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ON THE ADELE RINGS OF ALGEBRAIC NUMBER FIELDS
By KEiicHI KOMATSU

Introduction.

Let Q be the rational number field, § the algebraic closure of Q and Z
(kcQ) an algebraic number field of finite degree. Let {,(s) be the Dedekind
zeta-function of &, k4 the adele ring of & and G, the Galois group of Q/k with
Krull topology. We adopt similar notations for an algebraic number field &’
(k' Q) of finite degree. If the extension k/Q is a finite Galois extension and if
Lu(s)=Cu(s), then k=F’ (cf. Lemma 2). The Lemma 7 of [3] shows that k,=Fk/
implies Cu(s)=C,(s) (cf. Corollary of Lemma 3). We also proved that G,=G,
implies £(s)=Cu(s) (cf. [6] or [4]). From the above results, it is natural and
interesting to consider whether, for any algebraic number fields %2 and %’ of
finite degree, k,=k implies k=k’ and whether G,=G, implies k=Fk’. In Theo-
rem 1, we shall show that there exist algebraic number fields k# and %’ of finite
degree satisfying the following conditions :

D L8)=Cw(s).

2) k xRk,

Furthermore, in Theorem 2, we shall show that there exist algebraic number
fields £ and %’ of finite degree satisfying the following conditions :

1) ky =Pk,

2) G,=G,.

This also shows that there exist algebraic number fields 2 and %’ of finite
degree satisfying the following conditions :

1) k =k,

2) kxk.

The author would like to express his hearty thanks to Professor Nakatsuchi
for his valuable advice.

Notation and terminology.

Throughout this paper, Q and Z denote the rational number field and the
rational integer ring respectively. An algebraic number field always means an
algebraic number field of finite degree, an integer means a rational integer and
a prime number means a rational prime number. For an algebraic number field

Received July 3, 1975.
78



ON THE ADELE RINGS OF ALGEBRAIC NUMBER FIELDS 79

k, we denote by O, the integer ring of k, by k, the adele ring of %, by {u(s)
the Dedekind zeta-function of 2 and by Spec(0,)* the set of non-zero prime
ideals of O,. For any prime ideal p=Spec (0,)*, k» denotes the completion of
k by p-adic valuation. Let P. be the set of infinite places of 2 and put V,=
Spec (0)*JP.. An element of V, is called to be a place of k. For peP., if p
is a real place of %, then k2, denotes the real number field and if p is an im-
aginary place, then %, denotes the complex number fleld. We write N,o( ) for
the norm of an ideal in 2. Let F be a field and for a Galois extension L/F,
we denote by Gal(L/F) the Galois group of L/F. We write [G; H] for the
index of a subgroup H in a finite group G. For a complex number s, we denote
by Re(s) the real part of s. The word “isomorphism” for topological groups,
topological rings and topological fields, means a topological isomorphism.

1. A Dirichlet series is a series of the form > a,n”°, where s is a complex
n=1
number, and the coefficients a, are complex numbers. The following lemma is
an elementary property of a Dirichlet series:
LEMMA 1. Let ¢ be a real number. If Diwrichlet series > a,n™* and > b,n*
n=1 n=1

converge in the common half plane Re (s)>c, and 1f thew sum functions coinside
in a non-empty open set contained in that half-plane, then a,=b, for all n=1.

COROLLARY. Let ay, a,, -, a,, aj, a, -+, a.., be positive integers with a,<a,<
- <La, and ai<ay< - ap. Let py, pro, -+, pr, th, 3, -+, o be positwe integers and
let p be a prime number. If

) IL( 3 poeny= IL(E prays
in the half-plane Re (s)>1, then r=v', a;=a, and p,=y} for 1=1, ---, r.

