L. O. CHUNG

ASYMPTOTIC BEHAVIOR AND DEGENERACY OF BIHARMONIC FUNCTIONS ON RIEMANNIAN MANIFOLDS

By Lung Ock Chung

One of the most fascinating results in harmonic classification theory is the is the identity $O_{H D}^{N}=O_{H C}^{N}$, where H stands for the class of harmonic functions $h, \Delta h=0$, with $\Delta=d \delta+\delta d$ the Laplace-Beltrami operator, and $H D, H C$ are the subclasses of functions which are Dirichlet finite, or bounded Dirichlet finite, respectively. For any class F of functions, O_{F}, \tilde{O}_{F} denote the classes of Riemannian manifolds on which $F \subset \boldsymbol{R}$ or $F ₫ \boldsymbol{R}$ respectively, and $O_{F}^{N}, \tilde{O}_{F}^{N}$ are the corresponding subclasses of manifolds of dimension $N \geqq 2$.

A striking phenomenon in biharmonic classification theory is that, in contrast with the harmonic case, the inclusion $O_{H^{2} D} \subset O_{H^{2} C}$ is strict, with H^{2} the class of nonharmonic biharmonic functions. This has been, however, known only in the 2 -dimensional case, in which it was established by undoubtedly the most intricate counterexample in all classification theory (Nakai-Sario [6]). The technique of complex analysis used therein is not available for an arbitrarily high dimension.

Combining certain recent results in the biharmonic classification of the Poincaré N-ball for the subclasses $H^{2} D, H^{2} B$ of H^{2} functions which are Dirichlet finite or bounded, respectively (Hada-Sario-Wang [2], [3]), one can draw the conclusion that $O_{H^{2} D}^{N} \subset O_{H^{2} C}^{N}$ is strict for $N \geqq 5$. However, for $N=3,4$, the reasoning fails and the question remains unsettled.

The first purpose of the present paper is to give a complete and unified solution to this problem by proving the strict inclusion

$$
O_{H{ }^{2} D}^{N}<O_{H{ }^{2} C}^{N}
$$

for any dimension $N \geqq 2$. We shall, in fact, show more generally that $O_{H^{2}{ }_{B}}^{N} \not O_{H 2^{2} D}^{N}$. On the other hand, from recent results on the Poincaré N-ball (Hada-Sario-Wang [2], [3]), we infer that $O_{H 2_{D}}^{N} \nsubseteq O_{H{ }^{2} B}^{N}$. In summary, we have the following string of strict inclusion relations:

[^0]

Proceeding from the special to the general, we state our most general result which will be the content of our paper :

for and $N \geqq 2 ; X=H^{2} B, \Gamma, G, H P, H B, H D, H C ; Y=H^{2} D, H^{2} L^{p}$. Here $H F=$ $H \cap F, H^{2} F=H^{2} \cap F ; 1 \leqq p<\infty ; \Gamma$ is the class of biharmonic Green's functions (Sario [9]) ; G is the class of harmonic Green's functions; and P is the class of positive functions. Of these relations, the following cases, in addition to the aforementioned partial relations on $H^{2} B$ and $H^{2} D$, have been previously known: $(X, Y)=\left(H P, H^{2} D\right)$, (Sario-Wang [11]) ; $(X, Y)=\left(H D, H^{2} D\right),\left(H B, H^{2} D\right)$, (SarioWang [13]) ; $(X, Y)=\left(G ; H^{2} D\right)$, (Nakai-Sario [8], Sario-Wang [12]) ; $(X, Y)=$ ($\Gamma, H^{2} D$), (Wang [14]). The rest are new: in addition to the aforementioned unsettled relation between $H^{2} B$ and $H^{2} D$, the cases $\left(X, H^{2} L^{p}\right)$, where $X=G, H P$, $H B, H D, H C, \Gamma$, and $H^{2} B$.

An essential aspect of our paper is that all the above inclusion relations, old and new, are obtained in a simple and unified manner. The N-cylinder, endowed with various simple metrics, is the only manifold we will need as a counterexample. This unification of approach is made possible by a systematic use of the asymptotic behavior of solutions of differential equations.

