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ON NON-PARAMETRIC SURFACES IN THREE

DIMENSIONAL SPHERES

BY RYOSUKE ICHIDA

0. Introduction.

Let D be a bounded domain with boundary dD in the Euclidean 2-plane E2.
We denote by C\D) the set of real- valued functions of class C2 on D. For a
function u<=C2(D) we consider the non-parametric surface M in the Euclidean
3-sρace E3 defined by

(0.1) β(*)=(*ι, *z, w

Now we take the unit normal vector field η on M as follows :

where p=du/dx1, q—du/dx2 and |Fw|2=ί2+g2. Then the mean curvature # of
M with respect to -η is expressed as

H(x)=-2~ div W» at each point x^D ,

where ^— /rrrrr— r2 (P, #)• It can be rewritten as follows:

(0.2)

where r=d2u/dx1

2, s=d2u/dxίdx2, t=d2u/dx2

2.
Conversely, let H be a given continuous real- valued function on D. If we

C\D} is a solution of the equation (0.2), then for this u the mean curvature of
the surface in E3 defined by (0.1) is equal to H.

Now, we assume that the boundary dD of D is smooth. Let Jl and X be
the area of D and the length of dD respectively. The following theorem was
proved by R. Finn [3].

THEOREM. For a function u<=C\D) and a positive constant HQ suppose that
the mean curvature H of the non-parametric surface in EB defined by (0.1) satisfies
the inequality \H(x)\^HQ for all x^D. Then we have JL/-£^1/2H0. In parti-
cular, if D is the disk of radius R, then
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It is interesting that HQ is restricted by the geometrical quantity of D.
From a viewpoint of the theory of differential equation the second assertion of
the above theorem implies the following:

Let HQ be a positive constant and H a continuous real-valued function on
D. Assume that H(x}^H0 for all x^D. If the equation (0.2) has a solution,
then D can not contain the disk of radius l/H0.

The second assertion of the above theorem was also proved by E. Heinz [4].
S. S. Chern extended the results of E. Heinz to higher dimensional Euclidean
spaces [1].

The purpose of this paper is to study non-parametric surfaces in SB(a) from
the viewpoint stated above, where S3(α) denotes the Euclidean 3-sphere of radius
a. In Section 1, we show that the mean curvature of a non-parametric surface
in S3(α) can be expressed by the divergence form (1.9). From this we get the
same result as that of R. Finn stated above.

Rewriting the equation (1.9), we have the quasi-linear elliptic partial differ-
ential equation of second order (2.3). It is complicated in comparison with the
equation (0.2). In fact, let weC2(D) be any solution of the equation (0.2). Then,
for example, we have the following:

(1) For any constant c, u+c is also a solution of the equation (0.2).
(2) For any solution v of the equation (0.2) which agrees with u on the

boundary of D equals u throughout D.
But the above properties do not always hold for the equation (2.3) because its
coefficients contain the unknown function u as a variable.

In Section 2, we study the partial differential inequality (2.5). It is obtained
from some geometrical condition which is connected with the mean curvature
of non-parametric surfaces in S3(α). We prove that the minimum principle holds
for a solution of the inequality (2.5). From this result we can conclude that
the position of non-parametric surfaces with boundary in 53(α) is restricted by
its mean curvature and the position of its boundary. In Section 3 we study a
smilar problem as in Section 2.

The author would like to express his profound gratitude to Professor T.
Otsuki who gave him valuable suggestions in this paper.

1. The mean curvature of non-parametric surfaces in S3(α).

Let D be ajxmnded domain with boundary dD in the Euclidean 2-plane E2.
We denote by D the closure of D. C\D} denotes the set of real-valued func-
tions of class C2 on D.

In the following, let a and k be positive constants satisfying

(1.1) a2>b2+k2,

where 6—maxl* , x=(x1,x2)^E2 and \x\2=x1

2+xz

2. Let S3(α) be the 3-dimen-
xέD

sional sphere of radius a in the Euclidean 4-space E\
For a function u<=C2(D) satisfying u(x)\^k for all x<^D, we consider the
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non-parametric surface M in 53(α) defined by

(1.2) «(*)=(*!, x* u(x\ £7(*))eS'(α), x=(xlf

where £/(*)= Va2-\x\2-u(xY . We put

(1.3) *ι=d, 0, / > , £ / ! ) , Xt=(0,l,q,UJ,

where p=du/dxl9 q=du/dx2 and Ui=dU/dxt, z=l, 2. Then A Ί and A2 are linearly
independent tangent vector fields on M. We can take the unit normal vector
field η on M in S3(α) as follows:

We put η=(ηι, >72, 373, 374). Then each component of η is given by

(1.4)

973— {α2— (u— Fu x)u}/aVg,

where ^=α2(l+ |Fw|2)-(w-Fw .r)2>0, Vu=(p,q) and Fu x=px1+qx2.
Now, we put N=—(l/a)u(x), x^D. Then we have

(1.5) ^.X4=JV 7=-^- 7=0 , ί=l, 2 ,

where the dot denotes the inner product in E4. For a moment we denote by D
the Riemannian connection on S3(α) defined by the standard Riemannian metric
of 53(α). Then, at each point of M we have

t=l, 2.

By (1.5) we have

A(̂ ,)= 32_.Λr=-1?.-^L=Of t=l,2.
t/Λ j C/ Ί i

Hence we have

-|̂ =β ,̂ ι=l,2.

By the Weingarten's formula DXlη and £>jr237 are expressed as

(1.7) Dx^a^X.+a^X, , i=l, 2 ,

where αι;, i, — 1, 2, are continuous functions on D. By (1.3), (1.4), (1.6) and (1.7)
we have

Let H be the mean curvature of M with respect to the direction η. Then, by
(1.4), (1.7) and (1.8) we have
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(1.9) H=—\-(a11+a^=-l-divW9

where

W=({a2p+(u-Γu>x)x1}/aVgf {a2q+(u-Vιι x}xz} /a Vg) .

In what follows and in the following sections, we always understand that
the mean curvature of non-parametric surfaces in S3(α) defined by (1.2) is derived
from η given by (1.4).

We shall prove the following theorem.

THEOREM 1.1. Let D be a bounded domain in E2 with boundary dD which
consists of finitely many non-intersecting closed Jordan curves of class C2. For a
function u^C\D) satisfying \u(x)\^k for all x^D, let M be the non-parametric
surface in S3(α) defined by (1.2) and H the mean curvature of M. For a positive
constant H0, suppose that H satisfies the inequality \H(x)\ ^H0 for all x^D. Then
we have

where Jί and X denote the area of D and the length of dD respectively.

Proof. For a positive number ε, we put Dε={x<ΞD; d(x,dD)>ε} where
d(x, dD) denotes the distance from x to dD. Then, by taking a sufficiently small
positive number d, we can assume that the boundary dDε of Dε is of class C1

for any ε such that Q<ε<δ. Therefore we may assume that Jlε and -Cε con-
verge to Jl and X respectively as ε^O, where Jlε and -Cε denote the area of
Dε and the length of dDε respectively. Without loss of generality, we can
assume that H(x)^H0 for all x^D. For a ε such that 0<ε<<5, let nε be the
outward unit normal vector field of dDε. By the divergence formula and (1.9),
we have

ff 2Hdxί/\dx2={( divWd
JJDε JJDε

On the other hand, we have

ff
J J Dε

because H(x)^H0 for all x^D. From the above inequalities we have

Thus, letting ε-»0 in the last inequality, we obtain

COROLLARY 1.1. In Theorem 1.1, suppose that D is the disk of radius R.
Then we have RH0^l.

COROLLARY 1.2. Under the same condition as in Corollary 1.1, suppose that
the Gaussian curvature K of M satisfies the inequality K^K0 for a positive con-
stant KQ such that K0>a~2. Then we have
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R- VKQ-a~2^l.

Proof. By the equation of Gauss, we have

where λλ and λz are eigenvalues of the second fundamental form of M in S3(α)
at a point u(x)^M, x^D. Since λl'λ2^((λl+λ2)/2)2=H(xγ and K(x)-a-2^KQ-a~2

>0, we have

^ VK0-a~2 for all

Therefore, from Corollary 1.1 we obtain R VKQ—a 2^1.

2. Non-parametric surfaces with boundary and the minimum principle.

Throughout this section, let D be a bounded domain with boundary dD in
the Euclidean 2-ρlane E2 and C0>2(D, D) the set of continuous real-valued func-
tions on D which are of class C2 in D, where D=D\JdD. Moreover, in the
following, let a and k be positive constants such that

(2.1) α 2>6 2+& 2,

where b=max\x\, x=(xltx2)^E2 and \x\2=x2+x<?.
x^D __ _

For a function u(=C°>2(D, D) satisfying \u(x)\' ^k for all :ceZ), we consider
the non-parametric surface M with boundary in S3(α) defined by