Proof. A series f} p~/** converges in the half-plane Re (s)>0, where f is a

v=0
positive integer. Hence the both-hand sides of the equation (1) converge in the
half-plane Re(s)>0. For the expansion ij}lcnn‘s of the left-hand side of the

/=8

equation (1), ¢;=1, ¢,=0 for 1<n<p* and c,q, =g, For the expansion ”chnn
of the right-hand side of the equation (1), ¢[=1, ¢,=0 for 1<n<p% and Cpa)= 78
Hence from Lemma 1 follows c¢,=c, for all n=1, which shows a,=a{ and p,=g.
Cancelling the series (ij(,) p %) and (g‘z)p‘“l”)/"l from the equation (1), we have

Repeating our argument inductively, we conclude r=r’, p;=p; and a,=a, for
i=1, -, 7.
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LEMMA 2. Let L be a finite Galois extension of Q, let G=Gal(L/Q), and let
k and k' be subfields of L corresponding to subgroups H and H’' respectively.
For any element ¢ of G, let C(o)={c"'ot|t=G}. Then the following conditions
are equivalent:

(i) For every element o of G, the number card (C(6)N\H) of the elements of
C(o)N\H is equal to the number card (C(c)N\H') of the elements of C(c)N\H'.

(ii) For every prime number p, the collection of degrees of the factors of p
in k is identical with the collection of degrees of the factors of p in k’.

(iii) The zeta-functions £,(s) and .(s) are the same.

Proof. From p. 363 of [1], it suffices to show (ii) from (iii) part. For every

prime number p, let b, -+, b, be distinct prime ideals in % such that p=pf --
pegr and that Nyo(b)=p"»? with f1,=f,p< - =fgp. We adopt similar nota-
tions, viz, pf, -, p’glpff,p, ,ffg:p,p(f{,pé o+ =fgpp), for k. Then we have

Ck(s): H )<l_Nk/Q(p)—s)-1=];[l]‘=_‘[i (l_p'fl,ps)-l

p=Spec (0,

g co
=TITI 3p~/=»*  for Re(s)>1,

P 1=1v=0

where p runs through all the prime numbers. Similarly we have

=TI £p7%s"  for Re(s)>1.
P

=1 v=0
Since {x(s)=C&u(s), it follows from Lemma 1

E€p glp © ,
II X p~7ur=T1[ X p~/ur™.
1=1 y=0 =1 v=0

Hence by Corollary of Lemma 1, we conclude g,=g} and f, ,=f., for i=1, 2,
eeen y gp.

LEMMA 3. Let k& be an algebraic number field, k, the adele ring of k, V,
the set of places of k, Spec (0,)* the set of non-zero prime ideals of k, r, the
number of real places of k and v, the number of imaginary places of k. We
adopt similar notations for an algebraic number field k’. Then the following con-
ditions are equivalent:

(i) k4 and Ey are isomorphic.

(ii) There exists a bijection @ of V, onto V, such that ky and Ry, are iso-
morphic for all peV,.

(iii) There exists a bijection ¥ of Spec(0,)* onto Spec (0)* such that k,
and kyo, are isomorphic for all peSpec (0,)*.

Proof. The Lemma 7 of [3] shows that the conditions (i) and (ii) are equi-
valent. It is obvious to prove (iii) from (ii) part. Hence it suffices to prove (ii)
from (iii) part. We have ky=kyw, for every p=Spec (0,)*, which proves N, o(p)
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=N,,o¥(p)) for every psSpec(0,)*. Hence we conclude {(s)=Cu(s). Since
{«(s) has zero point of the order 7, at s=—1 and since ,(s) has zero point of
the order 7,+7, at s=—2, we have r,=7{ and »,—=v}. Therefore we have the
condition (iii).

COROLLARY. k =k implies {,(s)=Cw(s).

Proof. 1t is obvious from the proof of Lemma 3.
From p. 138 of [2] we have the following lemma:

LEMMA 4. Let k=Q(¥3") and k'=Q(¥3X2%. Then {(s)=Cu(s) and kxk’.