The proof of the above statement on the classes O_{X} and O_{Y} will be presented in Lemmas 1-25 and §5.

1. Consider the N-cylinder.

$$
M=\boldsymbol{R} \times S^{N-1}=\left\{|x|<\infty,\left|y_{2}\right| \leqq \pi, i=1, \cdots, N-1\right\}
$$

with the faces $y_{i}=\pi$ and $y_{i}=-\pi$ identified, for each i, by a parellel translation perpendicular to the x-axis. Endow M with the metric

$$
d s^{2}=\varphi^{2}(x) d x^{2}+\psi^{2}(x) d y_{i}^{2}+\sum_{i=2}^{N-1} d y_{i}^{2},
$$

where $\varphi, \phi \in C^{\infty}(-\infty, \infty)$. The proof of our theorem will consist, in essence, of two parts. First we show that for a suitable choice of φ, ψ,

$$
M \in O_{G}^{N} \cap O_{H F}^{N} \cap O_{T}^{N} \cap O_{H}^{N}{ }^{2}{ }_{B} \cap \tilde{O}_{H}^{N}{ }^{2} D \cap \tilde{O}_{H^{2} L^{p}}^{N},
$$

and then that for another choice of φ, ψ,

$$
M_{1} \in \tilde{O}_{G}^{N} \cap \tilde{O}_{H F}^{N} \cap \tilde{O}_{T}^{N} \cap \tilde{O}_{H 2 B}^{N} \cap O_{H L^{2}}^{V} \cap O_{H L^{2} L^{p}}^{N},
$$

where M_{1} is the manifold with the new metric, and $F=P, B, D, C$. This will establish our claims $O_{X}^{N} \cap \tilde{O}_{Y}^{N} \neq \phi$ and $\tilde{O}_{X}^{N} \cap O_{Y}^{N} \neq \phi$. The remaining relations $\tilde{O}_{X}^{\mathcal{N}} \cap \tilde{O}_{Y}^{V} \neq \phi$ and $O_{X}^{N} \cap O_{Y}^{v} \neq \phi$ will then follow from other quite trivial choices of φ and ψ.
2. To establish the first string of relations in $\S 1$, we choose $\varphi=\psi$ on $(-\infty, \infty), \varphi(x)=|x|^{-3}$ for $|x|>1$.

Lemma 1. A harmonic function $h(x, y), y=\left(y_{1}, \cdots, y_{N-1}\right)$, has a representation $h(x, y)=f_{0}(x)+\sum_{n=1}^{\infty} f_{n}(x) G_{n}(y)$, where $G_{n}(y)=\prod_{i=1}^{N-1} G_{n}^{i}\left(y_{i}\right)$ with $G_{n}^{i}\left(y_{i}\right)= \pm \sin n_{\imath} y_{i}$ or $\pm \cos n_{2} y_{i}$ for some integer n_{2}. The series converges absolutely and uniformly on compact sets.

In fact, by a standard application of the Peter-Weyl theorem, we obtain for any $x_{0}, h\left(x_{0}, y\right)=f_{0}\left(x_{0}\right)+\sum_{n=1}^{\infty} f_{n}\left(x_{0}\right) G_{n}(y)$. Here the G_{n} are invariant under varying x_{0} by virtue of continuity. The convergence follows by a standard argument using differentiation with respect to y.

Lemma 2. $f(x)$ is harmonic if and only if $f(x)=a x+b$.
For the proof, solve the equation $\Delta f=-g^{-1 / 2} f^{\prime \prime}=0$, where $\sqrt{g} d x d y$ is the volume element.

Lemma 3. $M \in O_{X}$ with $X=\Gamma, G, H P, H B, H D, H C$.
From the harmonic classification theory, we have the the inclusions $O_{G}<$ $O_{H P}<O_{H B}<O_{H D}=O_{H C}$. Moreover, $O_{G}<O_{\Gamma}$ (Wang [15]). Thus it suffices to show that $M \in O_{G}$. The harmonic measure ω of $\{x=c>0\}$ on $\{0<x<c\}$ is x / c in view of Lemma 2. As $c \rightarrow \infty, \omega \rightarrow 0$. Similarly, the harmonic measure of the boundary component at $x=-\infty$ vanishes. Therefore, $M \in O_{G}$.
3. Having discussed the spaces $O_{G}, O_{H F}, O_{\Gamma}$ of the first string of relations in §2, we turn to the spaces related to biharmonic functions. First we present some preparatory results.

