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ASYMPTOTIC BEHAVIOR AND DEGENERACY

OF BIHARMONIC FUNCTIONS ON

RIEMANNIAN MANIFOLDS

BY LUNG OCK CHUNG

One of the most fascinating results in harmonic classification theory is the
is the identity O%D=O%C, where H stands for the class of harmonic functions
h, dh=0, with Δ^dδ+δd the Laplace-Beltrami operator, and HD, HC are the
subclasses of functions which are Dirichlet finite, or bounded Dirichlet finite,
respectively. For any class F of functions, OFi OF denote the classes of Rie-
mannian manifolds on which FdR or F(tR respectively, and 0$, 0$ are the
corresponding subclasses of manifolds of dimension N^2.

A striking phenomenon in biharmonic classification theory is that, in con-
trast with the harmonic case, the inclusion OH2D(ZθH2c is strict, with H2 the
class of nonharmonic biharmonic functions. This has been, however, known
only in the 2-dimensional case, in which it was established by undoubtedly the
most intricate counterexample in all classification theory (Nakai-Sario [6]). The
technique of complex analysis used therein is not available for an arbitrarily
high dimension.

Combining certain recent results in the biharmonic classification of the
Poincare Λf-ball for the subclasses H2D, H2B of H2 functions which are Dirichlet
finite or bounded, respectively (Hada-Sario-Wang [2], [3]), one can draw the
conclusion that O%2D(Zθ%2C is strict for Λ/>5. However, for N—3, 4, the reason-
ing fails and the question remains unsettled.

The first purpose of the present paper is to give a complete and unified
solution to this problem by proving the strict inclusion

for any dimension Λ^2. We shall, in fact, show more generally that
On the other hand, from recent results on the Poincare ΛΓ-ball (Hada-Sario-Wang
[2], [3]), we infer that 0%2D<t0%2B. In summary, we have the following string
of strict inclusion relations:

Received April 10, 1975.
This work was sponsored by the U.S. Army Research Office, Grant DA-ARO-31-

124-73-G39, University of California, Los Angeles.
MOS Classification : 31B30.

464



ASYMPTOTIC BEHAVIOR AND DEGENERACY 465

v

Proceeding from the special to the general, we state our most general
result which will be the content of our paper:

0$

for and TV^2; X=H2B, Γ, G, HP, HB, HD, HC Y=H2D, H2LP. Here HF=
HnF, H2F=H2Γ\F; l^p<oo; Γ is the class of biharmonic Green's functions
(Sario [9]) G is the class of harmonic Green's functions and P is the class of
positive functions. Of these relations, the following cases, in addition to the
aforementioned partial relations on H2B and H2D, have been previously known:
(X, Y)=(HP, H2D), (Sario-Wang [11]) (X, Y)=(HD, H2D), {HB, H2D), (Sario-
Wang [13]) {X, Y)={G H2D), (Nakai-Sario [8], Sario-Wang [12]) {X, Y)=
(Γ, H2D), (Wang [14]). The rest are new: in addition to the aforementioned
unsettled relation between H2B and H2D, the cases {X, H2LP), where X=G, HP,
HB, HD, HC, Γ, and H2B.

An essential aspect of our paper is that all the above inclusion relations,
old and new, are obtained in a simple and unified manner. The TV-cylinder,
endowed with various simple metrics, is the only manifold we will need as a
counterexample. This unification of approach is made possible by a systematic
use of the asymptotic behavior of solutions of differential equations.

The proof of the above statement on the classes Ox and Oγ will be pre-
sented in Lemmas 1-25 and § 5.

1. Consider the TV-cylinder.

oo, \yt\^π, i=lf — ,N—1}

with the faces yt=π and yι=—π identified, for each i, by a parellel translation
perpendicular to the x axis. Endow M with the metric

ds2=φ2(x)dx2+ψ2(x)dyϊ+N'Σdyϊ,
1 = 2

where φ, ψ^C°°(—oo, oo). The proof of our theorem will consist, in essence, of
two parts. First we show that for a suitable choice of φ, ψ,
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and then that for another choice of φ, ψ,

where Mx is the manifold with the new metric, and F=P, B, D, C. This will
establish our claims O%Γ\O$Φφ and 0%r\OγΦφ. The remaining relations
0%Γ\Oγ

τΦφ and O%r\OγΦφ will then follow from other quite trivial choices of
<p and ψ.