(2.2) u(x)=(xι, x* u(x\ Va2-\x\2-u(xγ}^S3(a) , x<=D ,

where S3(α) denotes the 3-dimensional sphere of radius a in the Euclidean 4-
space E\ Let η be the unit normal vector field on M in S\ά) which is given
by (1.4). Then, by (1.9), the mean curvature H of M is expressed as

1 J
2 I

-
" 2

We can rewrite it as

(2.3) Σ Λlj(x, u, Γu)utJ=A(x, u, Vu, //) ,
l,J = l

where u^C°'2(D, D\ \u(x)\^k for all Λre.D, ulj=d2u/dxidxjt i,j=l,2, and

A12(x, u, Vu}^-

ΛI(Λ:, u

(2.4) AM(x, u

A(x, u,
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g=az(l+\Pu\2ϊ-(u-Pu xγ, |x | a =Xι 2 +V,

Conversely, let // be a given continuous real- valued function on D. If we
C°'2(D, D) is a solution of the equation (2.3), then for this u the mean curvature
of the surface in S3(α) defined by (2.2) equals H.

Now, we set

for a constant m such that 0<m<&.

THEOREM 2.1._ L^ί //0 &£ a constant such that 0<HQ<k/aVa2—k2. For a
function u^C0}2(D, D) satisfying the inequality

m,:0:=a2H0/<Va2H0

2+l^u(x}^k for all x<=D ,

let M be the surface with boundary in S3(α) defined by (2.2) and H the mean cur-
vature of M in S3(α). Suppose that H satisfies the inequality H(x)^H0 for all

. Let m1 be a constant such that ra0<ra1<&. // u(dD}c:Qk

mι, then u(D)c.Qmι

Remark. We note that k/aVa2—k2 equals the mean curvature of the small
2~sphere in 53(α) which is the intersection of S3(α) and the hyperplane in E*
defined by x%=k.

Now, let H' be a given continuous function on D. For this //', we define
the operator LH, on C°'\D, D) by

*'(")= Σ AtJ(x, v, 7v)vlJ-A(x9 υ, Ψv,
ί, J — 1

where v^C°'2(D, D\ \v(x)\^k for all x^D, v^d^/dxβx.,, i, ;=1, 2, and AtJ(x, v,
Pv), ι,y=l, 2, and 4(x, v, Γv, H') are given in (2.4).

Under the hypotheses of Theorem 2.1, we have LH(u)—Q and

In what follows, we shall consider the following partial differential inequality
on D:

(2.5) ^ Σχ ΛX^, V, Pr^)^t; ̂  ̂ ( ,̂ V, ί7^, ̂ o) ,

where v^CQ>2(D, D), \v(x)\^k for all x^D and //0 is a constant such that

0<HQ<k/aVa2—k2 and AX*, v, Γv), ί, ;= 1, 2, and A(x, v, Pv, H0) are given in
(2.4).

Theorem 2.1 follows immediately from the following theorem.

THEOREM 2.2. Suppose that weC°'2(ZJ, Z?) zs α solution of the inequality (2.5)
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satisfying

(2.6) m^u(x)^k for all

where mQ=a2Ho/ VazH2°+L Let m± be a constant such that m0<m1<k. If u^m^
on 3D, then u^ml in D.

We first prove some lemmas. From (2.4) we have

A ( γ η , (\\ ^2 γ 2 1 y2 Λ (γ .. (\\ γ γ Λ (γ «, C\\

-^11\ ) ) *J/— 1 f ^^12\ ) ) /— ^1^2—•^2ί\ ^r) M") V) >

(2.7)

By (2.1) and (2.7), we have

LEMMA 2.1. For all x^D, the 2x2 matrix A(x]: —(Atj(x, u(x), 0)) is positive
definite.

LEMMA 2.2. For all x^D, we have

(1) \Alί(x,u,Pu)-A11(x,u,0)\^a\\q\*+2\q\},

(2)

(3)

Proof. We note that \x\ and \u\ :=sup\u(x')\ are smaller than a.

(1):

(2): |Λ2(^w,FM)-Λ2U, u,

By the same way as in (1), we can prove (3).

LEMMA 2.3. For all x<=D, we have

\A(x,u,Γu,H0)-A(x,u,Q,H<ί}\

\ q\ )+--

where G={gVg+(a2—u2)Vα2—u2}'1 and Plt P2 are polynomials of \p\ and \q\
such that the degree of each term is greater than 1 and the coefficient of each
term is a function of a.

