ON THE ADELE RINGS OF ALGEBRAIC NUMBER FIELDS

By Keiichi Komatsu

Introduction.

Let Q be the rational number field, \overline{Q} the algebraic closure of Q and k $(k \subset \overline{Q})$ an algebraic number field of finite degree. Let $\zeta_k(s)$ be the Dedekind zeta-function of k, k_A the adele ring of k and G_k the Galois group of \overline{Q}/k with Krull topology. We adopt similar notations for an algebraic number field k' $(k' \subset \overline{Q})$ of finite degree. If the extension k/Q is a finite Galois extension and if $\zeta_k(s) = \zeta_{k'}(s)$, then k = k' (cf. Lemma 2). The Lemma 7 of [3] shows that $k_A \cong k'_A$ implies $\zeta_k(s) = \zeta_{k'}(s)$ (cf. Corollary of Lemma 3). We also proved that $G_k \cong G_{k'}$ implies $\zeta_k(s) = \zeta_{k'}(s)$ (cf. [6] or [4]). From the above results, it is natural and interesting to consider whether, for any algebraic number fields k and k' of finite degree, $k_A \cong k'_A$ implies $k \cong k'$ and whether $G_k \cong G_{k'}$ implies $k \cong k'$. In Theorem 1, we shall show that there exist algebraic number fields k and k' of finite degree satisfying the following conditions:

- 1) $\zeta_k(s) = \zeta_{k'}(s)$.
- 2) $k_A \cong k'_A$.

Furthermore, in Theorem 2, we shall show that there exist algebraic number fields k and k' of finite degree satisfying the following conditions:

- 1) $k_A \cong k'_A$.
- $G_k \cong G_{k'}$.

This also shows that there exist algebraic number fields k and k' of finite degree satisfying the following conditions:

- 1) $k_A \cong k'_A$.
- 2) $k \cong k'$.

The author would like to express his hearty thanks to Professor Nakatsuchi for his valuable advice.

Notation and terminology.

Throughout this paper, Q and Z denote the rational number field and the rational integer ring respectively. An algebraic number field always means an algebraic number field of finite degree, an integer means a rational integer and a prime number means a rational prime number. For an algebraic number field

Received July 3, 1975.

k, we denote by O_k the integer ring of k, by k_A the adele ring of k, by $\zeta_k(s)$ the Dedekind zeta-function of k and by $\operatorname{Spec}(O_k)^\times$ the set of non-zero prime ideals of O_k . For any prime ideal $\mathfrak{p} \in \operatorname{Spec}(O_k)^\times$, $k_{\mathfrak{p}}$ denotes the completion of k by \mathfrak{p} -adic valuation. Let P_∞ be the set of infinite places of k and put $V_k = \operatorname{Spec}(O_k)^\times \cup P_\infty$. An element of V_k is called to be a place of k. For $\mathfrak{p} \in P_\infty$, if \mathfrak{p} is a real place of k, then $k_{\mathfrak{p}}$ denotes the real number field and if \mathfrak{p} is an imaginary place, then $k_{\mathfrak{p}}$ denotes the complex number field. We write $N_{k/Q}(\cdot)$ for the norm of an ideal in k. Let F be a field and for a Galois extension L/F, we denote by $\operatorname{Gal}(L/F)$ the Galois group of L/F. We write [G; H] for the index of a subgroup H in a finite group G. For a complex number s, we denote by $\operatorname{Re}(s)$ the real part of s. The word "isomorphism" for topological groups, topological rings and topological fields, means a topological isomorphism.

1. A Dirichlet series is a series of the form $\sum_{n=1}^{\infty} a_n n^{-s}$, where s is a complex number, and the coefficients a_n are complex numbers. The following lemma is an elementary property of a Dirichlet series:

LEMMA 1. Let c be a real number. If Dirichlet series $\sum_{n=1}^{\infty} a_n n^{-s}$ and $\sum_{n=1}^{\infty} b_n n^{-s}$ converge in the common half plane $\operatorname{Re}(s) > c$, and if their sum functions coinside in a non-empty open set contained in that half-plane, then $a_n = b_n$ for all $n \ge 1$.