Lemma 4. If $f(x) G(y)$ is harmonic, then f is strictly monotone.
Suppose the claim false. Then for $c_{1}<c_{2}$, say, $f \mid\left\{c_{1}<x<c_{2}\right\}$ is not strictly monotone, and f takes on its maximum or minimum on $\left\{c_{1}<x<c_{2}\right\}$ at some point of this open interval. So does, a fortiori, $f G$, in violation of the maximum principle for harmonic functions.

Lemma 5. If $f(x) G\left(y_{1}\right)$ is harmonic, $G\left(y_{1}\right)= \pm \sin n_{1} y_{1}$ or $\pm \cos n_{1} y_{1}$ with $n_{1} \neq 0$, then $f(x)=a e^{-n_{1} x}+b e^{n_{1} x}$.

We obtain successively

$$
\begin{gathered}
\Delta(f G)=(\Delta f) G+f \Delta G=0 \\
\Delta f=-g^{-1 / 2} f^{\prime \prime} \\
\Delta G=g^{-1 / 2}\left(\varphi^{-2} g^{1 / 2} n_{1}^{2} G\right)=n_{1}^{2} g^{-1 / 2} G \\
\Delta(f G)=\left(-g^{-1 / 2} f^{\prime \prime}+n_{1}^{2} g^{-1 / 2} f\right) G=0
\end{gathered}
$$

with the fundamental solutions $f_{1}(x)=e^{n_{1} x}$ and $f_{2}(x)=e^{-n_{1} x}$.
Lemma 6. If $f(x) G\left(y_{i}\right)$ is harmonic with $G\left(y_{i}\right)$ not constant, $i \neq 1$, then

$$
f(x)=a x(1+o(1))+b(1+o(1)), \quad a \neq 0
$$

either as $x \rightarrow \infty$ or else as $x \rightarrow-\infty$.
This time we have

$$
\Delta(f G)=\left(-\frac{1}{\sqrt{g}} f^{\prime \prime}+n_{\imath}^{2} f\right) G=0
$$

hence

$$
f^{\prime \prime}=n_{i}^{2} \sqrt{g} f
$$

We now make use of the following theorem of Haupt [4] and Hille [5]:
A necessary and sufficient condition for the equation

$$
f^{\prime \prime}(x)=p(x) f(x)
$$

on $(0, \infty)$ to have the fundamental solutions

$$
\begin{aligned}
& f_{1}(x)=x(1+o(1)), \\
& f_{2}(x)=1+o(1)
\end{aligned}
$$

as $x \rightarrow \infty$ is that

$$
x p(x) \in L^{1}(0, \infty) .
$$

Since $n_{2}^{2} \sqrt{g}=n_{2}^{2}|x|^{-3}$ for $|x|>1$, the condition of the theorem of Haupt and Hille is satisfied, and we conclude that

$$
f(x)=a_{1} x(1+o(1))+b_{1}(1+o(1)) \quad \text { as } \quad x \rightarrow \infty,
$$

or

$$
f(x)=a_{2} x(1+o(1))+b_{2}(1+o(1)) \quad \text { as } \quad x \rightarrow-\infty .
$$

By Lemma 3, $f G$ is not bounded and the same is true of f. Consequently $a_{1} \neq 0$ or $a_{2} \neq 0$.

