c) $2 g+2=3 h$.

Of course every g can be represented in one of these forms with $h \in \boldsymbol{N}$. Let X_{g} be the hyperelliptic Riemann surface defined by the algebraic equation
a) $w^{2}=z\left(z^{3 h}-1\right)$
b) $w^{2}=z\left(z^{3 h}-1\right)$
c) $w^{2}=z^{3 h}-1$
and define the automorphism φ by
a) $(z, w) \longmapsto\left(e^{2 \pi / 3} z, e^{\pi i / 3} w\right)$
b) $(z, w) \longmapsto\left(e^{2 \pi z / 3} z, e^{\pi i / 3} w\right)$
c) $(z, w) \longmapsto\left(e^{2 \pi / 3} z,-w\right)$.

Then $G:=\langle\varphi\rangle=\left\{\varphi^{0}, \cdots, \varphi^{5}\right\}$ is an automorphism group on X_{g} of order 6 .
Every $k>1$ can be written in the form $k=6 \kappa+3 \varepsilon+\delta$ where $\kappa, \varepsilon, \delta \geqq 0, \varepsilon=0,1$ and
a) $\delta=0,1,2$
b) $\delta=0,1,2$
c) $\delta=0,2,4$.

Since G operates discontinuously on X_{g} there certainly are distinct points $P_{1}, \cdots, P_{\kappa}$ on X_{g} such that

$$
\mathscr{P}_{\kappa}:=\left\{\varphi^{m}\left(P_{\jmath}\right) \mid \jmath=1, \cdots, \kappa ; m=0, \cdots, 5\right\}
$$

contains 6κ mutually distinct points. In each case let Q_{1} contain the three points. of X_{g} lying over $z=1, e^{2 \pi / / 3}, e^{4 \pi \tau / 3}$. In the cases a) and b) let R_{1} contain the point corresponding to $z=0$ and in case c) let \mathcal{R}_{4} contain the four points of X_{g} corresponding to $z=0, \infty$. Finally let \mathcal{R}_{2} contain the two points of X_{g} lying over
a) $z=0, \infty$
b) $z=\infty$
c) $z=\infty$
and define $\mathscr{P}_{0}, Q_{0}, \mathscr{R}_{0}$ as the empty set. Then in all three cases $\mathscr{P}_{\kappa} \cup Q_{\varepsilon} \cup \mathscr{R}_{\tilde{\rho}}$ is a set of $k=6 \kappa+3 \varepsilon+\delta$ distinct points of X_{g} which are permuted by the automorphism group G. This concludes the proof of Proposition 1.

Since the surfaces X_{g} constructed in the above proof are all hyperelliptic we have actually proved: For every $g \geqq 2, k \geqq 0$ there is a hyperelliptic Riemann surface X_{g} of genus g admitting an automorphism group G of order 6 permuting k suitably chosen points of X_{g}.

The following lower bound improves Proposition 1 for $g \geqq 72$.
Proposition 2. $\quad N(g, k)>(g / 2)^{1 / 2}$ for all $g, k \geqq 0$.
Proof. This lower bound is trivial for $g=0,1,2$, hence we many suppose that $g>2$. For the proof it is sufficient to construct for any given genus $g>2$ a compact Riemann surface X_{g} which admits an automorphism φ of order $m>$ $(g / 2)^{1 / 2}$ with at least $m-1$ fixed points. Then we can find for all values of $k=\kappa m+\kappa^{\prime}, 0 \leqq \kappa^{\prime} \leqq m-1$, a set of k mutually distinct points of X_{g} (containing κ^{\prime} fixed points and κ disjoint orbits of $\langle\varphi\rangle$) being permuted by φ and hence by the group $\langle\varphi\rangle$.

