S. KOBAYASHI KODAI MATH. SEM. REP. 27 (1976), 458-463

ON H_p CLASSIFICATION OF PLANE DOMAINS

By Shōji Kobayashi

1. Introduction.

Throughout the present paper, it will always be understood that 0 , unless the contrary is explicitly stated. Let <math>W be an open Riemann surface. Let A(W) and M(W) denote the families of single-valued analytic and meromorphic functions on W, respectively. We shall consider the following classes of functions:

- (i) the Hardy classes H_p(W)={f∈A(W): |f|^p admits a harmonic majorant on W};
- (ii) $AB(W) = \{f \in A(W) : f \text{ is bounded on } W\};$
- (iii) $MB^*(W) = \{f \in M(W) : \log^+ |f| \text{ admits a superharmonic majorant on } W\}$; (iv) $AB^*(W) = A(W) \cap MB^*(W)$.

Let O_p , O_{AB} , O_{MB^*} , O_{AB^*} denote the classes of W such that $H_p(W)$, AB(W), $MB^*(W)$, $AB^*(W)$, respectively, reduces to the constants. $W \in O_G$ means that W is parabolic. Finally we set $O_p^- = \bigcup \{O_q : 0 < q < p\}$ and $O_p^+ = \bigcap \{O_q : p < q < \infty\}$. Let S denote the Riemann sphere and Cap (E) the logarithmic capacity of the set E.

Heins [1] showed the following classification scheme:

$$(1) O_{G} < O_{MB^{*}} < O_{AB^{*}} < \bigcap_{q > 0} O_{q} < O_{p}^{-} < O_{p} < O_{p}^{+} < \bigcup_{q < \infty} O_{q} < O_{AB},$$

where < means a strict inclusion relation.

Suppose from now on that W is restricted to be a plane domain, and we denote by the same symbols the corresponding classes of plane domains. Then it is known that $O_G = O_{MB^*} = O_{AB^*}$ ([8, p. 280]) and $O_G < O_1$ ([1, p. 50]). But it is left unsolved to determine what parts of the classification scheme corresponding to (1) hold or not for plane domains. Recently Hejhal [3], [4] obtained some results about this problem, that is, showed the following classification scheme for plane domains:

$$(2) \qquad O_{G} \leq O_{1}^{-} < O_{1} \leq O_{3/2}^{-} < O_{3/2} \leq O_{2}^{-} < O_{2} \leq O_{5/2}^{-} < O_{5/2} \leq O_{3}^{-} < O_{3} \cdots < \bigcup_{q < \infty} O_{q} < O_{AB}.$$

We shall treat a decomposition of H_p functions in Section 2, and give some improvements of Hejhal's results (2) in Section 3. The idea of this paper was

Received March 17, 1975.

H_p CLASSIFICATION

incited by that of Hejhal's [4].

2. A decomposition of H_p functions.

In this section we shall prove

THEOREM 1. Let D_j (j=1,2) be subdomains of S such that $D_1^c \cap D_2^c = \emptyset$. Suppose that $f \in H_p(D_1 \cap D_2)$, then f can be represented in the form

(3)
$$f(z) = f_1(z) + f_2(z)$$
 $(z \in D_1 \cap D_2)$

where $f_j \in H_p(D_j)$ for j=1, 2.

We need a lemma which was first proved by Parreau [6, p. 182]. Other proofs can be found in [4, pp. 7-9] or [9, p. 67].

LEMMA 1. Let E be a compact subset of S. If $\operatorname{Cap}(E)=0$, then E is removable for every H_p function, i.e. $H_p(V-E)=H_p(V)$ for any subdomain V of S which contains E.

Proof of Theorem 1. By Lemma 1, we may assume $\operatorname{Cap}(D_j^c) > 0$ for j=1, 2. Let $\{D_j^{(\nu)}\}_{\nu=0}^{\infty}$ be a regular exaustion of D_j . Without loss of generality, we may assume that $(D_1^{(0)})^c \cap (D_2^{(0)})^c = \emptyset$. Define

(4)
$$f_j(z) = \lim_{\nu \to \infty} \frac{1}{2\pi \imath} \int_{\partial D_j^{(\nu)}} \frac{f(\zeta)}{\zeta - z} d\zeta \qquad (z \in D_j),$$

then (3) is an easy consequence of Cauchy's integral formula. Therefore $f_j \in H_p(D_j)$ is all we must prove.

