A NOTE ON SASAKIAN MANIFOLDS WITH VANISHING C-BOCHNER CURVATURE TENSOR

By Jin Suk Pak

In [3], Ryan proved
Theorem A. Let M be a compact conformally flat Riemannian manifold with constant scalar curvature. If the Riccı tensor is positive semi-definite, then the simply connected Riemannian covering of M is one of

$$
S^{n}(c), \quad R \times S^{n-1}(c) \quad \text { or } \quad E^{n},
$$

the real space forms of curvature c being denoted by $S^{n}(c)$ or E^{n} depending on whether c is posituve or zero.

In 1974, Yano and Ishihara [6] proved the following theorem corresponding to Theorem A due to Ryan, replacing the vanishing of the Weyl conformal curvature tensor in a Riemannian manifold by that of the Bochner curvature tensor in a Kaehlerian manifold.

Theorem B. Let M be a Kaehlerian manifold of real dimension n with constant scalar curvature whose Bochner curvature tensor vanıshes and whose Ricci tensor is positive semi-definite. If M is compact, then the universal coverng manifold is a complex projective space $C P^{n / 2}$ or a complex space $C^{n / 2}$.

The purpose of the present paper is to prove the following theorem corresponding to Theorems A and B, replacing the vanishing of the Weyl conformal curvature tensor or Bochner curvature tensor by that of C-Bochner curvature tensor (See [1]) in a Sasakian manifold.

Theorem. Let M^{n} be a Sasakran manifold of dimension n with constant scalar curvature whose C-Bochner curvature tensor vamishes. If Ricci tensor is positive semi-definite, then M^{n} is locally C-Fubinıan.

§ 1. Introduction.

Recently, in an n-dimensional Sasakian manifold M^{n}, Matsumoto and Chūman [1] introduced the C-Bochner curvature tensor $B_{k j i}{ }^{h}$ defined by

$$
\begin{align*}
B_{k j i}{ }^{h}= & K_{k j i}{ }^{h}+\frac{1}{n+3}\left(K_{k i} \delta_{\jmath}{ }^{h}-K_{j i} \delta_{k}{ }^{h}+g_{k i} K_{\jmath}{ }^{h}-g_{j i} K_{k}{ }^{h}\right. \tag{1.1}\\
& +S_{k i} \phi_{\jmath}{ }^{n}-S_{j i} \phi_{k}{ }^{h}+\phi_{k i} S_{\jmath}{ }^{h}-\phi_{j i} S_{k}{ }^{h}+2 S_{k j} \phi_{\imath}{ }^{h}+2 \phi_{k j} S_{i}{ }^{h} \\
& \left.-K_{k i} \eta_{j} \eta^{h}+K_{j i} \eta_{k} \eta^{h}-\eta_{k} \eta_{i} K_{\jmath}{ }^{h}+\eta_{j} \eta_{i} K_{k}{ }^{h}\right) \\
& -\frac{k+n-1}{n+3}\left(\phi_{k i} \phi_{j}{ }^{h}-\phi_{j i} \phi_{k}{ }^{h}+2 \phi_{k j} \phi_{i}{ }^{h}\right) \\
& -\frac{k-4}{n+4}-\left(g_{k i} \delta_{j}{ }^{h}-g_{j i} \delta_{k}{ }^{h}\right) \\
& +\frac{k}{n+3}\left(g_{k i} \eta_{j} \eta^{h}+\eta_{k} \eta_{i} \delta_{j}{ }^{h}-g_{j i} \eta_{k} \eta^{h}-\eta_{j} \eta_{i} \delta_{k}{ }^{h}\right),
\end{align*}
$$

where $\phi_{j}{ }^{2}$ is the structure tensor, η^{2} the structure vector, $g_{j i}$ the positive definite metric tensor, $\eta_{j}=g_{j i} \eta^{2}, K_{k j i}{ }^{h}$ the curvature tensor, $K_{j i}$ the Ricci tensor, K the scalar curvature, $S_{k j}=\phi_{k}{ }^{s} K_{s}, S_{k}{ }^{2}=S_{k j} g^{j i}$ and $k=\frac{K+n-1}{n+1}$.

They proved the following theorems.
Theorem C. Let M^{n} be a compact Sasakıan space M^{n} of dimension $n(n \geqq 5)$ with vanishing C-Bochner curvature tensor of constant scalar curvature. Suppose that M^{n} satisfies one of the following conditions.
i) $\theta>-2$, where θ denotes the smallest eigenvalue of the Ricci tensor,
ii) $K_{\lambda \mu}+K_{\lambda \mu} *>-\frac{3\left(2-\delta_{\lambda \mu}\right)}{n-2}$, (especially $\left.\sum_{\mu}\left(K_{\lambda \mu}+K_{\lambda \mu} *\right)>-3\right)$,
ii) M^{n} is μ-holomorphically pinched with $\mu>\frac{n-3}{2(n-1)}$.