COROLLARY. Let $a_1, a_2, \dots, a_r, a_1', a_2', \dots, a_{r'}$, be positive integers with $a_1 < a_2 < \dots < a_r$ and $a_1' < a_2' < \dots a_{r'}$. Let $\mu_1, \mu_2, \dots, \mu_r, \mu_1', \mu_2', \dots, \mu_{r'}$ be positive integers and let p be a prime number. If

(1)
$$\prod_{i=1}^{r} \left(\sum_{\nu=0}^{\infty} p^{-a_i \nu s} \right)^{\mu_i} = \prod_{i=1}^{r'} \left(\sum_{\nu=0}^{\infty} p^{-a'_i \nu s} \right)^{\mu'_i}$$

in the half-plane $\operatorname{Re}(s)>1$, then r=r', $a_i=a_i'$ and $\mu_i=\mu_i'$ for $i=1,\cdots,r$.

Proof. A series $\sum_{\nu=0}^{\infty} p^{-f\nu s}$ converges in the half-plane Re(s)>0, where f is a positive integer. Hence the both-hand sides of the equation (1) converge in the half-plane Re(s)>0. For the expansion $\sum_{n=1}^{\infty} c_n n^{-s}$ of the left-hand side of the equation (1), $c_1=1$, $c_n=0$ for $1< n< p^{a_1}$ and $c_{pa_1}=\mu_1$. For the expansion $\sum_{n=1}^{\infty} c'_n n^{-s}$ of the right-hand side of the equation (1), $c'_1=1$, $c'_n=0$ for $1< n< p^{a'_1}$ and $c_{pa'_1}=\mu'_1$. Hence from Lemma 1 follows $c_n=c'_n$ for all $n\ge 1$, which shows $a_1=a'_1$ and $\mu_1=\mu'_1$. Cancelling the series $(\sum_{\nu=0}^{\infty} p^{-a_1\nu s})^{\mu_1}$ and $(\sum_{\nu=0}^{\infty} p^{-a'_1\nu s})^{\mu'_1}$ from the equation (1), we have

$$\prod_{i=2}^{r} \left(\sum_{\nu=0}^{\infty} p^{-a_i \nu s} \right)^{\mu_i} = \prod_{i=2}^{r'} \left(\sum_{\nu=0}^{\infty} p^{-a'_i \nu s} \right)^{\mu'_i}.$$

Repeating our argument inductively, we conclude r=r', $\mu_i=\mu_i'$ and $a_i=a_i'$ for $i=1,\dots,r$.

LEMMA 2. Let L be a finite Galois extension of Q, let G=Gal(L/Q), and let k and k' be subfields of L corresponding to subgroups H and H' respectively. For any element σ of G, let $C(\sigma)=\{\tau^{-1}\sigma\tau\,|\,\tau\in G\}$. Then the following conditions are equivalent:

- (i) For every element σ of G, the number card $(C(\sigma) \cap H)$ of the elements of $C(\sigma) \cap H$ is equal to the number card $(C(\sigma) \cap H')$ of the elements of $C(\sigma) \cap H'$.
- (ii) For every prime number p, the collection of degrees of the factors of p in k is identical with the collection of degrees of the factors of p in k'.
 - (iii) The zeta-functions $\zeta_k(s)$ and $\zeta_{k'}(s)$ are the same.

Proof. From p. 363 of [1], it suffices to show (ii) from (iii) part. For every prime number p, let $\mathfrak{p}_1, \cdots, \mathfrak{p}_{gp}$ be distinct prime ideals in k such that $p = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_{gp}^{e_gp}$ and that $N_{k/Q}(\mathfrak{p}_i) = p^{f_1,p}$ with $f_{1,p} \leq f_{2,p} \leq \cdots \leq f_{gp,p}$. We adopt similar notations, viz, $\mathfrak{p}'_1, \cdots, \mathfrak{p}'_{g'p} f'_{1,p}, \cdots, f'_{g'p}, p(f'_{1,p} \leq \cdots \leq f'_{gp,p})$, for k'. Then we have

