ON THE VALUE DISTRIBUTION OF ENTIRE FUNCTIONS OF ORDER LESS THAN ONE

By Shigeru Kimura

§1. Tsuzuki [4] proved the following;
Theorem A. Let $f(z)$ be an enture function of order less than one and $\left\{w_{n}\right\}_{n=1}^{\infty}$ be a sequence such that $\left|w_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. Suppose that there exists ω such that $0<\omega<\pi / 2$ and all the roots of the equations

$$
f(z)=w_{n} \quad(n=1,2, \cdots)
$$

lie in the angle $A(\omega)=\{z ;|\arg z-\pi|<\omega\}$. Then $f(z)$ is linear.
The purpose of this note is to extend Theorem A and to prove the following.
Theorem. Let $f(z)$ be an entire function of order less than one and $\left\{w_{n}\right\}_{n=1}^{\infty}$ be a sequence such that $\left|w_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. Suppose that all the roots of the equations

$$
f(z)=w_{n} \quad(n=1,2, \cdots)
$$

lie in the upper half plane $\operatorname{Im} z \geqq 0$. Then $f(z)$ is a polynomial of degree not greater than two.
§ 2. Proof of Theorem. Suppose that $f(z)$ satisfies the conditions of Theorem and that $f(z)$ is transcendental. Without loss of generality, we may suppose that $w_{1}=0, f(0) \neq 0$ and we have

$$
f(z)=\lambda \prod_{\jmath=1}^{\infty}\left(1-\frac{z}{z_{\jmath}}\right)
$$

where $\lambda(\neq 0)$ is a constant. Choose ω and η such that $0<\omega<\pi / 2, \eta=\pi / 2-\omega$. Then we have

$$
f(z)=\lambda f_{1}(z) f_{2}(z)
$$

where

$$
f_{1}(z)=\prod_{J_{1}=1}^{\infty}\left(1-\frac{z}{z_{\jmath_{2}}}\right) \quad\left(\eta<\arg z_{\jmath_{1}}<\pi-\eta\right),
$$

Received June 3, 1975.

$$
\begin{aligned}
f_{2}(z)=\prod_{\jmath_{2}=1}^{\infty}\left(1-\frac{z}{z_{\jmath_{2}}}\right) & \left(0 \leqq \arg z_{\jmath_{2}} \leqq \eta,\right. \text { or } \\
& \left.\pi-\eta \leqq \arg z_{\jmath_{2}} \leqq \pi\right) .
\end{aligned}
$$

Then we have

$$
\left|f_{1}(z)\right| \longrightarrow+\infty \quad \text { as } z \rightarrow \infty
$$

in $\{z ;|\arg z+\pi / 2|<\eta\}$ [4]. Since

$$
f_{2}(z) f_{2}(-z)=\prod_{J_{2}=1}^{\infty}\left(1-\frac{z^{2}}{z_{J_{2}}^{2}}\right)
$$

is a function of z^{2}, we put

$$
F(\zeta)=F\left(z^{2}\right)=f_{2}(z) f_{2}(-z)
$$

with $\zeta=z^{2}$. Then the order of $F(\zeta)$ is less than $1 / 2$ and the zeros of $F(\zeta)$ lies in $\{\zeta ;|\arg \zeta| \leqq 2 \eta\}$. Choosing δ such that $2 \delta<\pi / 2-2 \eta(\delta<\eta)$, we find that

$$
|F(\zeta)| \longrightarrow+\infty \quad \text { as } \zeta \rightarrow \infty
$$

in $\{\zeta ;|\arg \zeta-\pi| \leqq 2 \delta\}$. Hence $f_{2}(z)$ is unbounded either on the ray $\arg z=+\pi / 2-\varepsilon$ or on the ray $\arg z=-\pi / 2-\varepsilon(|\varepsilon| \leqq \delta)$. On the other hand by the location of the zeros of $f_{2}(z)$

$$
\left|f_{2}(z)\right| \leqq\left|f_{2}(\bar{z})\right| \quad \text { for } z \in\{z ;|\arg z-\pi / 2| \leqq \delta\}
$$

Thus $f_{2}(z)$ is unbounded either on the ray $\arg z=-\pi / 2+\varepsilon$ or on the ray $\arg z=$ $-\pi / 2-\varepsilon(|\varepsilon| \leqq \delta)$.