THEOREM 1. There exist algebraic number fields k and k' such that the zeta-
Sunctions {(s) and &,(s) are the same and that the adele rings k, and k) are not
1somorphic.

Proof. Let k=Q(¥3") and k'=Q(¥3x2'). We note that k=Q(¥3) and
E'=Q(¥3x+/2). Let 7, be a primitive 8-th root of 1 and L the minimal Galois
extension of @ containing k. Then L=Q(¥3, 7,)=Q( ¥3, /2, ~/—1), which proves
LDk, We put G=Gal (L/Q), H=Gal (L/k), H=Gal (L/k’) and N=Gal (L/Q(7s)).
Then H=H'=Z/2ZXxZ/2Z, N=Z/8Z, N is a normal subgroup of G and G is a
semi-direct product of H and N. The quadratic number fields which are con-
tained in L are Q(+/3), Q(v=3), Q(v2), Q(v'—2), Q(+/6), Q(~/—6) and Q(~/—1).
In none of them, the ideal (2) splits completely. Let P be a prime divisor of
the ideal (2) in L, D the decomposition group of B with respect to L/Q and F
the decomposition field of P with respect to L/Q. Suppose G=D. As G is a
2-group, there exists a maximal proper subgroup N, of G such that N,DD and
that [G; N,]J=2. Let k, be the subfield of L corresponding to N,. The rami-
fication index and the degree of the ideal BNk, in k,/Q are equal to 1. Since
k,/Q is a Galois extension, the ideal (2) splits completely in k,/Q. This is a
contradiction. Hence we have G=D. Let Ly be the completion of L by $-adic
valuation. We put p=PNk and p'=PNk’. Let K (resp. K’) be topological closure
of & (resp. k’) in Ly. We should notice K=k, and K’'=kj,. Since G=D, there
exists a natural isomorphism ¢ of Gal(Ly/Q.) onto G, where @, is the topo-
logical closure of @ in Ly. We have ¢(Gal (Ly/K))=H and ¢(Gal (Ly/K"))=H'.
Since k= k’ follows from Lemmr 4, H and H’ are not conjugate in G, which
shows K= K’. Therefore we have ky,%k). Hence k, %k, follows from Lemma
3. The Lemma 4 also shows {(s)={.(s). This completes our proof.

2. Let [ be an odd prime number, H an elementary abelian l-group of
order I°, i.e. H=(Z/IZ)?, and H' a non-commutative group of order [* and of
exponent . An existence of H’ with the above properties is shown in p. 151
of [9]. We denote by S;; the permutation group of the set {1,2,---,/[%}. Let
H={a,, a,, ---, a;s}. For an element a< H, we define an element ¢ S;; satisfying
a;0=0,, for i=1, .-, [®: we write this ¢(a). We call ¢ the embedding of H
into S;s. We will identify H with its image in S;; by ¢. We adopt similar
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notations for H'.

LEMMA 5. Let S;s, H and H' be as above and let A;s be the alternative group
of degree 1* in S;s. Then card (C(e)N\H)=card (C(e)"\H') for all c€S;s and
HUH/CAI?I.

Proof. Let e be the unit element of S;s and ¢ the empty set. Put X=
{pes HUH |p+#e}. From the definition of embedding of H and H’ into S;s, for
pe X, we have p(i)#1i for 1=1, -+, [* and p'=e. So a disjoint cycle decomposi-
tion of o is the product of [* disjoint cycles of length [, i.e. p=(;; -+ 1y;) -
(132 -++ 1;2;). Hence p is an even permutation, H\UH'C A;s, and two elements p,
and p, of X have the same cycle decompositions. Hence p, and p, are con-
jugate in S;s. Therefore for any element 6= S,: with o+e, the following asser-
tions hold :

(i) Cle)nH=4¢ if and only if C(o)N\H'=¢.

(i) Cle)nH#¢ if and only if card (C(e)NH)=card (C(c)NH")=F—1.

(iii) C(e)n"H=C(e)"\H'={e}.