2. To establish the first string of relations in § 1, we choose ψ—ψ on
(-00,00), φ(χ)=\χ\-* for | * | >1.

LEMMA 1. A harmonic function h(x9 y), y=(yly •••, 3>jv-i), has a representation

Kx,y)=fo(x)+Έfn(x)Gn(y)9 where Gn(y)=NnGl

n(yi) with Gi

n(yi)=±sinntyi or
n=i ι=l

±cosnιyi for some integer nt. The series converges absolutely and uniformly on
compact sets.

In fact, by a standard application of the Peter-Weyl theorem, we obtain for

any x0, h(xOfy)=fo(xo)+^Σfn(xo)Gn(y). Here the Gn are invariant under varying

x0 by virtue of continuity. The convergence follows by a standard argument
using differentiation with respect to y.

LEMMA 2. f(x) is harmonic if and only if f(x)=ax+b.

For the proof, solve the equation Jf=—g~1/2ffr=0f where Vgdxdy is the
volume element.

LEMMA 3. M^OX with X=Γ, G, HP, HB, HD, HC.

From the harmonic classification theory, we have the the inclusions OG<
OHp<OHB<OHD=OHC. Moreover, OG<OΓ (Wang [15]). Thus it suffices to show
that M^OG. The harmonic measure ω of {x—c>0) on {0<x<c} is x/c in view
of Lemma 2. As c-»oo, ω->0. Similarly, the harmonic measure of the boundary
component at x— — 00 vanishes. Therefore, M^OG.

3. Having discussed the spaces OG, OHF, OΓ of the first string of relations
in § 2, we turn to the spaces related to biharmonic functions. First we pre-
sent some preparatory results.

LEMMA 4. // f(x)G(y) is harmonic, then f is strictly monotone.

Suppose the claim false. Then for c1<c2, say, /|{Ci<x<c2} is not strictly
monotone, and / takes on its maximum or minimum on {c^xKc^ at some
point of this open interval. So does, a fortiori, /G, in violation of the maximum
principle for harmonic functions.
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LEMMA 5. // f(x)G(y1) is harmonic, G(y1)=±$mn1y1 or ±co$n1y1 with
nxφQt then f(x)=ae-n

We obtain successively

ΔG=g-ι/\φ-2glί2n\G)=n\g-1/2G ,

with the fundamental solutions f1(x)=erilX and f2(x)=β~niX.

LEMMA 6. If f(x)G(yt) is harmonic with G(yt) not constant, iΦl, then

either as x—>oo or else as x—>—oo.

This time we have

J ( / G ) = ( —

hence

We now make use of the following theorem of Haupt [4] and Hille [5]:
A necessary and sufficient condition for the equation

on (0, oo) to have the fundamental solutions

as x->oo is that
\0, OO).

Since nξVg=n2

t\x\~3 for | x | > l , the condition of the theorem of Haupt and
Hille is satisfied, and we conclude that

f(x)=a1x(l+o(l))-\-bia
jro(l)) as *->oo ,

or
f(x)=a2x(l+o(X))+b2(l+o(l)) as x->-oo.

By Lemma 3, fG is not bounded and the same is true of /. Consequently aλφ0
or a2φ0.

LEMMA 7. If f(x)G(y2, y9, •••, 3>#-i) is harmonic, with G not constant, then



468 LUNG OCK CHUNG

f(x)=axO.+oO))+b(\+o(\))

either as x—>oo or else as x—•—oo.

The proof is the same as for Lemma 6, the equation

1=2

again satisfying the Haupt-Hille condition.
N-l

LEMMA 8. // f(x)G(y) is harmonic with G(y)=HGl(yl), Gx{yx) not constant,
t = l

then

f(x)~aenilx[ with

either as x^oo or else as x-^ —oo.

The equation J(fG)=Q gives

1=2

which for | * | > 1 is reduced by the transformation f(x)=f(n1x) to the form

f(x)=(l+c\x\-s)f(x).

We now make use of the following theorem of Bellman [ 1 ] :
/» oo

If />(*)—>0 as x-*oo and if I p2dx<^, then the equation f"=(l+P)f in (0, oo)

has the fundamental solutions

Λ(*)~exp| -{x+-tr

/2(x)~exp

In the present case, p(x)=c\x\~B satisfies the condition of Bellman's theorem,
and we obtain f=a1f1+b1f2 for x>l and f=a2f1

J

rb2f2 for x<~ 1 with

/ 2O)~exp

If b1=b2=O, then f(x)^0 as |Λ:|—>oo, in violation of the maximum principle.
Therefore either bλφQ or b2Φθ, and in view of the above transformation, we
have the lemma.