Now we use the similar arguments to those used in the proof of Baker's theorem [1]. We consider

$$
D=\frac{z \cdot f^{\prime}(z)}{f(z)}=z \cdot \sum_{j=1}^{\infty} \frac{1}{z-z_{j}}
$$

in $\{z ;|\arg z+\pi / 2| \leqq \delta\}$. Let K be a positive number such that $K \delta \geqq 2 \pi$. If we set $z_{j}=r_{j} e^{i \theta} \quad\left(0 \leqq \theta_{\rho} \leqq \pi\right)$ and $z=r e^{i(-\pi / 2+\theta)} \quad(|\theta| \leqq \delta)$, then we have

$$
\operatorname{Im} \frac{1}{z-z_{\jmath}}=\frac{r \sin \left(\frac{\pi}{2}-\theta\right)+r_{\rho} \sin \theta_{\rho}}{r^{2}+r_{\jmath}^{2}-2 r r_{\rho} \cos \left(-\frac{\pi}{2}+\theta-\theta_{\rho}\right)}>0
$$

and for each j

$$
|z| \cdot \operatorname{Im} \frac{1}{z-z_{0}} \longrightarrow \sin \left(\frac{\pi}{2}-\theta\right) \quad\left(z=r e^{2\left(-\frac{\pi}{2}+\theta\right)}, r \rightarrow \infty\right):
$$

Thus there exists a positive number $r_{1}=r_{1}(K)$ such that

$$
|D| \geqq|z| \cdot \operatorname{Im} \frac{f^{\prime}(z)}{f(z)}>K
$$

in $\left\{z ;|\arg z+\pi / 2| \leqq \delta,|z|>r_{1}\right\}$. We choose w_{n} such that $|f(z)|<\left|w_{n}\right|$ for $|z| \leqq r_{1}$. Let Ω be the region $\left\{w ;|w|>\left|w_{n}\right|\right\}$. We consider the component $\sigma(\Omega)$ of $f^{-1}(\Omega)$ containing $\left\{z ; \arg z=-\pi / 2,|z| \geqq r_{0}\right\}$ where r_{0} is a sufficiently large number. If
$\partial \sigma(\Omega) \cap\{z ; \arg z=-\pi / 2 \pm \delta\}=\phi$, then we can define at least two asymptotic spots of $f(z)$ over ∞. In fact $f(z)$ is unbounded either on the ray $\arg z=-\pi / 2+\varepsilon$ or on the ray $\arg z=-\pi / 2-\varepsilon(|\varepsilon| \leqq \delta)$. Thus in view of Heins' main theorem [3] we can see that the order of $f(z)$ is not less than one. This contradicts the assumption of Theorem. Therefore we may assume that $\partial \sigma(\Omega) \cap\{z ; \mid \arg z$ $+\pi / 2 \mid \leqq \delta\}$ contains an arc of a level curve γ of $f(z)$ which joins a point of the ray $\arg z=-\pi / 2-\delta$ to a point of the ray $\arg z=-\pi / 2$ and lies in $|z|>r_{1}$. If an increment δz on γ corresponds to an increment δw on $|w|=\left|w_{n}\right|$ under $w=$ $f(z)$, then we have

$$
\frac{\delta w}{w}=\frac{\delta z}{z} \cdot \frac{z \cdot f^{\prime}(z)}{f(z)}\{1+o(\delta z)\} .
$$

Putting $z=r e^{2 \theta}$ and $w=\left|w_{n}\right| e^{2 \varphi}$, we have

$$
\left|\frac{\partial \varphi}{\partial \theta}\right| \geqq\left|\frac{z \cdot f^{\prime}(z)}{f(z)}\right| \geqq K \quad \text { on } \gamma .
$$