Lemma 7. If $f(x) G\left(y_{2}, y_{3}, \cdots, y_{N-1}\right)$ is harmonic, with G not constant, then

$$
f(x)=a x(1+o(1))+b(1+o(1))
$$

either as $x \rightarrow \infty$ or else as $x \rightarrow-\infty$.
The proof is the same as for Lemma 6, the equation

$$
f^{\prime \prime}=\left(\sum_{i=2}^{N-1} n_{i}^{2}\right) \sqrt{g} f
$$

again satisfying the Haupt-Hille condition.
Lemma 8. If $f(x) G(y)$ is harmonic with $G(y)=\prod_{\imath=1}^{N-1} G^{2}\left(y_{\imath}\right), G^{1}\left(y_{1}\right)$ not constant, then

$$
f(x) \sim a e^{n_{1}|x|} \quad \text { with } \quad a \neq 0
$$

either as $x \rightarrow \infty$ or else as $x \rightarrow-\infty$.
The equation $\Delta(f G)=0$ gives

$$
f^{\prime \prime}=\sqrt{g}\left(n_{1}^{2} \varphi^{-2}+\sum_{\imath=2}^{N-1} n_{2}^{2}\right) f,
$$

which for $|x|>1$ is reduced by the transformation $f(x)=f\left(n_{1} x\right)$ to the form

$$
f^{\prime \prime}(x)=\left(1+c|x|^{-3}\right) f(x) .
$$

We now make use of the following theorem of Bellman [1]:
If $p(x) \rightarrow 0$ as $x \rightarrow \infty$ and if $\int_{0}^{\infty} p^{2} d x<\infty$, then the equation $f^{\prime \prime}=(1+p) f$ in $(0, \infty)$ has the fundamental solutions

$$
\begin{aligned}
& f_{1}(x) \sim \exp \left[-\left(x+\frac{1}{2} \int_{x_{0}}^{x} p(x) d x+o(1)\right)\right] \\
& f_{2}(x) \sim \exp \left[x+\frac{1}{2} \int_{x_{0}}^{x} p(x) d x+o(1)\right]
\end{aligned}
$$

In the present case, $p(x)=c|x|^{-3}$ satisfies the condition of Bellman's theorem, and we obtain $f=a_{1} f_{1}+b_{1} f_{2}$ for $x>1$ and $f=a_{2} f_{1}+b_{2} f_{2}$ for $x<-1$ with

$$
\begin{aligned}
& f_{1}(x) \sim \exp \left[-\left(|x|+\frac{1}{2} \int_{x_{0}}^{x} p d x+o(1)\right)\right], \\
& f_{2}(x) \sim \exp \left[|x|+\frac{1}{2} \int_{x_{0}}^{x} p d x+o(1)\right] .
\end{aligned}
$$

If $b_{1}=b_{2}=0$, then $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$, in violation of the maximum principle. Therefore either $b_{1} \neq 0$ or $b_{2} \neq 0$, and in view of the above transformation, we have the lemma.

Lemma 9. A solution of $\Delta q=1$ is $q_{0}(x)=\int_{0}^{x} \int_{0}^{t} \sqrt{g(s)} d s d t$. The general solution of $\Delta q=c$ is $c q_{0}(x)+h(x, y)$ where $h \in H$. Every q is unbounded.

The only part of the lemma that needs proving is the unboundedness of q. Suppose that there exists a bounded q. Then the transform $(T q)(x)=\int_{y} q(x, y) d y$ $=a q_{0}(x)+b x+c$ is bounded. Since $q_{0} \rightarrow-\infty$ as $|x| \rightarrow \infty$, whereas $b x$ changes its sign with x, we have a contradiction.

Lemma 10. A solution of $\Delta^{2} u(x)=0$ is $u_{0}(x)=\int_{0}^{x} \int_{-\infty}^{t} s \sqrt{g(s)} d s d t$. It satzsfies $u_{0}(x) \sim \pm a \log |x|$ for some constant a as $x \rightarrow \pm \infty$, respectively. The general solu. tion $c_{0} u_{0}(x)+c_{1} q_{0}(x)+c_{2} x+c_{3}$ is unbounded.