Then M^{n} is locally C-Fubinian. (A locally C-Fubinian manifold was defined in [4].)

Theorem D. If a Sasakian space M^{n} with vanishing C-Bochner curvature tensor is a C-Einstein space, then M^{n} is locally C-Fubinian. (A C-Einstein space was defined in [2].)

In $\S 2$, we shall recall fundamental properties of a Sasakian space with vanishing C-Bochner curvature tensor and in $\S 3$ prove that the Laplacian $\Delta\left(Z_{j i} Z^{j i}\right)$ of the tensor $Z_{j i}$ defined by

$$
\begin{equation*}
Z_{j i}=K_{j i}-\left(\frac{K}{n-1}-1\right) g_{j i}+\left(\frac{K}{n-1}-n\right) \eta_{j} \eta_{i} \tag{1.2}
\end{equation*}
$$

is zero in a Sasakian manifold with constant scalar curvature whose C-Bochner curvature tensor vanishes.

In the last $\S 4$ we prove the main theorem stated as before by using Theorem D and the Laplacian $\Delta\left(L_{j i} L^{j i}\right)$ of the tensor $L_{j i}$ defined by

$$
L_{j i}=K_{j i}+\left(\frac{K}{n-1}-n\right) \eta_{j} \eta_{i},
$$

where $L^{j i}=L_{s t} g^{s j} g^{t z}$.

§.2. Properties of a Sasakian manifold with vanishing C-Bochner curvature tensor.

Let M^{n} be an n-dimensional Sasakian manifold ($n \geqq 3$). If we denote by ∇_{2} the operator of covariant differentiation with respect to the Riemannian connection of M^{n}, then the following relations hold:

$$
S_{j i}=-S_{i j}, \quad \nabla_{k} S_{j}{ }^{k}=\frac{1}{2} \phi_{\jmath}{ }^{k} \nabla_{k} K+(K-n+1) \eta_{j},
$$

$$
\begin{align*}
& \nabla_{k} S_{j i}=\eta_{j} K_{i k}-(n-1) g_{j k} \eta_{i}+\phi_{j}{ }^{t} \nabla_{k} K_{t \imath}, \tag{2.1}\\
& \phi_{J}{ }^{t} \nabla_{t} S_{i k}=-\eta_{i} S_{k j}+(n-1) \phi_{i j} \eta_{k}+\phi_{j}{ }^{r} \phi_{i}{ }^{s} \nabla_{r} K_{s k}, \\
& \nabla_{k} K_{j i}-\nabla_{j} K_{k i}=-\phi_{i}{ }^{r} \nabla_{r} S_{k j}-2 S_{k j} \eta_{2}+(n-1)\left(\phi_{k i} \eta_{j}-\phi_{j i} \eta_{k}+2 \phi_{k j} \eta_{2}\right),
\end{align*}
$$

because the differential form $S=(1 / 2) S_{j i} d x^{j} \wedge d x^{2}$ is closed and $K_{j i} \eta^{2}=(n-1) \eta$, (See [2]).

Differentiating (1.1) covariantly and using (2.1), we have

$$
\begin{align*}
&(n+3) \nabla_{t} B_{k j i}{ }^{t} \tag{2.2}\\
&=(n+2)\left(\nabla_{k} K_{j i}-\nabla_{j} K_{k i}\right)-\phi_{k}{ }^{r} \phi_{j}{ }^{s}\left(\nabla_{r} K_{s i}-\nabla_{s} K_{r i}\right)+2 \phi_{i}{ }^{s} \phi_{k}{ }^{r} \nabla_{s} K_{r j} \\
&+\eta^{r}\left(\eta_{k} \nabla_{r} K_{j i}-\eta_{j} \nabla_{r} K_{k \imath}\right)-(n+2) \eta_{k} S_{j i}+n \eta_{j} S_{k i}+2(n+1) \eta_{i} S_{k j} \\
&+\frac{1}{n+1}\left(g_{k i} \eta_{j}-g_{j i} \eta_{k}\right) \eta^{r} \nabla_{r} K \\
&+\frac{n-1}{2(n+1)}\left\{\left(g_{k i}-\eta_{k} \eta_{i}\right) \nabla_{j} K-\left(g_{j i}-\eta_{j} \eta_{i}\right) \nabla_{k} K\right. \\
&\left.\quad+\left(\phi_{k i} \phi_{j}{ }^{r}-\phi_{j i} \phi_{k}{ }^{r}+2 \phi_{k j} \phi_{i}{ }^{r}\right) \nabla_{r} K\right\} \\
&+(n+1)\left\{(n+2) \eta_{k} \phi_{j i}-n \eta_{j} \phi_{k i}-2(n+1) \eta_{i} \phi_{k j}\right\} .
\end{align*}
$$