Proof.
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\A(x,u,Pu,H(,)-A(x,u,0,H0)\

where G={gVg +(α2— u2) Va2— u2} 1. By a direct calculation, we have

where P is a polynomial of p and q such that the degree of each term is greater
than 1 and the coefficient of each term is a function of a and u. Now, we have

and

Thus, from the above inequalities, we obtain

(2.9) \gB-(a2-u2

where Pl is a polynomial of |£| and \q\ such that the degree of each term is
greater than 1 and the coefficient of each term is a function of a. On the other
hand,

\g(u-Fu x')-(a2-u2}u\

u I Fw 1 2-α2 1 ̂

Since \3u2-a2\<2a2 and \Fu-x\^a(\p\-\-\q\\ we have

(2.10) \g(u-Fu xϊ-(a2-u2)

where P2 is a polynomial of \p\ and |^| such that the degree of each term is
greater than 1 and the coefficient of each term is a function of a. Hence, from
(2.8), (2.9) and (2.10) we have
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Now, we shall prove Theorem 2.2.

Proof of Theorem 2.2. Suppose for contradiction that there_ exists a point
x^D such that u(x)<mlt Since u has the minimum value on D, there exists a
point XQ^D such that u(x0)^u(x) for all x^D. Then, of course w(^0)<m1. We
put

(2.11) roa=- l-^oHmJ.

Put D'^i teD; w(*)<m2}, and let D0 be the connected_component of D' con-
taining x0. Then, D0c:D and u(x)=m2 for all x^dD0:=DQ—D0. We put

(2.12) #=sup{|tt t j(*)l; i,;=l,2}.
*ez>0

By (2.1) and (2.6) there exists a positive constant </ such that

(2.13) a2-\x\2-u(x)2^d2 for all x<=D0.

From Lemma 2.1, we see that there exists a positive constant λ such that

(2.14) Σ A^x, u(x\ u)X,XSt>X(XS+Xfi
t,;=ι

for any non-zero vector X=(Xlt X2} and all x^DQ. We put

(2.15) fW=exp (C(^

where C is a constant such that

—(2.16)

For a positive ε, we consider the function ws on D defined by

(2.17)

LEMMA 2.4. For any positive δ, we can take a number ε with the following
properties :

(1) 0<ε<<5;
(2) w£ takes its minimum value on D0 at a point of D0.

In fact, suppose that for some <5>0 the assertion of the above lemma is not
true. Then, for any ε such that 0<ε<d, we takes its minimum value on D0 at
a point of dD0 : =D0—D0. Therefore, we have

(2.18) wt(x)>w*(yt) for all

where y*<ΞdD0 and Wt(ye)= mm(we\DQ). Put ξ0=max(ξ \D0). Then, we have

(2.19) ^ε(>)-z/(>)-ε f(

From (2.18) and (2.19), at xQ<=D0 we have
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Hence, we obtain

Since the above inequality holds for any ε such that 0<ε<δ, we get u(x0~)^
which contradicts (2.11). Thus the assertion of Lemma 2.4 holds.

By virtue of Lemma 2.4, we can conclude the following :

LEMMA 2.5. There exists a monotone decreasing sequence {εn}, n— 1, 2, •••,
with the following properties:

(1) εn>0, n=l, 2, - , l ime n =0;
7i— >oo

(2) For £αc/i εn, the function w*n defined by (2.17) takes its minimum value
on D0 at a point of D0.

In what follows, let {εj, n=l, 2, •••, be a sequence with properties (1), (2)
stated in Lemma 2.5. For simplicity we put wεn=wn. Let xn be a point of Z)0

which gives the minimum value of wn on D0. By taking a subsequence if neces-
sary, we may assume that {xn}> n=l, 2, •••, converges to a point

Now, we rewrite the inequality (2.5) as

(2.20) Σ Λ/*, u, 0)X,+ Σ
t,J = ι,J = l

^.4U u,Pu,H0}.

Then, by Lemma 2.2 and (2.12), on D0 we have

(2.21) Σ (^,χx, M, Γw)-ΛX>:, tt, 0))«tJ

Since W(Λ:)= »„(*)+£„•?(*) for each xeΰ, by (2.20) and (2.21), on D0 we have

(2.22) Σ ΛX^M,

where ^n^=32w;n/3^3^, ξtj=dzξ/dxidxj.
In the following, we shall estimate the inequality (2.22) at xn. We put ξ(xn)

= ξn and u(xn}=un. Then from (2.15) we have

(2.23) »)=C'£» and f^n)=

Since z^n takes its minimum value on Z>0 at xn<ΞDQ, (dωn/dxί)(xn)=(dωn/dx2)(xn)
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=0. Thus, from (2.17) we have

(2.24) X*»)=<7(*n)=e» C £n.