The proof is analogous to that of Lemma 9.
Lemma 11. $M \in \tilde{O}_{H^{2} D}$.
The function $u_{0}(x)$ of Lemma 10 is Dirichlet finite:

$$
\begin{aligned}
D\left(u_{0}\right) & =c \int_{-\infty}^{\infty}\left(u_{0}^{\prime}\right)^{2} \varphi^{-2} \varphi^{2} d x \\
& =c_{1}+c\left(\int_{-\infty}^{-1}+\int_{1}^{\infty}\right)|x|^{-2} d x<\infty .
\end{aligned}
$$

Lemma 12. $M \in \tilde{O}_{H^{2} L}$.
If fact,

$$
\left\|u_{0}\right\|_{p}^{p}=c \int_{-\infty}^{\infty}\left|u_{0}\right|^{p} \sqrt{g} d x<\infty,
$$

since $\left.\left|u_{0}(x)\right| \sim|a \log | x|\mid$ but $\sqrt{g} \sim| x\right|^{-3}$ as $x \rightarrow \pm \infty$.
Lemma 13. Let $v(x)$ satisfy the equation $\Delta\left(v(x) G\left(y_{1}\right)\right)=f(x) G\left(y_{1}\right) \in H$ with $f G \neq 0$ and $G\left(y_{2}\right)$ not constant. Then v is unbounded.

We have

$$
\left(-\frac{1}{\sqrt{g}} v^{\prime \prime}+\frac{n_{1}^{2}}{\sqrt{g}} v\right) G=f G,
$$

hence

$$
v^{\prime \prime}=n_{1}^{2} v-\sqrt{g} f .
$$

By Lemma 5, $f(x)=a e^{n_{1} x}+b e^{-n_{1} x}$ with $|a|+|b| \neq 0$. We may assume $a<0$; the proof for the other case is analogous.

Suppose v is bounded. For sufficiently large $x>0, n_{1}^{2} v-\sqrt{g} f$ grows at the rate of $x^{-3} e^{n_{1} x}$. We thus have

$$
v^{\prime}(x)=v^{\prime}\left(x_{0}\right)+\int_{x_{0}}^{x}\left(n_{1}^{2} v-a x^{-3} e^{n_{1} x}\right) d x,
$$

where we may choose $x_{0}>1$. It follows that

$$
v(x)=v\left(x_{0}\right)+v^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\int_{x_{0}}^{x} \int_{x_{0}}^{t}\left(n_{1}^{2} v(s)-a s^{-3} e^{n_{1} s}\right) d s d t
$$

which is clearly not bounded.
Lemma 14. Let $v(x)$ satisfy the exuation $\Delta\left(v(x) G\left(y_{i}\right)\right)=f(x) G\left(y_{i}\right) \in H$ with $f G \neq 0, i>1$, and $G\left(y_{2}\right)$ not constant. Then v is unbounded.

The proof is analogous to that of Lemma 13, with

$$
v^{\prime \prime}=n_{2}^{2} \sqrt{g} v-\sqrt{g} f .
$$

In applying Lemma 6 , we may assume that $f(x)=a x(1+o(1))+b(1+o(1))$ as $x \rightarrow-\infty$ with $a<0$. If v is bounded, we have for $x<-1$,

$$
\begin{aligned}
v^{\prime}(x) & =\int_{-\infty}^{x} n_{1}^{2}|t|^{-3} v(t) d t-\int_{-\infty}^{x}|t|^{-3} f d t, \\
v\left(x_{1}\right)-v\left(x_{2}\right) & =\int_{x_{2}}^{x_{1}} \int_{-\infty}^{x} n_{1}^{2}|t|^{-3} v(t) d t d x-\int_{x_{2}}^{x_{1}} \int_{-\infty}^{x}|t|^{-3} f d t d x
\end{aligned}
$$

for $x_{2}<x<x_{1}<-1$. As $x_{2} \rightarrow-\infty$, the first integral converges but the second does not. Thus $v\left(x_{2}\right)$ cannot be bounded as $x_{2} \rightarrow-\infty$, in violation of the assumption.

Lemma 15. Let $v(x)$ satisfy $\Delta(v(x) G(y))=f(x) G(y) \in H$, with $f(x) G(y)$ not constant. Then $v(x)$ is not bounded.

We may assume $n_{1} \neq 0$ and at least one $n_{i} \neq 0, i>1$. We now have

$$
v^{\prime \prime}=\left(n_{1}^{2}+\sum_{\imath=2}^{N-1} n_{2}^{2} \sqrt{g}\right) v-\sqrt{g} f .
$$

Since $f G$ is harmonic, $f \sim a e^{n_{1}|x|}$ for either $x \rightarrow \infty$ or else $x \rightarrow-\infty$. We may assume the former. Clearly $|\sqrt{g} f| \rightarrow \infty$ as $x \rightarrow \infty$. If v is bounded, then $\sqrt{g} f$ will dominate the right-hand side of the equation. On integrating as in the proof of Lemmas 13 and 14, we arrive at the contradiction that v is both bounded and unbounded.