Transvecting (2.2) with $\phi_{l}{ }^{k} \phi_{m}{ }^{j}$ and adding the resulting equation to (2.2), we obtain

$$
\begin{aligned}
\nabla_{t} B_{l m i}{ }^{t}+\phi_{l}{ }^{k} \phi_{m}{ }^{j} \nabla_{t} B_{k j i}{ }^{t}= & \left(\nabla_{l} K_{m i}-\nabla_{m} K_{l i}\right)-\phi_{l}{ }^{k} \phi_{m}{ }^{3}\left(\nabla_{k} K_{j i}-\nabla_{j} K_{k \imath}\right) \\
& +(n-1)\left(\eta_{l} \phi_{m i}-\eta_{m} \phi_{l i}\right)-\eta_{l} S_{m i}+\eta_{m} S_{l i} \\
& +\frac{1}{2(n+3)}\left(g_{l i} \eta_{m}-g_{m i} \eta_{l}\right) \eta^{t} \nabla_{t} K .
\end{aligned}
$$

On the other hand, using (2.1), we have

$$
\phi_{l}{ }^{k} \phi_{m}{ }^{j} \nabla_{t} B_{k j i}{ }^{t}=-\nabla_{t} B_{m l i}{ }^{t},
$$

from which,

$$
\begin{aligned}
\nabla_{k} K_{j i} & -\nabla_{j} K_{k i}-\phi_{k}{ }^{r} \phi_{j}{ }^{s}\left(\nabla_{r} K_{s i}-\nabla_{s} K_{r i}\right)-\eta_{k} S_{j i}+\eta_{j} S_{k i} \\
& \quad+\frac{1}{2(n+3)}\left(g_{k i} \eta_{j}-g_{j i} \eta_{k}\right) \eta^{r} \nabla_{r} K+(n-1)\left(\eta_{k} \phi_{j i}-\eta_{j} \phi_{k \imath}\right)=0 .
\end{aligned}
$$

Contracting the last equation with η^{k} and $\eta^{k} g^{j i}$, we find respectively

$$
\begin{equation*}
\eta^{t} \nabla_{t} K=0, \quad \eta^{t} \nabla_{t} K_{j i}=0, \tag{2.3}
\end{equation*}
$$

from which,

$$
\begin{aligned}
\frac{n+3}{n-1} \nabla_{t} B_{k j i}{ }^{t}= & \nabla_{k} K_{j i}-\nabla_{j} K_{k i}-\eta_{k}\left\{S_{j i}-(n-1) \phi_{j i}\right\} \\
& +\eta_{j}\left\{S_{k i}-(n-1) \phi_{k i}\right\}+2 \eta_{i}\left\{S_{k j}-(n-1) \phi_{k j}\right\} \\
& +\frac{1}{2(n+1)}\left\{\left(g_{k i}-\eta_{k} \eta_{i}\right) \delta_{j}{ }^{t}-\left(g_{j i}-\eta_{j} \eta_{2}\right) \delta_{k}{ }^{t}\right. \\
& \left.+\phi_{k i} \phi_{j}-\phi_{j i} \phi_{k}{ }^{t}+2 \phi_{k j} \phi_{i}{ }^{t}\right\} \nabla_{t} K .
\end{aligned}
$$

Thus, in a Sasakian manifold with vanishing C-Bochner curvature tensor, we get

$$
\begin{align*}
& \nabla_{k} K_{j i}-\nabla_{j} K_{k \imath} \tag{2.4}\\
& =\eta_{k}\left\{S_{j i}-(n-1) \phi_{j i}\right\}-\eta_{j}\left\{S_{k i}-(n-1) \phi_{k i}\right\}-2 \eta_{i}\left\{S_{k \jmath}-(n-1) \phi_{k j}\right\} \\
& -\frac{1}{2(n+1)}\left\{\left(g_{k i}-\eta_{k} \eta_{i}\right) \delta_{j}{ }^{t}-\left(g_{j i}-\eta_{j} \eta_{i}\right) \delta_{k}{ }^{t}+\phi_{k i} \phi_{j}-\phi_{j i} \phi_{k}{ }^{t}+2 \phi_{k j} \phi_{i}{ }^{t}\right\} \nabla_{t} K, \\
& \quad \nabla_{k} S_{j i}=\eta_{j} K_{k i}-\eta_{i} K_{k j}+\frac{1}{2(n+1)}\left\{\phi_{j k} \delta_{\imath}{ }^{t}-\phi_{i k} \delta_{j}{ }^{t}+2 \phi_{j i} \delta_{k}{ }^{t}\right. \tag{2.5}\\
& \\
& \quad+\left(g_{\imath k}-\eta_{i} \eta_{k}\right) \phi_{j}{ }^{t}-\left(g_{j k}-\eta_{j} \eta_{k}\right) \phi_{i}{ }^{t} \nabla_{t} K,
\end{align*}
$$