$$\begin{split} \zeta_k(s) &= \prod_{\mathfrak{p} \in \text{Spec }(O_k)} (1 - N_{k/Q}(\mathfrak{p})^{-s})^{-1} = \prod_{p} \prod_{i=1}^{g_p} (1 - p^{-f_i, ps})^{-1} \\ &= \prod_{p} \prod_{i=1}^{g_p} \sum_{\nu=0}^{\infty} p^{-f_i, p\nu s} \quad \text{for } \text{Re}(s) > 1 \,, \end{split}$$

where p runs through all the prime numbers. Similarly we have

$$\zeta_{k'}(s) = \prod_{p} \prod_{i=1}^{g'_{p}} \sum_{\nu=0}^{\infty} p^{-f'_{i,p}\nu s}$$
 for Re(s)>1.

Since $\zeta_k(s) = \zeta_{k'}(s)$, it follows from Lemma 1

$$\prod_{i=1}^{gp} \sum_{\nu=0}^{\infty} p^{-f_i, p\nu s} = \prod_{i=1}^{g'_p} \sum_{\nu=0}^{\infty} p^{-f'_{i, p} \nu s}.$$

Hence by Corollary of Lemma 1, we conclude $g_p = g'_p$ and $f_{i,p} = f'_{i,p}$ for $i = 1, 2, \dots, g_p$.

LEMMA 3. Let k be an algebraic number field, k_A the adele ring of k, V_k the set of places of k, Spec $(O_k)^{\times}$ the set of non-zero prime ideals of k, r_1 the number of real places of k and r_2 the number of imaginary places of k. We adopt similar notations for an algebraic number field k'. Then the following conditions are equivalent:

- (i) k_A and k'_A are isomorphic.
- (ii) There exists a bijection Φ of V_k onto $V_{k'}$ such that $k_{\mathfrak{p}}$ and $k'_{\Phi(\mathfrak{p})}$ are isomorphic for all $\mathfrak{p} \in V_k$.
- (iii) There exists a bijection Ψ of $\operatorname{Spec}(O_k)^{\times}$ onto $\operatorname{Spec}(O_{k'})^{\times}$ such that k_{Ψ} and $k'_{\Psi(\mathbb{P})}$ are isomorphic for all $\mathfrak{p} \in \operatorname{Spec}(O_k)^{\times}$.

Proof. The Lemma 7 of [3] shows that the conditions (i) and (ii) are equivalent. It is obvious to prove (iii) from (ii) part. Hence it suffices to prove (ii) from (iii) part. We have $k_{\mathfrak{p}} \cong k'_{\Psi(\mathfrak{p})}$ for every $\mathfrak{p} \in \operatorname{Spec}(O_k)^{\times}$, which proves $N_{k/Q}(\mathfrak{p})$

 $=N_{k'/Q}(\Psi(\mathfrak{p}))$ for every $\mathfrak{p}\in \operatorname{Spec}(O_k)^{\times}$. Hence we conclude $\zeta_k(s)=\zeta_{k'}(s)$. Since $\zeta_k(s)$ has zero point of the order r_2 at s=-1 and since $\zeta_k(s)$ has zero point of the order r_1+r_2 at s=-2, we have $r_1=r_1'$ and $r_2=r_2'$. Therefore we have the condition (iii).

COROLLARY. $k_A \cong k'_A$ implies $\zeta_k(s) = \zeta_{k'}(s)$.

Proof. It is obvious from the proof of Lemma 3. From p. 138 of [2] we have the following lemma:

LEMMA 4. Let $k=Q(\sqrt[8]{37})$ and $k'=Q(\sqrt[8]{3\times 2^4})$. Then $\zeta_k(s)=\zeta_{k'}(s)$ and $k\cong k'$. Theorem 1. There exist algebraic number fields k and k' such that the zeta-functions $\zeta_k(s)$ and $\zeta_{k'}(s)$ are the same and that the adele rings k_A and k'_A are not isomorphic.

