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ON THE ADELE RINGS OF ALGEBRAIC NUMBER FIELDS

BY KEIICHI KOMATSU

Introduction.

Let Q be the rational number field, Q the algebraic closure of Q and k
(kaQ) an algebraic number field of finite degree. Let ζk(s) be the Dedekind
zeta-function of k, kA the adele ring of k and Gk the Galois group of Q/k with
Krull topology. We adopt similar notations for an algebraic number field kf

(kfd.Q} of finite degree. If the extension k/Q is a finite Galois extension and if
ζΛ(s)=ζΛ,(s), then k=k' (cf. Lemma 2). The Lemma 7 of [3] shows that kA^k'A
implies ζ*(s)— ζΛ/(s) (cf. Corollary of Lemma 3). We also proved that Gk^Gk>
implies ζk(s)=ζk'(s) (cf. [6] or [4]). From the above results, it is natural and
interesting to consider whether, for any algebraic number fields k and k' of
finite degree, kA^kA implies k = kf and whether Gk^Gk, implies k^kf. In Theo-
rem 1, we shall show that there exist algebraic number fields k and kf of finite
degree satisfying the following conditions :

i) c*ω=c* ω.
2) kA*k'A.

Furthermore, in Theorem 2, we shall show that there exist algebraic number
fields k and k' of finite degree satisfying the following conditions :

2)
This also shows that there exist algebraic number fields k and k' of finite
degree satisfying the following conditions :

2)
The author would like to express his hearty thanks to Professor Nakatsuchi

for his valuable advice.

Notation and terminology.

Throughout this paper, Q and Z denote the rational number field and the
rational integer ring respectively. An algebraic number field always means an
algebraic number field of finite degree, an integer means a rational integer and
a prime number means a rational prime number. For an algebraic number field
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k, we denote by Ok the integer ring of k, by kA the adele ring of k, by ζk(s)
the Dedekind zeta-function of k and by Spec(0A)x the set of non-zero prime
ideals of Ok. For any prime ideal peSpec(0Λ)x, k$ denotes the completion of
k by £-adic valuation. Let Poo be the set of infinite places of k and put Vk—
Spec (Ofe)

xWPoo. An element of Vk is called to be a place of k. For pePco, if £
is a real place of k, then k$ denotes the real number field and if J) is an im-
aginary place, then k* denotes the complex number field. We write Nk/Q( ) for
the norm of an ideal in k. Let F be a field and for a Galois extension L/F,
we denote by Gal (L/F) the Galois group of L/F. We write [_G H~] for the
index of a subgroup H in a finite group G. For a complex number s, we denote
by Re(s) the real part of s. The word "isomorphism" for topological groups,
topological rings and topological fields, means a topological isomorphism.

CO

1. A Dirichlet series is a series of the form Σ ann~s, where s is a complex
n=l

number, and the coefficients an are complex numbers. The following lemma is
an elementary property of a Dirichlet series:

CO CO

LEMMA 1. Let c be a real number. If Dirichlet series Σ ann~* and Σ bnn~s

n=i n=l

converge in the common half plane Re(s)>c, and if their sum functions comside
in a non-empty open set contained in that half-plane, then an=bn for all n^l.

COROLLARY. Let alt az, •••, arι a[, a'2, •••, a'r,, be positive integers with aλ<a2<
" <ar and a[<a'2< ••• a'r,. Let μlt μz, •••, μr, μ[, μ'2, •••, μ'r, be positive integers and
let p be a prime number. If

(1) Π (Σ ρ-a*v y*= Π ( Σ r Vy;
1=1 y=0 1=1 y=0

in the half-plane Re(s)>l, then r—rr, at=a( and μl=μf

ί for ι=l, •••, r.

Proof. A series Σί"/vs converges in the half-plane Re(s)>0, where / is a
v = 0

positive integer. Hence the both-hand sides of the equation (1) converge in the
CO

half-plane Re(s)>0. For the expansion Σ cnn~s of the left-hand side of the
n=i

CO

equation (1), cλ=l, cn—^ for l<n<paι and c aι=μλ. For the expansion Σ c'nn~*
n=l

of the right-hand side of the equation (1), cί=l, c'n=Q for Kn<paΊ and cpa, = μ[.