which have already proved in [1].
In the rest of the section, we are going to compute $\nabla_{k} K_{j i}$ by using (2.3), (2.4) and (2.5). Differentiating covariantly $S_{j i}=\phi_{J}{ }^{t} K_{t 2}$ gives

$$
\nabla_{k} S_{j i}=\left(\eta_{j} \delta_{k}{ }^{t}-\eta^{t} g_{k \jmath}\right) K_{t \imath}+\phi_{\jmath}{ }^{t} \nabla_{k} K_{t i}=\eta_{\jmath} K_{k i}-(n-1) \eta_{i} g_{k \jmath}+\phi_{\jmath}{ }^{t} \nabla_{k} K_{t \imath},
$$

which together with (2.5) implies

$$
\begin{align*}
& \phi_{\jmath}{ }^{t} \nabla_{k} K_{t \imath}=(n-1) \eta_{2} g_{k \jmath}-\eta_{i} K_{k \jmath}+\frac{1}{2(n+1)}\left\{\phi_{j k} \delta_{\imath}{ }^{t}-\phi_{i k} \delta_{j}{ }^{t}\right. \tag{2.6}\\
&\left.+2 \phi_{j i} \delta_{k}{ }^{t}+\left(g_{i k}-\eta_{i} \eta_{k}\right) \phi_{\jmath}{ }^{t}-\left(g_{j k}-\eta_{j} \eta_{k}\right) \phi_{\imath}{ }^{t}\right\} \nabla_{t} K .
\end{align*}
$$

Transvecting (2.6) with $\phi_{l}{ }^{\prime}$ and using (2.3) and (2.4) give

$$
\begin{align*}
\nabla_{k} K_{j i}= & -\eta_{j}\left\{S_{k i}-(n-1) \phi_{k i}\right\}-\eta_{i}\left\{S_{k j}-(n-1) \phi_{k j}\right\} \tag{2.7}\\
& -\frac{1}{2(n+1)}\left\{\left(-g_{j k}+\eta_{j} \eta_{k}\right) \delta_{i}{ }^{t}-\phi_{i k} \phi_{j}{ }^{t}+2\left(-g_{j 2}+\eta_{\jmath} \eta_{2}\right) \delta_{k}{ }^{t}\right. \\
& \left.\quad-\left(g_{i k}-\eta_{i} \eta_{k}\right) \delta_{\jmath}{ }^{t}-\phi_{j k} \phi_{i}{ }^{t}\right\} \nabla_{t} K,
\end{align*}
$$

which together with (1.2) implies

$$
\begin{align*}
\nabla_{k} Z_{j i}= & -\eta_{j}\left\{S_{k i}-\left(\frac{K}{n-1}-1\right) \phi_{k 2}\right\}-\eta_{i}\left\{S_{k j}-\left(\frac{K}{n-1}-1\right) \phi_{k j}\right\} \tag{2.8}\\
& -\frac{1}{n-1}\left(\nabla_{k} K\right) g_{j 2}+\frac{1}{n-1}\left(\nabla_{k} K\right) \eta_{j} \eta_{2} \\
& -\left\{\frac{1}{2(n+1)}\left(-g_{k j}+\eta_{k} \eta_{j}\right) \delta_{i}{ }^{t}-\phi_{i k} \phi_{j}{ }^{t}\right. \\
& \left.+2\left(-g_{j i}+\eta_{j} \eta_{2}\right) \delta_{k}{ }^{t}-\left(g_{i k}-\eta_{i} \eta_{k}\right) \delta_{j}{ }^{t}-\phi_{j k} \phi_{i}{ }^{t}\right\} \nabla_{t} K .
\end{align*}
$$

§ 3. Laplacian $\Delta\left(Z_{j i} Z^{j i}\right)$.
In order to calculate the Laplacian

$$
\begin{equation*}
\frac{1}{2} \Delta\left(Z_{j i} Z^{j i}\right)=g^{k j}\left(\nabla_{k} \nabla_{j} Z_{i n}\right) Z^{i n}+\left(\nabla_{k} Z_{j i}\right)\left(\nabla^{k} Z^{j i}\right) \tag{3.1}
\end{equation*}
$$

where the tensor $Z_{j i}$ defined by (1.2) and $Z^{j i}=Z_{s t} g^{s j} g^{t i}$, in a Sasakian manifold with vanishing C-Bochner curvature tensor, we first consider the term $g^{k j}\left(\nabla_{k} \nabla_{j} Z_{i n}\right) Z^{i h}$. Using (2.5) and (2.8), we obtain
(3.2) $\quad \nabla_{k} \nabla_{j} Z_{i n}$