Proof. Let $k=Q(\sqrt[8]{3})$ and $k'=Q(\sqrt[8]{3}\times 2^4)$. We note that $k=Q(\sqrt[8]{3})$ and $k'=Q(\sqrt[8]{3}\times\sqrt{2})$. Let η_8 be a primitive 8-th root of 1 and L the minimal Galois extension of Q containing k. Then $L=Q(\sqrt[8]{3}, \eta_8)=Q(\sqrt[8]{3}, \sqrt{2}, \sqrt{-1})$, which proves $L \supset k'$. We put G = Gal(L/Q), H = Gal(L/k), H' = Gal(L/k') and $N = Gal(L/Q(\eta_8))$. Then $H\cong H'\cong \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}$, $N\cong \mathbb{Z}/8\mathbb{Z}$, N is a normal subgroup of G and G is a semi-direct product of H and N. The quadratic number fields which are contained in L are $Q(\sqrt{3})$, $Q(\sqrt{-3})$, $Q(\sqrt{2})$, $Q(\sqrt{-2})$, $Q(\sqrt{6})$, $Q(\sqrt{-6})$ and $Q(\sqrt{-1})$. In none of them, the ideal (2) splits completely. Let \$\mathbb{B}\$ be a prime divisor of the ideal (2) in L, D the decomposition group of $\mathfrak P$ with respect to L/Q and F the decomposition field of \mathfrak{P} with respect to L/Q. Suppose $G \neq D$. As G is a 2-group, there exists a maximal proper subgroup N_1 of G such that $N_1 \supset D$ and that $[G; N_1]=2$. Let k_1 be the subfield of L corresponding to N_1 . The ramification index and the degree of the ideal $\mathfrak{P} \cap k_1$ in k_1/Q are equal to 1. Since k_1/Q is a Galois extension, the ideal (2) splits completely in k_1/Q . This is a contradiction. Hence we have G=D. Let $L_{\mathfrak{P}}$ be the completion of L by \mathfrak{P} -adic valuation. We put $\mathfrak{p}=\mathfrak{P}\cap k$ and $\mathfrak{P}'=\mathfrak{P}\cap k'$. Let K (resp. K') be topological closure of k (resp. k') in $L_{\mathfrak{P}}$. We should notice $K \cong k_{\mathfrak{P}}$ and $K' \cong k'_{\mathfrak{P}}$. Since G = D, there exists a natural isomorphism φ of Gal $(L_{\mathfrak{P}}/Q_2)$ onto G, where Q_2 is the topological closure of Q in $L_{\mathfrak{P}}$. We have $\varphi(\operatorname{Gal}(L_{\mathfrak{P}}/K)) = H$ and $\varphi(\operatorname{Gal}(L_{\mathfrak{P}}/K')) = H'$. Since $k \cong k'$ follows from Lemmr 4, H and H' are not conjugate in G, which shows $K \cong K'$. Therefore we have $k_{\mathfrak{p}} \cong k'_{\mathfrak{p}}$. Hence $k_{\mathfrak{q}} \cong k'_{\mathfrak{q}}$ follows from Lemma 3. The Lemma 4 also shows $\zeta_k(s) = \zeta_{k'}(s)$. This completes our proof.

2. Let l be an odd prime number, H an elementary abelian l-group of order l^3 , i. e. $H\cong (Z/lZ)^3$, and H' a non-commutative group of order l^3 and of exponent l. An existence of H' with the above properties is shown in p. 151 of [9]. We denote by S_{l^3} the permutation group of the set $\{1, 2, \dots, l^3\}$. Let $H=\{a_1, a_2, \dots, a_{l^3}\}$. For an element $a\in H$, we define an element $\sigma\in S_{l^3}$ satisfying $a_ia=a_{\sigma(i)}$ for $i=1,\dots,l^3$: we write this $\varphi(a)$. We call φ the embedding of H into S_{l^3} . We will identify H with its image in S_{l^3} by φ . We adopt similar

notations for H'.

LEMMA 5. Let S_{l^3} , H and H' be as above and let A_{l^3} be the alternative group of degree l^3 in S_{l^3} . Then $\operatorname{card}(C(\sigma) \cap H) = \operatorname{card}(C(\sigma) \cap H')$ for all $\sigma \in S_{l^3}$ and $H \cup H' \subset A_{l^3}$.