In view of $f^{\prime}(z) \neq 0$ on γ, as z traverses γ in the fixed direction, w traverses the circle $\Gamma ;|w|=\left|w_{n}\right|$ in the fixed direction and φ increases or decreases at least $K \delta$. Thus w traverses the whole of Γ and in particular $f(z)=w_{n}$ for some point $z \in \gamma$. But this contradicts the assumption of Theorem. Hence if $f(z)$ satisfies the conditions of Theorem, $f(z)$ must be a polynomial. Then it is easy to show that the degree of $f(z)$ is at most two.
§ 3. Edrei [2] proved the following ;
Theorem B. Let $f(z)$ be an entrre function. Assume that there exists an unbounded sequence $\left\{w_{n}\right\}_{n=1}^{\infty}$ such that all the roots of the equations

$$
f(z)=w_{n} \quad(n=1,2, \cdots)
$$

be real. Then $f(z)$ is a polynomıal of degree not greater than two.
In this section we shall prove Theorem B by the similar arguments to those used in the proof of our theorem instead of the main part of Edrei's proof.

The order of $f(z)$ is not greater than one (Corollary in [2]). We may assume that the order of $f(z)$ is one in view of our theorem and that $w_{n} \rightarrow \infty$ $(n \rightarrow \infty), w_{1}=0$ and $f(0) \neq 0$. Then $f(z)$ may be expressed

$$
f(z)=\lambda e^{a_{z}} \cdot \prod_{\jmath=1}^{\infty}\left(1-\frac{z}{z_{j}}\right) e^{\frac{z}{\partial_{j}}}
$$

where $\lambda(\neq 0)$ is a constant.
Consider

$$
D=\frac{z f^{\prime}(z)}{f(z)}=z \cdot \sum_{j=1}^{\infty}\left(\frac{1}{z-z_{\jmath}}+\frac{1}{z_{\jmath}}\right)+a z
$$

in $\{z ;|\arg z+\pi / 2| \leqq \delta\}$ and in $\{z ;|\arg z-\pi / 2| \leqq \delta\}$. By the similar arguments to those used in the proof of our theorem we have

$$
|D| \geqq|z| \cdot\left|\operatorname{Im} \frac{f^{\prime}(z)}{f(z)}\right|>K
$$

in $\left\{z ;|\arg z+\pi / 2| \leqq \delta,|z|>r_{1}\right\}$ (or in $\left\{z ;|\arg z-\pi / 2| \leqq \delta,|z|>r_{1}\right.$), if $\operatorname{Im} a>0$ (or if $\operatorname{Im} a<0$).

Since

$$
f(z) f(-z)=\lambda^{2} \prod_{J=1}^{\infty}\left(1-\frac{z^{2}}{z_{J}^{2}}\right)
$$

is a function of z^{2}, we have

$$
F(\zeta)=F\left(z^{2}\right)=f(z) f(-z)
$$

with $\zeta=z^{2}$. Then $F(\zeta)$ has only positive zeros and the order of $F(\zeta)$ is not greater than $1 / 2$. If we choose δ sufficiently small ($2 \delta<\pi / 2$), then we find that

$$
|F(\zeta)| \longrightarrow+\infty \quad \text { as } \zeta \rightarrow \infty
$$

in $\{\zeta ;|\arg \zeta-\pi| \leqq 2 \delta\}$. Therefore $f(z)$ is unbounded either on the ray $\arg z=$ $-\pi / 2-\varepsilon$ or on the ray $\arg z=\pi / 2-\varepsilon(|\varepsilon| \leqq \delta)$.

Case 1. a is real.
Since $\left|e^{a_{z}}\right|=1$ on the rays $\arg z= \pm \pi / 2$, we have

$$
|f(z)|=\left|\lambda \prod_{j=1}^{\infty}\left(1-\frac{z}{z_{j}}\right) e^{\frac{2}{z_{j}}}\right| .
$$