$$
\begin{aligned}
& =-\phi_{k i}\left\{S_{j h}-\left(\frac{K}{n-1}-1\right) \phi_{j n}\right\}-\eta_{i} \nabla_{k}\left\{S_{j h}-\left(\frac{K}{n-1}-1\right) \phi_{j n}\right\} \\
& -\phi_{k h}\left\{S_{j i}-\left(\frac{K}{n-1}-1\right) \eta_{j i}\right\}-\eta_{h} \nabla_{k}\left\{S_{j i}-\left(\frac{K}{n-1}-1\right) \phi_{j i}\right\} \\
& -\frac{1}{n-1}\left(\nabla_{k} \nabla_{j} K\right) g_{i n}+\frac{1}{n-1}\left(\nabla_{k} \nabla_{j} K\right) \eta_{i} \eta_{h}+\frac{1}{n-1}\left(\nabla_{j} K\right)\left(\phi_{k i} \eta_{h}+\eta_{i} \phi_{k h}\right) \\
& -\frac{1}{2(n+1)}\left\{\left(\phi_{k j} \eta_{i}+\eta_{j} \phi_{k \imath}\right) \delta_{h}{ }^{t}-\left(\eta_{h} g_{k j}-\eta_{j} g_{k n}\right) \phi_{i}{ }^{t}\right. \\
& \quad-\phi_{h j}\left(\eta_{i} \delta_{k}{ }^{t}-\eta^{t} g_{k \imath}\right)+2\left(\phi_{k i} \eta_{h}+\eta_{i} \phi_{k h}\right) \delta_{\jmath}{ }^{t} \\
& -\frac{1}{2(n+1)}\left\{-g_{j i}+\eta_{j} \eta_{i}\right) \delta_{h}{ }^{t}-\phi_{h \jmath} \phi_{i}{ }^{t}+2\left(-g_{i n}+\eta_{i} \eta_{h}\right) \delta_{j}{ }^{t} \\
& \left.\quad-\left(g_{h j}-\eta_{h} \eta_{\jmath}\right) \delta_{\imath}{ }^{t}-\phi_{i j} \phi_{h}{ }^{t}\right\} \nabla_{k} \nabla_{t} K .
\end{aligned}
$$

Transvecting (3.2) with $g^{k j} Z^{i h}$ and making use of $Z_{j 2} \eta^{2}=0$ and $Z_{i}{ }^{2}=0$, we can easily verify

$$
\begin{equation*}
g^{k j}\left(\nabla_{k} \nabla, Z_{i n}\right) Z^{i n}=-2 \phi_{s i} S_{n}^{s} Z^{i n}+\frac{1}{n+1}\left\{Z_{k}{ }^{t}+\phi_{h k} \phi_{i}{ }^{t} Z^{i n}\right\} \nabla^{k} \nabla_{t} K \tag{3.3}
\end{equation*}
$$

On the other hand, taking account of the skew-symmetry of $S_{j i}=\phi_{J}{ }^{t} K_{t \imath}$, we have

$$
\begin{aligned}
\phi_{s i} S_{n}^{s} Z^{i n} & =K_{i n} Z^{i n} \\
& =K_{i n} K^{i n}-\left(\frac{K}{n-1}-1\right) K+(n-1)\left(\frac{K}{n-1}-n\right)
\end{aligned}
$$

and

$$
\phi_{h_{k}} \phi_{i}{ }^{t} Z^{i n}=Z_{k}{ }^{t} .
$$

Substituting the last two equations into (3.3) implies

$$
\begin{align*}
g^{k \jmath}\left(\nabla_{k} \nabla_{j} Z_{i n}\right) Z^{i n}= & -2 K_{i n} K^{i n}+2\left(\frac{K}{n-1}-1\right) K-2(n-1)\left(\frac{K}{n-1}-n\right) \tag{3.4}\\
& +\frac{2}{n+1}\left\{\nabla_{k}\left(Z^{k t} \nabla_{t} K\right)-\left(\nabla_{k} Z_{t}^{k}\right) \nabla^{t} K\right\} .
\end{align*}
$$

Next we consider the second term in the right hand side of (3.1). Taking account of the definition (1.2) of $Z_{j i}$, we have by a strightford computation

$$
\begin{aligned}
\left(\nabla_{k} Z_{j i}\right)\left(\nabla^{k} Z^{j i}\right)= & \left\{\nabla_{k} K_{j i}-\frac{1}{n-1}\left(\nabla_{k} K\right) g_{j i}+\frac{1}{n-1}\left(\nabla_{k} K\right) \eta_{j} \eta_{i}\right. \\
& \left.+\left(\frac{K}{n-1}-n\right)\left(\phi_{k j} \eta_{i}+\eta_{j} \phi_{k 2}\right)\right\}\left\{\nabla^{k} K^{j i}-\frac{1}{n-1}\left(\nabla^{k} K\right) g^{j i}\right. \\
& \left.\quad+\frac{1}{n-1}\left(\nabla^{k} K\right) \eta^{j} \eta^{2}+\left(\frac{K}{n-1}-n\right)\left(\phi^{k j} \eta^{2}+\eta^{j} \phi^{k i}\right)\right\},
\end{aligned}
$$