Lemma 16. $M \in O_{H^{2} B}$.
Suppose there exists a $u(x, y) \in H^{2} B$. Write $u(x, y)=v_{0}(x)+\sum_{n=1}^{\infty} v_{n}(x) G_{n}(y)$ with $G_{n} \neq G_{m}$ for $n \neq m$. Either $v_{0}(x)$ or some $v_{n} G_{n}$ is not harmonic. Suppose this is true of $v_{n_{0}} G_{n_{0}}$. Then the thransform

$$
(T u)(x)=\int_{y} u G_{n_{0}} d y=c v_{n_{0}}(x)
$$

is bounded, in violation of Lemma 15.
With Lemma 16, the proof of the first string of inclusion relations in $\S 1$ is complete.
4. We turn to the second string of relations in § 1. We now choose $\varphi \equiv 1$ and ψ a positive symmetric C^{∞} function with $\psi(x)=\exp e^{\left|x_{1}\right|}$ for $|x|>1$, and denote
the resulting manifold by M_{1}.
The same proof as for Lemma 1 shows that every harmonic function h on M_{1} has a representation

$$
h(x, y)=f_{0}(x)+\sum_{n=1}^{\infty} f_{n}(x) G_{n}(y) .
$$

Lemma 17. $f(x)$ is harmonic if and only if $f(x)=a \int_{0}^{x} \psi^{-1} d x+b$.
This is seen by solving the harmonic equation $\Delta f(x)=-\psi^{-1}\left(\psi f^{\prime}\right)^{\prime}=0$.
Lemma 18. $M_{1} \in \tilde{O}_{G} \cap \tilde{O}_{H X}$, where $X=P, B, D, C$.
The function $f(x)=\int_{0}^{x} \psi^{-1} d x$ is bounded and its Dirichlet integral is

$$
D(f)=\int_{M_{1}}\left(f^{\prime}\right)^{2} \psi d x d y=c \int_{-\infty}^{\infty} \psi^{-1} d x<\infty .
$$

Lemma 19. The function

$$
q_{0}(x)=-\int_{0}^{x} \psi^{-1}(t) \int_{0}^{t} \psi(s) d s d t
$$

is quasiharmonic, that is, $\Delta q_{0}=1$. Every quasiharmonic function has the form $q=q_{0}+h$ with $h \in H$.

This is verified by direct computation of Δq_{0}.
Lemma 20. $M_{1} \in \tilde{O}_{H^{2} B}$.
In fact, $q_{0} \in H^{2} B$, since

$$
\left|\psi^{-1}(t) \int_{0}^{t} \psi(s) d s\right| \sim e^{-|t|} \quad \text { as } \quad|t| \rightarrow \infty
$$

For verification, first apply l'Hospital's rule to the left-hand side to see that it goes to 0 as $|t| \rightarrow \infty$, and then show, again by l'Hospital's rule, that $\left|e^{|t|} \psi^{-1}(t) \int_{0}^{t} \psi(s) d s\right| \rightarrow 1$ as $|t| \rightarrow \infty$.

Lemma 21. For $h(x) \in H$, the function

$$
u_{0}(x)=\int_{0}^{x} \psi^{-1}(t) \int_{0}^{t} \psi(s) h(s) d s d t
$$

is biharmonic. Every biharmonic function of the form $u(x)$ can be written $u(x)$ $=u_{0}(x)+c$.

The proof is again by direct computation.
Lemma 22. Every nonharmonic biharmomic function of the form $u(x)$ has infinte Dirichlet and L^{p} norms.