Hence we have $|f(z)| \rightarrow+\infty(z \rightarrow \infty$, $\arg z= \pm \pi / 2)$. Since $|f(z)|=|f(\bar{z})|$ and $|F(\zeta)|$ $=|f(z) f(-z)| \rightarrow+\infty$ as $\zeta \rightarrow \infty$ in $|\zeta ;|\arg \zeta-\pi| \leqq 2 \delta\}, f(z)$ is unbounded either on the ray $\arg z=-\pi / 2-\delta$ or on the ray $\arg z=-\pi / 2+\delta$. We choose w_{n} such that $|f(z)|<\left|w_{n}\right|$ for $|z| \leqq r_{1}$. Let Ω be the region $\left\{w ;|w|>\left|w_{n}\right|\right\}$. We consider the component $\sigma(\Omega)$ of $f^{-1}(\Omega)$ containing $\left\{z ; \arg z=-\pi / 2,|z| \geqq r_{0}\right\}$ where r_{0} is a sufficiently large number. If $\partial \sigma(\Omega) \cap\{z ; \arg z=-\pi / 2 \pm \delta\}=\phi$, then we can define at least three asymptotic spots of $f(z)$ over ∞. In fact $f(z)$ is unbounded either on the ray $\arg z=-\pi / 2+\delta$ or on the ray $\arg z=-\pi / 2-\delta$ and $|f(z)| \rightarrow+\infty$ as $z \rightarrow \infty$ on the rays $\arg z= \pm \pi / 2$. Therefore we have a contradiction by the similar reasonings to those used in the proof of our theorem.

Case 2. a is not real.
If $\operatorname{Im} a>0$, then we have $\left|e^{a z}\right| \geqq 1$ in $\{z ;|\arg z+\pi / 2| \leqq \delta\}$ for a sufficiently small number δ. Let

$$
g(z)=\lambda \prod_{j=1}^{\infty}\left(1-\frac{z}{z_{\jmath}}\right) e^{\frac{2}{z_{j}}} \quad\left(=\frac{f(z)}{e^{a z}}\right) .
$$

Since $|g(z)|=|g(\bar{z})|$ and $|G(\zeta)|=|g(z) g(-z)| \rightarrow+\infty$ as $\zeta \rightarrow \infty$ in $\{\zeta ;|\arg \zeta-\pi|$ $\leqq 2 \delta\}$ ($\zeta=z^{2}$), $g(z)$ is unbounded either on the ray $\arg z=-\pi / 2-\delta$ or on the ray $\arg z=-\pi / 2+\delta$. We choose w_{n} such that $|f(z)|<\left|w_{n}\right|$ for $|z| \leqq r_{1}$. Let Ω be the region $\left\{w ;|w|>\left|w_{n}\right|\right\}$. We consider the component $\sigma(\Omega)$ of $f^{-1}(\Omega)$ containing $\left\{z ; \arg z=-\pi / 2,|z| \geqq r_{0}\right\}$ where r_{0} is a sufficiently large number. If
$\sigma(\Omega) \cap\{z ; \arg z=-\pi / 2 \pm \delta\}=\phi$, then we can define at least three asymptotic spots of $g(z)$ over ∞. In fact $g(z)$ is unbounded either on the ray $\arg z=-\pi / 2$ $+\delta$ or on the ray $\arg z=-\pi / 2-\delta$ and $|g(z)| \rightarrow+\infty$ as $z \rightarrow \infty$ on the rays $\arg z$ $= \pm \pi / 2$. Therefore we have a contradiction by the similar reasonings to those used in the proof of our theorem. If $\operatorname{Im} a<0$, then we have a contradiction by considering the region $\{z ;|\arg z-\pi / 2| \leqq \delta\}$ instead of $\{z ;|\arg z+\pi / 2| \leqq \delta\}$.

Therefore if $f(z)$ satisfies the conditions of Theorem B, then $f(z)$ must be a polynomial. Then it is easy to show that the degree of $f(z)$ is at most two.

The author wishes to express his thanks to Professor G. Hiromi who gave him valuable advices.

References

[1] BAKER, I. N., The value distribution of composite entire functions. Acta. Sci. Math., (1971), 89-90.
[2] Edrei, A., Meromorphic functions with three radially distributed values. Trans. Amer. Math. Soc., 78 (1955), 276-293.
[3] Heins, M., Asymptotic spots of entire and meromorphic functions. Ann. of Math. 66 (1957), 430-439.
[4] Tsuzuki, M., On the value distribution of entire functions of order less than one. J. College of Liberal Arts, Saitama Univ., 9 (1974), 1-3.

Department of Mathematics, Utsunomiya University.