which reduces to

$$
\begin{align*}
\left(\nabla_{k} Z_{j i}\right)\left(\nabla^{k} Z^{j i}\right)= & \left(\nabla_{k} K_{j i}\right)\left(\nabla_{k} K^{j i}\right)-\frac{1}{n-1}\left(\nabla^{k} K\right)\left(\nabla_{k} K\right) \tag{3.5}\\
& +4\left(\frac{K}{n-1}-n\right)\left\{(-K+n(n-1)\}+2(n-1)\left(\frac{K}{n-1}-n\right)^{2}\right.
\end{align*}
$$

because of $\phi_{k j} \eta_{i}\left(\nabla^{k} K^{j i}\right)=-K+n(n-1)$ which is a consequence of $K_{j i} \eta^{2}=(n-1) \eta_{j}$. On the other hand, we find from (2.7)

$$
\begin{align*}
\left(\nabla_{k} K_{j i}\right)\left(\nabla^{k} K^{j i}\right)= & {\left[\eta_{j}\left\{S_{k i}-(n-1) \phi_{k i}\right\}+\eta_{i}\left\{S_{k j}-(n-1) \phi_{k j}\right\}\right.} \tag{3.6}\\
& +\frac{1}{2(n+1)}\left\{\left(-g_{j k}+\eta_{j} \eta_{k}\right) \delta_{i}{ }^{t}-\phi_{i k} \phi_{j}{ }^{t}+2\left(-g_{j i}+\eta_{j} \eta_{2}\right) \delta_{k}{ }^{t}\right. \\
& \left.\left.-\left(g_{i k}-\eta_{i} \eta_{k}\right) \delta_{j}{ }^{t}-\phi_{j k} \phi_{i}{ }^{t}\right\} \nabla_{t} K\right] \cdot\left[\eta^{\jmath}\left\{S^{k i}-(n-1) \phi^{k i}\right\}\right. \\
& +\eta^{\imath}\left\{S^{k j}-(n-1) \phi^{k j}\right\}+\frac{1}{2(n+1)}\left\{\left(-g^{j k}+\eta^{j} \eta^{k}\right) g^{2 s}-\phi^{i k} \phi^{j s}\right. \\
& \left.\left.\quad+2\left(-g^{j i}+\eta^{j} \eta^{i}\right) g^{k s}-\left(g^{i k}-\eta^{2} \eta^{k}\right) g^{j s}-\phi^{j k} \phi^{r s}\right\} \nabla_{s} K\right] \\
= & 2 K_{j i} K^{j i}-4(n-1) K+2 n(n-1)^{2}+\frac{2}{n+1}\left(\nabla_{t} K\right)\left(\nabla^{t} K\right),
\end{align*}
$$

where we have used (2.3), $S_{j i} S^{j i}=K_{j i} K^{j i}-(n-1)^{2}$ and $\phi_{j i} S^{j i}=K-(n-1)$. Con-
tracting (2.8) with $g^{k J}$ and using (2.3), we get

$$
\begin{equation*}
\left(\nabla_{k} Z^{k}{ }_{2}\right) \nabla^{i} K=\frac{n-3}{2(n-1)}\left(\nabla_{t} K\right)\left(\nabla^{t} K\right) \tag{3.7}
\end{equation*}
$$

Substituting (3.6) and (3.7) into (3.5) and (3.4) respectively and substituting the resulting equations into (3.1), we obtain

$$
\frac{1}{2} \Delta\left(Z_{j i} Z^{j i}\right)=\frac{2}{n+1} \nabla_{k}\left(Z^{k t} \nabla_{t} K\right),
$$

which implies
Lemma 1. In a Sasakian manifold with constant scalar curvature whose CBochner curvature tensor vanishes, we have $\Delta\left(Z_{j i} Z^{j i}\right)=0$.

§4. The proof of the theorem.