An estimate similar to that in the proof of Lemma 20 shows that $\left|u^{\prime}(t)\right| \sim e^{-|t|}$ either as $t \rightarrow \infty$ or else as $t \rightarrow-\infty$. The Dirichlet integral is

$$
D(u)=c \int_{-\infty}^{\infty}\left(u^{\prime}\right)^{2} \psi d x=\infty .
$$

Since $u^{\prime}(t)$ does not decrease faster than $e^{-|t|}$ at least in one direction, the same is true of $u(t)$. Therefore,

$$
\|u\|_{p}^{p}=c \int_{-\infty}^{\infty}|u|^{p} \psi d x=\infty
$$

Lemma 23. If $v(x) G(y)$ is a nonharmonic biharmonic function, with $G(y)$ not constant, then $v \notin L^{p}$.

Suppose $v \in L^{p}$ for some $1 \leqq p<\infty$. Then $|v(x)|^{p} \psi(x)$ is integrable and decreases to 0 . Let $\triangle(v G)=f G$. Since $v G$ is nonharmonic biharmonic, f does not vanish in the neighborhood of at least one component of the ideal boundary, say $x=\infty$. As in Lemma $15, \Delta(v G)=f G$ gives

$$
\left(\psi v^{\prime}\right)^{\prime}=\left(n_{1}^{2} \psi^{-1}+\sum_{i=2}^{N-1} n_{i}^{2} \psi\right) v-\psi f .
$$

For large $x>0$, we may assume $f(x)<\varepsilon<0$, by changing the sign of G if necessary. Since $|v| \rightarrow 0$ rapidly, the dominating term on the right-hand side is $-\psi f$, and we obtain

$$
\left(\psi v^{\prime}\right)^{\prime} \geqq c \psi>0
$$

for all sufficiently large $x>0$. On integrating from a sufficiently large x_{0} to a larger x, we obtain

$$
\phi v^{\prime} \geqq c \int_{x_{0}}^{x} \psi d x
$$

An estimation exactly as that in the proof of Lemma 20 yields

$$
v^{\prime} \geqq c e^{-x} .
$$

Thus v can not be decreasing faster than $c e^{-x}$. This contradicts $|v|^{p} \psi(x) \rightarrow 0$ and completes the proof of the lemma.

Lemma 24. The Diruchlet and L^{p} norms of the function $v G$ of Lemma 23 are infinite.

By Lemma 23, $v \notin L^{p}$. Therefore

$$
\|v G\|_{p}^{p}=c \int_{-\infty}^{\infty}|v|^{p} \psi d x=\infty .
$$

By the proof of Lemma $23,\left|v^{\prime}\right| \geqq c e^{-|x|}$ either as $x \rightarrow \infty$ or else as $x \rightarrow-\infty$. Therefore,

$$
\begin{aligned}
D(v G) & =\int_{M_{1}}\left(v^{\prime} G\right)^{2} \psi d x d y+\int_{M_{1}} \sum_{v=1}^{N-1}\left(v \frac{\partial G}{\partial y^{2}}\right)^{2} g^{i i} d x d y \\
& \geqq c \int_{-\infty}^{\infty}\left(v^{\prime}\right)^{2} \psi d x=\infty .
\end{aligned}
$$

LEMMA 25. $\quad M_{1} \in O_{H^{2} L}{ }^{p} \cap O_{H^{2} D}$.
Let $u(x, y)$ be a nonharmonic biharmonic function. Write $u(x, y)=$ $v_{0}(x)+\sum_{n=1}^{\infty} v_{n}(x) G_{n}(y)$. By Lemmas 22 and 24 , neither v_{0} nor any $v_{n} G_{n}$ belongs to $D \cup L^{p}$ if it is nonharmonic. By the Dirichlet orthogonality of v_{0} and the $v_{n} G_{n}$, we conclude that $v_{0}+\sum_{n=1}^{\infty} v_{n} G_{n}$ is Dirichlet infinite.

Suppose $v_{0}+\sum_{n=1}^{\infty} v_{n} G_{n} \in L^{p}$. Choose a nonharmonic term $v_{n_{0}} G_{n_{0}}$. Since $v_{n_{0}} G_{n_{0}}$ $\notin L^{p}$, there exists an L^{q} function $f G_{n_{0}}$ such that $\left(v_{n_{0}} G_{n_{0}}, f G_{n_{0}}\right)=\int_{M_{1}} v_{n_{0}} G_{n_{0}} f G_{n_{0}} d V$ $=\infty$. On the other hand, $\left(v_{n_{0}} G_{n_{0}}, f G_{n_{0}}\right)=\left(v_{0}+\sum_{n=1}^{\infty} v_{n} G_{n}, f G_{n_{0}}\right)<\infty$, a contradiction.