Furthermore, we see that the 2x2 matrix Wn : =(wnιj(xn}} is positive semi-definite
at xn, n=l, 2, •••. Therefore, from this fact and Lemma 2.1, we see

(2.25) Σ A^Xn, un, O
t,J = l

By (2.14) and (2.23), we have

(2.26) Σ AtJ(xn, un, V)εn.ζτj(xn}^

Thus, by (2.24), (2.25) and (2.26), at xn we have

(2.27) the left-hand side of (2.22)

On the other hand, from Lemma 2.3 and (2.24), at xn we have

(2.28) the right-hand side of (2.22)

^A(xn, un, 0, #0)

where Pl and P2 are polynomials of εn C ξn which have no constant terms, and
the coefficient of each term is a function of a. From (2.6) and (2.7), we see

(2.29) A(xn,un,

Thus, by (2.27), (2.28) and (2.29), at xn we have

Since εn C fn>0, at xn we have

(2.30) Cλ-2a2K(εn-C ξn+2')

Since ξ is bounded on D0, by (1) of Lemma 2.5 we have limP^— 0, ί, j— 1, 2.
n— *°o

Moreover, from (2.4) we have

lim G(*B)=lim (g(Xn}

because \imxn=y^D0. By (2.13), we have α2— u(y}2^d2>0. Now, by letting



ON NON-PARAMETRIC SURFACES IN THREE DIMENSIONAL SPHERES 49

n->oo in the inequality (2.30), we obtain

which contradicts (2.16). This contradiction is due to our hypothesis that there
exists a point x^D such that u(x)<mlt Thus we complete the proof of Theo-
rem 2.2.

In Theorem 2.1, if M is a minimal surface in S3(α), then we can put H0=0.
As a corollary of Theorem 2.1 we have

COROLLARY 2.1. In Theorem 2.1, suppose that M is a minimal surface in
S\a\ Let ml be a constant such that 0<m1<k. If u(dD)c:Qk

mi, then u(D)c.Qk

mr

Our proof in Theorem 2.2 was inspired from the results of R. Redheffer [5].

3. Non-parametric surfaces with boundary and the maximum principle.

In this section, _as in Section 2, let D be a bounded domain with boundary
dD in E2 and C°'2(D, D) the set of continuous real-valued functions on D which
are of class C2 on D, where D=DUdD.

In the following, let a and k be positive constants such that

(3.1) a2>b2+k2,

where &=max|#|, x= (xlt *2)eE2 and \x\z=x1

z+xz

z.
XGD

We put

(3.2) H1=
J1-(a2-m1

2r1/2

where m1 is a constant such that k^m^a.
Now, we consider the following partial differential inequality on D :

(3.3) Σ Aτj(x, u, Vu)uτj^A(x, u, Pu, H,) ,
l,J = l

where uzΞC»>\D,D\ \u(x)\^k for all x<=D and Aτj(x,u,Vu\ ι,j=l,2, and
A(x, u, Vu, HJ are given in (2.4).

We note that Lemma 2.3 also holds for Hlm We can prove the following
theorem by a similar argument as in proof of Theorem 2.2.

THEOREM 3.1. Suppose that j/eC°'2CD, D) is a solution of the inequality (3.3)
satisfying Q^u(x}^k for all x^D. Let m be a constant such that 0<m<k. If
u^m on 3D, then u^m in D.

For a constant m such that 0<ra<α, we set
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THEOREM 3.2. For a function u(ΞC°>2(D, D) satisfying Q^u(x)^k for all
let M be the surface with boundary in S3(α) defined by (2.2) and H the mean
curvature of M in S3(α). Suppose that H satisfies the inequality H(x)^H± for all
x^D, where Hl is defined by (3.2). Let m be a constant such that 0<m<k. If
u(dD)dQV, then u(D}c.Qf.

Proof. For a continuous function H' on D, we define the operator LH, on
C°'2CD, D) by

LH,(v}= jϊ^x, v, Fυ}vlj-A(xί v, Vv, H'),

where v£ΞC0>2(D,D\ \v(x)\^k for all x^D and Avj(x,υ,Vv\ i,j=l,2, and
A(x, v, Vv, H'} are given in (2.4). Then, from the hypotheses of Theorem 3.2,
we have LH(u)=0 and

Since the inequality LHl(u)^0 is equivalent to (3.3), then we can apply Theorem
3.1 to it. Therefore, Theorem 3.2 is an immediate consequence of Theorem 3.1.
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