To construct X_{g} let Y_{π} be a compact Riemann surface of genus π lying over the Riemann sphere and slit Y_{π} along r disjoint segments over the real axis that contain no branch points. Take m copies of the slit surface Y_{π} and join them in the usual cyclic manner along the slits to give a model of X_{g}. The corresponding cyclic permutation of the m copies of Y_{π} yields an automorphism φ of X_{g} of order m with $2 r$ fixed points (the end points of the slits). Using the Riemann-Hurwitz formula [3] one calculates the genus g of X_{g} :

$$
\begin{equation*}
g=m \pi+(r-1)(m-1) . \tag{3}
\end{equation*}
$$

To conclude the proof of Proposition 2 one must find for given $g>2$ integers π, r, m satisfying (3) and the additional requirements

$$
\begin{equation*}
\pi \geqq 0, \quad 2 r \geqq m-1, \quad m>(g / 2)^{1 / 2} . \tag{4}
\end{equation*}
$$

Now every $g>2$ can be written in the form

$$
\begin{equation*}
g=2 h^{2}+\mu h+\nu, \quad h \geqq 1, \quad g<2(h+1)^{2}, \quad 0 \leqq \mu \leqq 5, \quad 0 \leqq \nu \leqq h-1 . \tag{5}
\end{equation*}
$$

Given g in the form (5),

$$
\begin{equation*}
\pi=\nu, \quad m=h+1, \quad r=2 h+\mu+1-\nu \tag{6}
\end{equation*}
$$

is a solution of (3) fulfilling the conditions (4). This concludes the proof of Proposition 2.

I do not know whether Proposition 2 is in any sense exact. For special cases one easily obtains better bounds. For example using the hyperelliptic Riemann surface X_{g} defined by the algebraic equation

$$
w^{2}=z^{2 g+2}-1
$$

and the group $G=\left\langle\varphi_{1}, \varphi_{2}\right\rangle$ of order $8(g+1)$ generated by the automorphisms

$$
\begin{aligned}
& \varphi_{1}:(z, w) \longmapsto\left(e^{\pi i / g+1} z, w\right) \\
& \varphi_{2}:(z, w) \longmapsto\left(1 / z, \imath w / z^{g+1}\right)
\end{aligned}
$$

we get

$$
\begin{aligned}
& N(g, \nu(2 g+2)) \geqq 8(g+1) \\
& N(g, \nu(2 g+2)+4) \geqq 8(g+1), \quad \nu \geqq 0,
\end{aligned}
$$

These bounds are exact for infinitely many g since by the results of Accola [1] and Maclachlan [6] $N(g, k) \leqq N(g)=8(g+1)$ for an infinite family of g 's.

Many similar estimates can be found using other Riemann surfaces and automorphism groups, but the ones I came across either do by no means cover all values of g and k or do not improve the bounds given in Proposition 1 and 2.

References

[1] Accola, R.D. M.: On the number of automorphisms of a closed Riemann surface. Trans. Amer. Math. Soc., 131 (1968), 398-407.
[2] Heins, M.: On the number of $1-1$ directly conformal maps which a multiplyconnected plane region of finite connectivity $p(p>2)$ admits onto itself. Bull. Amer. Math. Soc., 52 (1946), 454-457.
[3] Hurwitz, A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann., 41 (1892), 403-442.
[4] Kato, T.: On the number of automorphisms of a compact bordered Riemann surface. Kodai Math. Sem. Rep., 24 (1972), 224-233.
[5] Macbeath, A.M.: On a theorem of Hurwitz. Proc. Glasgow Math. Assoc. 5 (1961), 90-96.
[6] Maclachlan, C.: A bound for the number of automorphisms of a compact Riemann surface. J. London Math. Soc., 44 (1969), 265-272.
[7] Oikawa, K.: Notes on Conformal Mappings of a Riemann Surface onto itself. Kodai Math. Sem. Rep., 8 (1956), 23-30, 115-116.
[8] Tsuji, R.: On conformal mapping of a hyperelliptic Riemann surface onto it. self. Kodai Math. Sem. Rep., 10 (1958), 127-136.

Institut für Mathematik
Technische Universität Hannover
D-3 Hannover
Welfengarten 1
Bundesrepublik Deutschland