Hence we conclude card (C(e)N\H)=card (C(e)N\H’) for every element o< S;s.

Let § be the _algebraic closure of @, let %k and %’ be algebraic number
fields contained ig @ and let G, be the absolute Galois group of %, i.e. the
Galois group of /% with Krull topology. We adopt similar notations for %’.

LEMMA 6. k and k’ being as above and let L be a finite Galois extension of
Q such that LDk, If G, and G, are isomorphic, then LDk’ and Gal(L/k)=
Gal (L/k").

Proof. Let 2 be an isomorphism of G, onto G,. Since A(G.) is an open
subgroup of G,, there exists a finite extension L’ of 2 such that A(G.)=Gy.
From Satz 12 of [6], we have L=L’. This shows LDk’. The isomorphism 2
induces an isomorphism of G,/G, onto G, /G, which proves Gal (L/k)=Gal (L/k’).

Let n (=3) be an integer and S, the symmetric group of degree n. A
finite Galois extension L of Q whose Galois group is isomorphic to S, is called
to be an S,-extension of Q. Theorem 1 of Part Il in [8] shows the following:

LEMMA 7. Let an integer n and S, be as above and let A, be the alterna-
twe group of degree n wn S,. Then there exists a quadratic number field F which
satisfies the following conditions:

(i) There exists an S,-extension L of Q containing F.

(ii) Gal(L/F)=A,.

(iii) All the prime ideals in F are unramufied in L/F.

THEOREM 2. There exist algebraic number fields k and k' such that k, and
", are isomorphic and that G, and G, are not isomorphic, where k, (vesp. k) is
the adele ring of k (resp. k) and where G, (resp. G,.) is the absolute Galois group
of k (resp. k).
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Proof. Let [ be an odd prime number and put n=I[3. We take L and F
as in Lemma 7. For an isomorphism ¢ of S, onto Gal(L/Q), we notice ¢(A,)
=Gal(L/F). Let H and H’ be as in Lemma 5 and % (resp. k') the subfield of
L corresponding to ¢(H) (resp. ¢(H’)). From Lemma 5 we have A,DH\UH’ and
kNk’DF. Lemma 6 and Hx H show G,%G,. Let p be a prime number. Sup-
pose p is unramified in F/Q. From Lemma 7, p is unramified in 2/Q and in
k’/Q. Let B, ---, B, be the prime divisors of p in k& and put No(B;)=p"* for
i=1,---, g By Lemma 5 and Lemma 2, there exist distinct prime ideals P, ---,
P in k' such that p=P{--- P, and that N ,o(B;)=p" for 1=1, -, g. Hence ky,
and k/*“é are unramified extensions of @, of degree f,, which shows kggtgk/g;;.
Suppose p is ramified in F/Q. For the prime divisors $,, ---, B, of p in &, we
have p=%2--- B2 from Lemma 7. Put N(PB,)=p’*. By Lemma 5 and Lemma
2, there exist distinct prime ideals i, -+, B in &’ such that p=P'7 --- P’} and
Npo®B)=p" for 1=1, -, 2. We notice BP.NF=P;NF and we put p=P,NF.
kg, and k’g;,l are unramified extensions of F) of degree f,. This shows kgslzk,q;;.

Therefore we conclude %k,=k,. This completes our proof.

COROLLARY 1. There exist algebraic number fields k and k' satisfying the
following conditions -

1) kxk.

(i) k =k,

Proof. 1t is obvious from that k=%’ implies G,=G,.

COROLLARY 2. There exist algebraic number fields k and k' satisfying the
following conditions

1) kxk.

(ii) There exists a biyjection @ of V, onto V, such that ky=kho, for any
place yeV,.

Proof. 1t is obvious from Lemma 3.

COROLLARY 3. There exist algebraic number fields k and k' such that G,EG,
and that C,(s)=&.(s).

Proof. 1t follows from Corollary of Lemma 3.
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