With Lemma 25 , the proof of the second string of relations in $\S 1$ is complete.
5. It remains to show that $O_{X} \cap O_{Y} \neq \phi$ and $\tilde{O}_{X} \cap \tilde{O}_{Y} \neq \phi$. The metrics we shall choose will result in simple computations which also are completely analogous to those in $\S \S 2-4$, and we can be brief.

To show that $\tilde{O}_{X} \cap \tilde{O}_{Y} \neq \phi$, we choose $\psi=1$ and $\varphi(x)=|x|^{-4}$ for $|x|>1$. Then the solutions $\Delta(f(x))=0$ and $\Delta(q(x))=1$ turn out to belong to the desired function classes X, Y.

To prove $O_{X} \cap O_{Y} \neq \phi$, let $\varphi=\phi=1$. It is easy to explicitly solve the equation $\Delta^{2} u=0$ in all cases and to show that the solutions do not belong to X or Y.
6. We have completed, by Lemmas $1-25$, and $\S 5$, the proof of the following result:

Theorem. The classification scheme

holds for $X=G, H P, H B, H D, H C, \Gamma, H^{2} B ; Y=H^{2} D, H^{2} L^{p}$.
The author is indebted to Professors L. Sario and C. Wang for valued advice.

References

[1] R. Bellman, On the asymptotic behavior of solutions of $u^{\prime \prime}+(1+f(t)) u=0$, Ann. Mat. Pura Appl., 31 (1950), 83-91.
[2] D. Hada, L. Sario and C. Wang, Dirıchlet finite biharmonic functions on the Poincaré N-ball, J. Reine Angew. Math. (to appear).
[3] D. Hada, L. Sario and C. Wang, Bounded biharmonic functions on the Poincaré N-ball, Kōdaı Math. Sem. Rep. (to appear).
[4] O. Haupt, Über des asymptotische Verhalten der Lösungen gewisser linearer gewöhnlicher Differentialgleichungen, Math. Z., 48 (1913), 289-292.
[5] E. Hille, Behavior of solutions of linear second order differential equations, Ark. Mat., 2 (1952), 25-41.
[6] M. Nakai and L. Sario, Existence of Dirıchlet finite biharmonic functions, Ann. Acad. Sci. Fenn. A. I., 532 (1973), 1-33.
[7] M. Nakai and L. Sario, Existence of bounded biharmonic functions, J. Reine Angew. Math., 259 (1973), 147-156.
[8] M. Nakai and L. Sario, Biharmonic functions on Riemannian manifolds, Continuum Mechanics and Related Problems in Analysis, Nauka, Moscow, 1972, 329-335.
[9] L. SARIO, A criterion for the existence of biharmonic Green's functions, (to appear).
[10] L. Sario and C. Wang, Parabolicity and existence of bounded biharmonic functions, Comm. Math. Helv., 47 (1972), 341-347.
[11] L. Sario and C. Wang, Positive harmonic functions and biharmonic degeneracy, Bull. Amer. Math. Soc., 79 (1973), 182-187.
[12] L. Sario and C. Wang, Parabolicity and existence of Dirichlet finite biharmonic functions, J. London Math. Soc. (to appear).
[13] L. Sario and C. Wang, Harmonic and biharmonic degeneracy, Kōdai Math. Sem. Rep., 25 (1973), 392-396.
[14] C. Wang, Biharmonic Green's functions and biharmonic degeneracy, (to appear).
[15] C. WANG, Biharmonic Green's functions and quasiharmonic degeneracy, (to appear).

University of California, Los Angeles
North Carolina State University, Raleigh

[^0]: Received April 10, 1975.
 This work was sponsored by the U.S. Army Research Office, Grant DA-ARO-31-124-73-G39, University of California, Los Angeles.

 MOS Classification : 31B30.