In this section we assume the scalar curvature K is constant and define a tensor field $L_{j i}$ by

$$
\begin{equation*}
L_{j i}=K_{j i}+\left(\frac{K}{n-1}-n\right) \eta_{j} \eta_{i} \tag{4.1}
\end{equation*}
$$

We prepare some equalities to get the Laplacian $\Delta\left(L_{j i} L^{j i}\right)$. From (4.1) we have

$$
\begin{equation*}
L=L_{i}{ }^{2}=\frac{n}{n-1} K-n, \tag{4.2}
\end{equation*}
$$

Substituting (4.2) into (4.1) implies

$$
\begin{equation*}
L_{j i}=K_{j i}+\left(\frac{L}{n}+1-n\right) \eta_{j} \eta_{2} \tag{4.3}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
L_{j i} \eta^{2}=\frac{L}{n} \eta_{j} \tag{4.4}
\end{equation*}
$$

Using (2.4) and $K=$ const. gives

$$
\begin{align*}
& \nabla_{k} L_{j i}-\nabla_{j} L_{k i} \tag{4.5}\\
& \quad=\eta_{k}\left\{S_{j i}-\frac{L}{n} \phi_{j i}\right\}-\eta_{j}\left\{S_{k i}-\frac{L}{n} \phi_{k i}\right\}-2 \eta_{i}\left\{S_{k j}-\frac{L}{n} \phi_{k j}\right\} .
\end{align*}
$$

Moreover, from (4.1) and (4.4), it follows that

$$
\begin{align*}
& S_{j i}=\phi_{J}{ }^{t} L_{t \imath}, \tag{4.6}\\
& S_{k i} \phi_{J}{ }^{h} L_{h}{ }^{k} L^{j i}=-L_{i}{ }^{t} L_{t j} L^{\imath j}+\frac{L^{3}}{n^{3}}, \quad \phi_{k i} \phi_{J}{ }^{h} L_{h}{ }^{k} L^{j i}=-L_{j i} L^{j i}+\frac{L^{2}}{n^{2}} .
\end{align*}
$$

Now, because of (1.1) and (4.6), the following equalities are easily verified:

$$
\begin{align*}
& K_{k j i}{ }^{h} L_{h}{ }^{k} L^{j 2} \tag{4.7}\\
&=-\frac{1}{n+3}\left[2 K_{k i} L_{h}{ }^{k} L^{h 2}-2 L K_{j i} L^{j 2}+S_{k i} \phi_{j}{ }^{h} L_{h}{ }^{k} L^{j i}+\phi_{k i} S_{j}{ }^{h} L_{h}{ }^{k} L^{j i}\right. \\
&\left.+2 S_{k j} \phi_{2}{ }^{h} L_{h}{ }^{k} L^{j i}+2 \phi_{k j} S_{i}{ }^{h} L_{h}{ }^{k} L^{j i}-\frac{2(n-1)}{n^{2}} L^{2}+\frac{2 L}{n} K_{j i} L^{j i}\right] \\
&+ \frac{k+n-1}{n+3}\left[\phi_{k i} \phi_{j}{ }^{h} L_{h}{ }^{k} L^{j i}+2 \phi_{k j} \phi_{i}{ }^{h} L_{h}{ }^{k} L^{j i}\right]+\frac{k-4}{n+3}\left[L_{j i} L^{j i}-L^{2}\right] \\
&= \frac{2 k}{n+3}\left[\frac{L^{2}}{n^{2}}-\frac{L^{2}}{n}\right] \\
&=-\frac{1}{n+3}\left[-4 L_{i}{ }^{t} L_{t h} L^{i n}+\frac{2(1-n)}{n} L L_{j i} L^{j i}+\frac{2(n+1)}{n^{3}} L^{3}-\frac{2(n-1)^{2}}{n^{2}} L^{2}\right] \\
&+\frac{3(k+n-1)}{n+3}\left[-L_{j i} L^{j i}+\frac{L^{2}}{n^{2}}\right]+\frac{k-4}{n+3}\left[L_{j i} L^{j i}-L^{2}\right]+\frac{2(n-1)}{n^{2}(n+3)} k L^{2} .
\end{align*}
$$

On the other hand, applying the Ricci formula to $L_{j i}$ and using (1.1), (4.5) $\nabla_{k} L_{j}{ }^{k}=0$, we get

$$
g^{k \jmath}\left(\nabla_{k} \nabla_{j} L_{i n}\right) L^{i n}=L_{i}{ }^{t} L_{t} L^{i \jmath}-K_{s i n}{ }^{t} L_{t}^{s} L^{i n}-3 L_{j i} L^{j i}-\frac{L^{3}}{n^{3}}+\frac{4 n-1}{n^{2}} L^{2} .
$$

Substituting (4.7) into the last equation and making use of $k=\frac{n-1}{n(n+1)} L+$ $\frac{2(n-1)}{n+1}$, we can easily verify

$$
\begin{align*}
\frac{1}{2}-\Delta\left(L_{j i} L^{j i}\right)= & \frac{n-1}{n+3} L_{2}{ }^{t} L_{t h} L^{i n}-\left\{\frac{2(n-1)}{(n+1)(n+3)} L+\frac{4}{n+1}\right\} L_{j i} L^{j i} \tag{4.8}\\
& +\frac{(n-1)^{2}}{n^{2}(n+1)(n+3)} L^{3}+\frac{4}{n(n+1)} L^{2}+\left(\nabla_{k} L_{j i}\right)\left(\nabla^{k} L^{j i}\right) .
\end{align*}
$$