Hence from Lemma 1 follows cn—c'n for all n^l, which shows a1=af

ί and μl=μ{.

Cancelling the series ( Σ T^T'1 and ( Σί"αΊyTΊ from the equation (1), we have

π ( Σ rαίyy^ π ( Σ r VT-
ι-2 v=0 ι=2 v=Q

Repeating our argument inductively, we conclude r=r'', μi=μί and al=a( for
i=l f-,r.
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LEMMA 2. Let L be a finite Galois extension of Q, let G—Gal(L/Q), and let
k and k' be subfields of L corresponding to subgroups H and H' respectively.
For any element a of G, let C(σ)={τ~lστ\τG.G}. Then the following conditions
are equivalent:

(i) For every element σ of G, the number card (C(σ)r\H) of the elements of
C(σ}r\H is equal to the number card (C(σ)π#0 of the elements of C(σ)c\H'.

(ii) For every prime number p, the collection of degrees of the factors of p
in k is identical with the collection of degrees of the factors of p in kf.

(iii) The zeta-functions ζ*(s) and ζ^(s) are the same.

Proof. From p. 363 of [1], it suffices to show (ii) from (iii) part. For every
prime number p, let &, •••, $gp be distinct prime ideals in k such that p=ffl •••
pjf* and that Nk/Q($i}=pfl>p with f1)p^f2)p^ ••• ^fgptP. We adopt similar nota-
tions, viz, #, •••, ψg, fίtP, ••• ,fg. ,p(fί,p^ -" ^fgp,p), for k f . Then we have

SP s _ ι

Sp oo

=ΠΠ Σί~/l'pl" for Re(s)>l,
P 1=1 1> = 0

where p runs through all the prime numbers. Similarly we have

ζ*'(s)=ΠΠ Σ/Γ'U1" for Re(s)>l.
p 1=1 v = Q

Since ζ*(s)=ζ*'(s), it follows from Lemma 1

gp

Π
ι = l v=0

Hence by Corollary of Lemma 1, we conclude gp—gp and flίP—fllP for i=l, 2,

LEMMA 3. Let k be an algebraic number field, kA the adele ring of k, Vk

the set of places of k, Spec(0*)x the set of non-zero prime ideals of k, rλ the
number of real places of k and r2 the number of imaginary places of k. We
adopt similar notations for an algebraic number field k f . Then the following con-
ditions are equivalent:

(i) kA and k'A are isomorphic.
(ii) There exists a bijection Φ of Vk onto Vk such that k$ and k'φ^ are iso-

morphic for all $^Vk.
(iii) There exists a bijection Ψ <9/Spec(0^)x onto Sρec(0^)x such that kv

and kψ^ are isomorphic for all

Proof. The Lemma 7 of [3] shows that the conditions (i) and (ii) are equi-
valent. It is obvious to prove (iii) from (ii) part. Hence it suffices to prove (ii)
from (iii) part. We have k^kψ^ for every peSpec (OkY, which proves Nk/Q($
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=Nk,/Q(Ψ(M for every t>eSpec(0*)x. Hence we conclude ζ*(s)=ζ*'(s). Since
ζjfe(s) has zero point of the order r2 at s— — 1 and since ζ*(s) has zero point of
the order rλ+r2 at s=— 2, we have rl— r{ and r2r=r2'. Therefore we have the
condition (iii).

COROLLARY. kA^k'A implies ζ*(s)=ζΛ»(s).

Proof. It is obvious from the proof of Lemma 3.
From p. 138 of [2] we have the following lemma :

LEMMA 4. Let k=Q(^y) and £'=0(^3x2*). Then ζk(s)=ζk,(s) and
THEOREM 1. There exist algebraic number fields k and k' such that the z eta-

functions ζfe(s) and ζa'(s) are the same and that the adele rings kA and k'A are not
isomorphic.