0ί
Vg(s) dsdt. The general solu-

0

tion of Jq=c is cqo(x)Jrh(xf y) where h^H. Every q is unbounded.
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The only part of the lemma that needs proving is the unboundedness of q.

Suppose that there exists a bounded q. Then the transform (Tq)(x)= f q(x, y)dy
Jy

=aqo(x)+bx+c is bounded. Since q0->—oo as |x|-*oo, whereas bx changes its
sign with x, we have a contradiction.

Π t
s Vg(s) dsdt. It satisfies

— oo

uQ(x)~±a log I # I for some constant a as x—>±oo, respectively. The general solu-
tion c0u0(x)-{-c1q0(x)Jrc2x-\-cB is unbounded.

The proof is analogous to that of Lemma 9.

LEMMA 11. M G O ^ .

The function uo(x) of Lemma 10 is Dirichlet finite:

D(uo)=cC (u'oγφ-γ
J — oo

l1 + ί
LEMMA 12.

If fact,

\\uo\\p

P=cΓ \uQ\*Vgdx<oo,
«/ —oo

since |uo(x)\~\a\og\x\ | but Vg~\x\~3 as x ^ ±

LEMMA 13. Let v(x) satisfy the equation Δ{v{x)G{y1))=f{x)G{y1)^H with
fGφQ and G(yt) not constant. Then v is unbounded.

We have

hence

v"—n\v— Vgf.

By Lemma 5, f(x)=aeniX+be~niX with |α | + |ft|^=0. We may assume α < 0 ; the
proof for the other case is analogous.

Suppose v is bounded. For sufficiently large x>0, nlv—Vgf grows at the
rate of x~3eniX. We thus have

where we may choose xo>l. It follows that

xnJ xn
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which is clearly not bounded.

LEMMA 14. Let v(x) satisfy the exuation A(v(x)G(yi))=f(x)G(yι)<^H with
fGφO, i>l, and G(yt) not constant. Then v is unbounded.

The proof is analogous to that of Lemma 13, with

Vgf.

In applying Lemma 6, we may assume that f(x)=ax(l+o(l))+b(l-\-o(l)) as x—•—oo
with <2<0. If v is bounded, we have for x<— 1,

*ιf* \t\-ydtdx

for X2<Λ:<Λ:1<—1. As JC2->—oo, the first integral converges but the second does
not. Thus v(x2) cannot be bounded as x2-*—oo, in violation of the assumption.

LEMMA 15. Let v(x) satisfy 4(v(x)G(y))=f(x)G(y)<=H, with f(x)G(y) not
constant. Then v(x) is not bounded.

We may assume nλφ0 and at least one ΠiΦO, i>l. We now have

Since fG is harmonic, f~aeUllx] for either x-+oo or else x^—oo. We may assume
the former. Clearly | Vgf\-^<χ> as Λ:-̂ OO. If v is bounded, then Vgf will do-
minate the right-hand side of the equation. On integrating as in the proof of
Lemmas 13 and 14, we arrive at the contradiction that v is both bounded and
unbounded.

LEMMA 16. M(ΞOH2B.
oo

Suppose there exists a u(x, y)<=H2B. Write u(x, y) = vo(x)+ Σ vn(x)Gn(y)
71 = 1

with GnφGm for nφm. Either vo(x) or some vnGn is not harmonic. Suppose
this is true of vnoGno. Then the thransform

(TiO(x)=f uGnody=cvno(x)
Jy

is bounded, in violation of Lemma 15.
With Lemma 16, the proof of the first string of inclusion relations in § 1 is

complete.

4. We turn to the second string of relations in § 1. We now choose φ=l
and ψ a positive symmetric C°° function with φ(x)=exp e]X] for \x\ > 1 , and denote



ASYMPTOTIC BEHAVIOR AND DEGENERACY 471

the resulting manifold by Mx.
The same proof as for Lemma 1 shows that every harmonic function h on

Mx has a representation

ψ~1dx+b.
0

This is seen by solving the harmonic equation Δf{x) — —ψ-\ψf')'=Q.

LEMMA 18. M^OGΓΛOHX, where X=P, B, D, C.

ψ'λdx is bounded and its Dirichlet integral is

0

=f (f)2ψdxdy=cC ψ-'f
Mi

LEMMA 19. The function

is quasiharmomc, that is, Jqo=l. Every quasiharmonic function has the form
q—q<s+h with h^H.

This is verified by direct computation of Δq0.