Proof. Let e be the unit element of S_{l^3} and ϕ the empty set. Put $X = \{\rho \in H \cup H' \mid \rho \neq e\}$. From the definition of embedding of H and H' into S_{l^3} , for $\rho \in X$, we have $\rho(i) \neq i$ for $i = 1, \dots, l^3$ and $\rho^l = e$. So a disjoint cycle decomposition of ρ is the product of l^2 disjoint cycles of length l, i. e. $\rho = (i_{11} \cdots i_{1l}) \cdots (i_{l^21} \cdots i_{l^2l})$. Hence ρ is an even permutation, $H \cup H' \subset A_{l^3}$, and two elements ρ_1 and ρ_2 of X have the same cycle decompositions. Hence ρ_1 and ρ_2 are conjugate in S_{l^3} . Therefore for any element $\sigma \in S_{l^3}$ with $\sigma \neq e$, the following assertions hold:

- (i) $C(\sigma) \cap H = \phi$ if and only if $C(\sigma) \cap H' = \phi$.
- (ii) $C(\sigma) \cap H \neq \phi$ if and only if $card(C(\sigma) \cap H) = card(C(\sigma) \cap H') = l^3 1$.
- (iii) $C(e) \cap H = C(e) \cap H' = \{e\}.$

Hence we conclude card $(C(\sigma) \cap H) = \operatorname{card} (C(\sigma) \cap H')$ for every element $\sigma \in S_{l^3}$.

Let \overline{Q} be the algebraic closure of Q, let k and k' be algebraic number fields contained in \overline{Q} and let G_k be the absolute Galois group of k, i.e. the Galois group of \overline{Q}/k with Krull topology. We adopt similar notations for k'.

LEMMA 6. k and k' being as above and let L be a finite Galois extension of Q such that $L \supset k$. If G_k and $G_{k'}$ are isomorphic, then $L \supset k'$ and $Gal(L/k) \cong Gal(L/k')$.

Proof. Let λ be an isomorphism of G_k onto $G_{k'}$. Since $\lambda(G_L)$ is an open subgroup of $G_{k'}$, there exists a finite extension L' of k' such that $\lambda(G_L) = G_{L'}$. From Satz 12 of [6], we have L = L'. This shows $L \supset k'$. The isomorphism λ induces an isomorphism of G_k/G_L onto $G_{k'}/G_L$, which proves $\operatorname{Gal}(L/k) \cong \operatorname{Gal}(L/k')$.

Let $n \geq 3$ be an integer and S_n the symmetric group of degree n. A finite Galois extension L of Q whose Galois group is isomorphic to S_n is called to be an S_n -extension of Q. Theorem 1 of Part II in [8] shows the following:

LEMMA 7. Let an integer n and S_n be as above and let A_n be the alternative group of degree n in S_n . Then there exists a quadratic number field F which satisfies the following conditions:

- (i) There exists an S_n -extension L of Q containing F.
- (ii) Gal $(L/F) \cong A_n$.
- (iii) All the prime ideals in F are unramified in L/F.

THEOREM 2. There exist algebraic number fields k and k' such that k_A and k'_A are isomorphic and that G_k and $G_{k'}$ are not isomorphic, where k_A (resp. k'_A) is the adele ring of k (resp. k') and where G_k (resp. $G_{k'}$) is the absolute Galois group of k (resp. k').