Proof. Let k=Q(^3i) and kf=Q(VZx%\ We note that k=Q( V3") and

k'=Q(V%x V2~). Let η8 be a primitive 8-th root of 1 and L the minimal Galois

extension of Q containing k. Then L=Q( 3/3, ^8)~<3( ̂ 3, V2, Λ/1 !̂), which proves
LZ)fe'. We put G=Gal (L/Q\ H=Gz\ (L/k\ #'=Gal (L/kf) and ΛΓ=Gal (L/Q(ηJ).
Then H=H'^Z/2ZxZ/2Z, N^Z/8Z, N is a normal subgroup of G and G is a
semi-direct product of H and A/". The quadratic number fields which are con-

tained in L are Q( V3), Q( V=3), <?( V2), Q( V=2), Q( Vδ), Q( V=6) and Q( V^ΐ).
In none of them, the ideal (2) splits completely. Let $ be a prime divisor of
the ideal (2) in L, D the decomposition group of $ with respect to L/Q and F
the decomposition field of $ with respect to L/Q. Suppose GΦD. As G is a
2-group, there exists a maximal proper subgroup Nλ of G such that Λ/ΊZ)D and
that [G; ΛΓJ= 2. Let ^ be the subfield of L corresponding to Nlt The rami-
fication index and the degree of the ideal $n&ι in kJQ are equal to 1. Since
kJQ is a Galois extension, the ideal (2) splits completely in kJQ. This is a
contradiction. Hence we have G=D. Let L% be the completion of L by φ-adic
valuation. We put $=tyr\k and p/=Sβπ*/. Let AT (resp. /JΓ7) be topological closure
of k (resp. &0 in L$. We should notice 7iΓ=^p and Kf = k'v. Since G=D, there
exists a natural isomorphism ^ of Gal(Lsp/φ2) onto G, where 02 is the topo-
logical closure of Q in £,„. We have φ(Gal(L^/K))=H and φ(Ga\(L^/K/^=H/.
Since ^^ follows from Lemmr 4, // and //x are not conjugate in G, which
shows K^K'. Therefore we have k)£k'v. Hence kA^kf

A follows from Lemma
3. The Lemma 4 also shows ζ*(s)=ζΛ'(s). This completes our proof.

2. Let / be an odd prime number, H an elementary abelian /-group of
order /3, i.e. H=(Z/IZ)3, and H' a non-commutative group of order / 3 and of
exponent /. An existence of Er with the above properties is shown in p. 151
of [9]. We denote by SIB the permutation group of the set {1, 2, •••, /3}. Let
H={al9 a2, ••• , <2ί3}. For an element a&H, we define an element σ<=StB satisfying
aia=aσw for i=l, ••• , /3 : we write this φ(ά). We call <p the embedding of H
into 5ί3. We will identify H with its image in 5ί3 by φ. We adopt similar
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notations for H'.

LEMMA 5. Let SLs, H and Hf be as above and let A^ be the alternative group
of degree / 3 in S,3. Then card (C(σ)n#)= card (C(σ)r\H'} for all σ^S^ and

Proof. Let e be the unit element of Sί3 and φ the empty set. Put X—
{ρ^.H\JH'\pΦe}. From the definition of embedding of H and H' into Sts, for
p^X, we have ρ(ϊ)Φi for z— 1, ••• , / 3 and ρl=e. So a disjoint cycle decomposi-
tion of jθ is the product of / 2 disjoint cycles of length /, i.e. p=(in ••• z l t) •••
fei ••• I'm). Hence ^ is an even permutation, H^JH'dAis, and two elements ̂
and p2 of A" have the same cycle decompositions. Hence p1 and p2 are con-
jugate in Sis. Therefore for any element <7<=Sf3 with σφ e, the following asser-
tions hold :

(i) C(σ}r\H=φ if and only if C(σ}r\H'=-φ.
(ii) C(σ)r\Hφφ if and only if card (Q»n#)=card (C(σ)r\H')=l*-l.

(iii) C(<On#=C(e)nff'={*}.
Hence we conclude card (C(σ)r\H)= card (C(σ)r\Hf) for every element <τeSί3.