Next we compute $\left(\nabla_{k} L_{j i}\right)\left(\nabla^{k} L^{j i}\right)$ by using $\nabla_{k} L_{j i}=\nabla_{k} Z_{j i}$, (3.6) and (3.7). Substituting (3.6) into (3.5) and taking account of (4.2), (4.3) and $K=$ const., we find

$$
\begin{aligned}
\left(\nabla_{k} L_{j i}\right)\left(\nabla^{k} L^{j i}\right)= & 2 K_{j i} K^{j i}+4\left(\frac{K}{n-1}-n\right)\{-K+n(n-1)\} \\
& +2(n-1)\left(\frac{K}{n-1}-n\right)^{2}-4(n-1) K+2 n(n-1)^{2} \\
= & 2 L_{j i} L^{j i}-\frac{2}{n} L^{2},
\end{aligned}
$$

which together with (4.8) implies

$$
\begin{aligned}
\frac{1}{2} \Delta\left(L_{j i} L^{j i}\right)= & \frac{n-1}{n+3} L_{i t} L_{h}^{t} L^{i n}-\left\{\frac{2(n-1)}{(n+1)(n+3)} L-\frac{2(n-1)}{n+1}\right\} L_{j i} L^{j i} \\
& +\frac{(n-1)^{2}}{n^{2}(n+1)(n+3)} L^{3}-\frac{2(n-1)}{n(n+1)} L^{2} .
\end{aligned}
$$

Taking account of $\Delta\left(L_{j i} L^{j i}\right)=\Delta\left(Z_{j i} Z^{J i}\right)$ and Lemma 1 , the last equation gives

$$
\begin{align*}
\frac{n-1}{n+3} L_{\imath t} L_{n}^{t} L^{i n}- & \left\{\frac{2(n-1)}{(n+1)(n+3)} L-\frac{2(n-1)}{n+1}\right\} L_{j i} L^{\prime i} \tag{4.9}\\
& +\frac{(n-1)^{2}}{n^{2}(n+1)(n+3)} L^{3}-\frac{2(n-1)}{n(n-1)} L^{2}=0 .
\end{align*}
$$

The following lemma was proved by Yano and Ishihara (See [6]):
Lemma 2. In a Riemannian manifold of dimension n, for

$$
P=n L_{t} L_{s}{ }^{r} L_{r}{ }^{t}-\frac{2 n-1}{n-1} L L_{j i} L^{\jmath 2}+\frac{1}{n-1} L^{3},
$$

we have

$$
P=\frac{1}{n-1} \sum_{i} \sum_{j \neq k} \lambda_{2}\left(\lambda_{2}-\lambda_{j}\right)\left(\lambda_{i}-\lambda_{k}\right),
$$

$\lambda_{1} \leqq \lambda_{2} \leqq \cdots \leqq \lambda_{n}$ being engenvalues of the tensor $L_{j i}$. Moreover, if $L_{j i}$ is positve semı-definite, then $P \geqq 0$.

Using P given in Lemma 2, we have from (4.9)

$$
\begin{equation*}
\frac{n-1}{n(n+3)} P+\frac{1}{n+1}\left\{\frac{3 n-1}{n(n+3)} L+2(n-1)\right\}\left(L_{j i}-\frac{L}{n} g_{j i}\right)\left(L^{j i}-\frac{L}{n} g_{j i}\right)=0 . \tag{4.10}
\end{equation*}
$$

If Ricci tensor $K_{j i}$ is positive semi-definite, then (4.10) give $L_{j i}=(L / n) g_{j i}$, that is, $Z_{j i}=0$ because the positive semi-difiniteness of $K_{j i}$ implies that of $L_{j i}$. Thus, combining Theorem B and the above result $L_{j i}=(L / n) g_{j i}$, we have completely proved the theorem stated at the end of the first section.

Bibliography

[1] M. Matsumoto and G. Chüman, On the C-Bochner curvature tensor, TRU, 5 (1969), 21-30.
[2] M. Okumura, Some remarks on space with a certain contact structure, Tôhoku Math. Journ., 14 (1962), 135-145.
[3] P.J. Ryan, A note on conformally flat spaces with constant scalar curvature, to appear.
[4] Y. Tashiro and S. Tachibana, On Fubinian and C-Fubinian manifolds, Kōdai Math. Sem. Rep., 15 (1963), 176-183.
[5] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, New York, 1965.
[6] K. Yano and S. Ishihara, Kaehlerian manifolds with constant scalar curvature whose Bochner curvature tensor vanishes, Hokkaido Math. J., 3 (1974), 297-304.

Tokyo Institute of Technology, Japan
Kyungpook University, Korea.