Proof. Let l be an odd prime number and put $n=l^3$. We take L and F as in Lemma 7. For an isomorphism φ of S_n onto Gal(L/Q), we notice $\varphi(A_n)$ =Gal(L/F). Let H and H' be as in Lemma 5 and k (resp. k') the subfield of L corresponding to $\varphi(H)$ (resp. $\varphi(H')$). From Lemma 5 we have $A_n \supset H \cup H'$ and $k \cap k' \supset F$. Lemma 6 and $H \cong H$ show $G_k \cong G_{k'}$. Let p be a prime number. Suppose p is unramified in F/Q. From Lemma 7, p is unramified in k/Q and in k'/Q. Let $\mathfrak{P}_1, \dots, \mathfrak{P}_g$ be the prime divisors of p in k and put $N_{k/Q}(\mathfrak{P}_i)=p^{f_i}$ for $i=1,\cdots,g$. By Lemma 5 and Lemma 2, there exist distinct prime ideals \mathfrak{P}_1',\cdots , $\mathfrak{P}'_{\mathbf{g}}$ in k' such that $p=\mathfrak{P}'_1\cdots\mathfrak{P}'_{\mathbf{g}}$ and that $N_{k'/Q}(\mathfrak{P}'_i)=p^{f_i}$ for $i=1,\cdots,g$. Hence $k_{\mathfrak{P}_i}$ and $k'_{\mathfrak{P}'_{\mathfrak{p}}}$ are unramified extensions of Q_p of degree $f_{\mathfrak{p}}$, which shows $k_{\mathfrak{P}_{\mathfrak{p}}} \cong k'_{\mathfrak{P}'_{\mathfrak{p}}}$. Suppose p is ramified in F/Q. For the prime divisors $\mathfrak{P}_1, \dots, \mathfrak{P}_g$ of p in k, we have $p=\mathfrak{P}_1^2\cdots\mathfrak{P}_g^2$ from Lemma 7. Put $N_{k/Q}(\mathfrak{P}_i)=p^{f_i}$. By Lemma 5 and Lemma 2, there exist distinct prime ideals $\mathfrak{P}'_1, \dots, \mathfrak{P}'_g$ in k' such that $p=\mathfrak{P}'^2_1 \dots \mathfrak{P}'^2_g$ and $N_{k'/Q}(\mathfrak{P}_i')=p^{f_i}$ for $i=1,\cdots,g$. We notice $\mathfrak{P}_i\cap F=\mathfrak{P}_i'\cap F$ and we put $\mathfrak{p}=\mathfrak{P}_i\cap F$. $k_{\mathfrak{P}_{i}}$ and $k'_{\mathfrak{P}'_{i}}$ are unramified extensions of $F_{\mathfrak{p}}$ of degree f_{i} . This shows $k_{\mathfrak{P}_{i}} \cong k'_{\mathfrak{P}'_{i}}$. Therefore we conclude $k_A \cong k'_A$. This completes our proof.

COROLLARY 1. There exist algebraic number fields k and k' satisfying the following conditions:

- (i) $k \cong k'$.
- (ii) $k_A \cong k'_A$.

Proof. It is obvious from that $k \cong k'$ implies $G_k \cong G_{k'}$.

COROLLARY 2. There exist algebraic number fields k and k' satisfying the following conditions

- (i) $k \cong k'$.
- (ii) There exists a bijection Φ of V_k onto $V_{k'}$ such that $k_{\mathfrak{p}} \cong k'_{\Phi(\mathfrak{p})}$ for any place $\mathfrak{p} \in V_k$.

Proof. It is obvious from Lemma 3.

COROLLARY 3. There exist algebraic number fields k and k' such that $G_k \cong G_{k'}$ and that $\zeta_k(s) = \zeta_{k'}(s)$.

Proof. It follows from Corollary of Lemma 3.

REFERENCES

- [1] GASSELS-FROULICH, Algebraic Number Theory, Academic Press, London & New York, (1967).
- [2] I. GERST, On the theory of n-th power residues and a conjecture of Kronecker, Acta Arithmetica XII, 121-138, (1970).
- [3] K. IWASAWA, On the rings of valuation vectors, Ann. of Math., 57, 331-356, (1953).
- [4] K. Komatsu, The Galois group of the algebraic closure of an algebraic num-

- ber field, Kodai Math. Sem. Rep., 26, 44-52, (1974).
- [5] S. NAKATSUCHI, A note on Kroneckers "Randwertsatz", Journal of Math. of Kyoto University, 13, 129 137, (1972).
- [6] J. Neukirch, Kennzeichnung der p-adischen und der endlich algebraischen Zahlkörper, Inventiones Math., 6, 296-314, (1969).
- [7] K. UCHIDA, Unramified extensions of quadratic number fields I, II, Tohoku Math. Journal, 22, 138-141, 220-224, (1970).
- [8] Y. YAMAMOTO, On unramified Galois extensions of quadratic number fields, Osaka Journal Math., 7, 57-76, (1970).
- [9] H. ZASSENHAUS, The theory of groups, Chelsea, (1958).

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.