Let Q be the algebraic closure of Q, let & and kf be algebraic number
fields contained in Q and let Gk be the absolute Galois group of k, Ί. e. the
Galois group of Q/k with Krull topology. We adopt similar notations for kf.

LEMMA 6. k and kf being as above and let L be a finite Galois extension of
Q such that L~Dk. If Gk and Gk, are isomorphic, then L~Dk' and Gal(L/&) =

Proof. Let λ be an isomorphism of Gk onto Gk,. Since λ(GL) is an open
subgroup of Gk , there exists a finite extension L' of kf such that λ(GL)=GL .
From Satz 12 of [6], we have L—L'. This shows LZ)K The isomorphism λ
induces an isomorphism of Gk/GL onto Gk>/GL, which proves Gal (L/^) = Gal (L/kf).

Let n (^3) be an integer and Sn the symmetric group of degree n. A
finite Galois extension L of Q whose Galois group is isomorphic to Sn is called
to be an Sn-extension of Q. Theorem 1 of Part II in [8] shows the following:

LEMMA 7. Let an integer n and Sn be as above and let An be the alterna-
tive group of degree n in Sn. Then there exists a quadratic number field F which
satisfies the following conditions:

(i) There exists an Sn-extensιon L of Q containing F.

(ii) Gal(L/F)*Mn.
(iii) All the prime ideals in F are unramified in L/F.

THEOREM 2. There exist algebraic number fields k and k' such that kA and
k'A are isomorphic and that Gk and Gk> are not isomorphic, where kA (resp. k'A) is
the adele ring of k (resp. kf) and where Gk (resp. Gk.) is the absolute Galois group
of k (resp. k'\
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Proof. Let / be an odd prime number and put n=/3. We take L and F
as in Lemma 7. For an isomorphism φ of Sn onto Gal (L/Q\ we notice φ(Λn}
=Gal(L/F). Let H and Hf be as in Lemma 5 and k (resp. &') the subfield of
L corresponding to φ(H) (resp. φ(H'}\ From Lemma 5 we have An1ϊH\JH' and
kr\k'ϋF. Lemma 6 and H^H show Gk^Gk,. Let £ be a prime number. Sup-
pose p is unramified in F/Q. From Lemma 7, £ is unramified in k/Q and in
&'/<?. Let $1, — , Sβj be the prime divisors of p in fc and put Nk/Q(^i}=pfl for
i=l, •••, g. By Lemma 5 and Lemma 2, there exist distinct prime ideals ty[, ~ ,
ψg in k1 such that p=W ••• ̂  and that Nk,/Q(^ΐ)=pft for ι=l, - , #. Hence feφl

and &V. are unramified extensions of Qp of degree /z, which shows k^^k'y.

Suppose p is ramified in F/Q. For the prime divisors ^lt •••, tyg of p in fc, we
have p=%l — φg from Lemma 7. Put Nk/Q(^=pft. By Lemma 5 and Lemma
2, there exist distinct prime ideals ${, •••, ̂  in ^x such that i=$x? •••̂ /| and
Nk./Q(φΐ)=^ for z=l, -,5 . We notice 5pinF=5βίπ/Γ and we put t>=^πF.
feφt and /? rφ' are unramified extensions of FP of degree Λ. This shows ky^k'^ .

Therefore we conclude kA = k'A. This completes our proof.

COROLLARY 1. There exist algebraic number fields k and kf satisfying the
following conditions

(i) tek'.
(π) kA~k'A.

Proof. It is obvious from that k^kf implies Gk = Gk,.

COROLLARY 2. There exist algebraic number fields k and k' satisfying the
following conditions

(i) tek'.
(ii) There exists a bijection Φ of Vk onto Vk. such that k^kf

φ^ for any
place $<^Vk.

Proof. It is obvious from Lemma 3.

COROLLARY 3. There exist algebraic number fields k and kf such that Gk^Gk>
and that ζ*(s)-ζ,,(s).

Proof. It follows from Corollary of Lemma 3.
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