L E M M A 20. MX<^0H2B.

In fact, qo(=:H2B, since

φ-\t)fψ(s)ds a s 111 —> oo .

For verification, first apply ΓHospitaΓs rule to the left-hand side to see that it
goes to 0 as |ί|—»oo, and then show, again by ΓHospitaΓs rule, that

eιtιφ-\t)Cφ(s)ds
J o φ() as

o

LEMMA 21. For h{x)e.H, the function

uo(x)=Γψ-\t)Cψ(s)h(s)dsdt
J o J o

is biharmonic. Every biharmonic function of the form u(x) can be written u(x)
=uo(x)+c.

The proof is again by direct computation.

LEMMA 22. Every nonharmonic biharmonic function of the form u{x) has
infinite Dirichlet and Lp norms.
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An estimate similar to that in the proof of Lemma 20 shows that \u'{t)\^e~[U

either as ί-*oo or else as ί->—oo. The Dirichlet integral is

D(u)=c\ (u')*ψdx=oo.
J — oo

Since u'(f) does not decrease faster than e~{tι at least in one direction, the
same is true of u(t). Therefore,

||tt| |f!=c| \u\pψdx=oo.

LEMMA 23. // v(x)G(y) is a nonharmonic biharmonic function, with G{y)
not constant, then

Suppose υ^Lp for some l^p<oo. Then \v(x)\pψ(x) is integrable and de-
creases to 0. Let Δ{vG)~fG. Since vG is nonharmonic biharmonic, / does not
vanish in the neighborhood of at least one component of the ideal boundary,
say x=oo. As in Lemma 15, Δ(υG)=fG gives

For large x>0, we may assume /(x)<ε<0, by changing the sign of G if
necessary. Since |ι>|-»0 rapidly, the dominating term on the right-hand side is
—ψf, and we obtain

for all sufficiently large x>0. On integrating from a sufficiently large x0 to a
larger x, we obtain

φv'^c\ φdx.
Jχ0

An estimation exactly as that in the proof of Lemma 20 yields

Thus v can not be decreasing faster than ce~x. This contradicts \v\pψ(x)—>0
and completes the proof of the lemma.

LEMMA 24. The Dirichlet and Lp norms of the function vG of Lemma 23
are infinite.

By Lemma 23, v&Lp. Therefore

\\vG\\*=cj~ \v\pψdx=oo.

By the proof of Lemma 23, \v'\ ^ c £ ~ m either as x-»oo or else as x-*—oo. There-
fore,
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D(vG)=\ (v'G)2(pdxdy + \ Σ(V-^Γ) gudxdy
J M1 J Mλ ι=i \ oy /

^c[°° (υ')2φdx=oo .

LEMMA 25.

Let u(x, y) be a nonharmonic biharmonic function. Write u(x, y) =
oo

vo(x)+ Σ vn(x)Gn(y). By Lemmas 22 and 24, neither z;0 nor any z;nGn belongs to

D\JLP if it is nonharmonic. By the Dirichlet orthogonality of v0 and the vnGn,
oo

we conclude that vo-{- Σ ^n^n is Dirichlet infinite.
n=l

Suppose V o + Σ v B G n e L p . Choose a nonharmonic term vnoGno. Since vnoGnQ

$LP, there exists an Lq function fGno such that (v n o G n o ,/G n o )=f ^noGno/Gno^^

=oo. On the other hand, (fn oGn o,/GΛ 0)=(z; 0H-Σ ^nGre,/Gwo)<oo, a contradiction.
n=i

With Lemma 25, the proof of the second string of relations in § 1 is complete.

5. It remains to show that Oxr\OγΦφ and Oxr\OγΦφ. The metrics we
shall choose will result in simple computations which also are completely an-
alogous to those in §§ 2-4, and we can be brief.

To show that Oxc\OγΦφ, we choose φ—\ and φ(x)=\x\~4: for \x\ > 1 . Then
the solutions J(/(#))=0 and J(q(x))=l turn out to belong to the desired func-
tion classes X, Y.

To prove Oxc\OγΦφ, let <p=φ=l. It is easy to explicitly solve the equation
Δ1u—^ in all cases and to show that the solutions do not belong to X or Y.

6. We have completed, by Lemmas 1-25, and § 5, the proof of the fol-
lowing result:

THEOREM. The classification scheme

Of

holds for X=G, HP, HB, HD, HC, Γ, H2B Y=H2D, HZL".

The author is indebted to Professors L. Sario and C. Wang for valued advice.
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