Let $\gamma = \partial D_1^{(0)}$ and χ be the least harmonic majorant of $|f|^p$ in $D_1 \cap D_2$. Since f_2 is bounded on $(D_1^{(0)})^c$, we see

(5)
$$|f_{1}(z)|^{p} = |f(z) - f_{2}(z)|^{p}$$
$$\leq 2^{p}(|f(z)|^{p} + |f_{2}(z)|^{p})$$
$$\leq 2^{p}(\chi(z) + M) \qquad (z \in D_{1} \cap (D_{1}^{(0)})^{c})$$

for a large *M*. Let $t \in D_1^{(0)} \cap D_2^{(0)}$ be fixed and g(z; t; D) denote Green's function for a domain *D* with pole at *t*. Since $g(z; t; D_1^{(\nu)} \cap D_2^{(\nu)})$ and $g(z; t; D_1^{(\nu)})$ converge uniformly on γ to $g(z; t; D_1 \cap D_2)$ and $g(z; t; D_1)$, respectively, it is easily shown that

(6)
$$\min_{z \in \gamma} \frac{g(z; t; D_1^{(\nu)} \cap D_2^{(\nu)})}{g(z; t; D_1^{(\nu)})} \longrightarrow \min_{z \in \gamma} \frac{g(z; t; D_1 \cap D_2)}{g(z; t; D_1)} > 0$$

as $\nu \to \infty$. Here note that we have assumed Cap $(D_i^{\epsilon}) > 0$. Using (6) we can choose $\epsilon > 0$ independently on ν so that

(7)
$$g(z;t;D_1^{(\nu)} \cap D_2^{(\nu)}) - \varepsilon g(z;t;D_1^{(\nu)}) > 0$$

for $z \in \gamma$, and hence for $z \in D_1^{(\nu)} \cap (D_1^{(0)})^c$ by maximum principle. Therefore we see

(8)
$$\frac{\partial g}{\partial n_z}(z;t;D_1^{(\nu)} \cap D_2^{(\nu)}) \ge \varepsilon \frac{\partial g}{\partial n_z}(z;t;D_1^{(\nu)})$$

for $z \in \partial D_1^{(\nu)}$, where the derivative is taken along the inner normal. Combining (5) and (8), we have

$$\begin{split} \frac{1}{2\pi} \int_{\partial D_{j}^{(\nu)}} |f_{1}(z)|^{p} \frac{\partial g}{\partial n_{z}}(z ; t ; D_{1}^{(\nu)})|dz| \\ & \leq \frac{1}{2\pi} \int_{\partial D_{j}^{(\nu)}} 2^{p} (\mathcal{X}(z) + M) \frac{1}{\varepsilon} \frac{\partial g}{\partial n_{z}}(z ; t ; D_{1}^{(\nu)} \cap D_{2}^{(\nu)})|dz| \\ & \leq \frac{2^{p}}{\varepsilon} (\mathcal{X}(t) + M) , \end{split}$$

and hence $f_1 \in H_p(D_1)$. By symmetry we have $f_2 \in H_p(D_2)$.

REMARK 1. Theorem 1 was proved by Rudin [7, pp. 56-57] in case the boundary ∂D_j of D_j is an analytic Jordan curve for j=1, 2.

REMARK 2. By using Theorem 1, we can considerably shorten the proofs of Theorem 5, \cdots , 8 of Hejhal's paper [4, pp. 9-13].

3. H_p classification.

In this section we shall prove

THEOREM 2. Let k be any integer not less than 2. Then

(9)
$$O_{k/2} < O_p$$

for any real number p with p > k/2.

Proof. We may assume that k/2 . Let p be fixed with <math>k/2 , then

(10)
$$\pi/k \leq \pi/p < 2\pi/k$$

(11)
$$\pi/2 \leq k\pi/2p < \pi.$$

In order to prove the theorem, we must construct a plane domain W for which $H_p(W)$ reduces to the constants but $H_{k/2}(W)$ contains non-constant functions. Our construction is similar to that of Hejhal's (cf. Example 1 and 2 of [4, pp. 19-20]).

Let A be a Cantor set constructed on the arc $\{z : |z|=1 \text{ and } |\arg z| \leq \pi/4\}$. We can construct A so that (i) A is a compact totally disconnected set of linear measure 0, (ii) Cap(A)>0, (iii) A is symmetric with respect to the real axis and (iv) $1 \notin A$ (see [5, p. 150]). Let E_0 be the union of the images under all the branches of the multi-valued function $h(z)=(\log z)^{-2/k}$, and define $E_1=$

460

H_p CLASSIFICATION

461

 $E_0 \cup \{0\}$. Then it is easily shown that E_1 is a compact totally disconnected set of linear measure 0 which lies on the k-star $K_1 = \{z : \arg z = \pi/k + 2m\pi/k, m=0, 1, \dots, k-1\}$. Let $E_2 = e^{\pi i/p} E_1$, that is, E_2 be the set obtained by rotating E_1 through the angle π/p . Then E_2 is a compact totally disconnected set of linear measure 0 which lies on the k-star $K_2 = \{z : \arg z = \pi/k + \pi/p + 2m\pi/k, m=0, 1, \dots, k-1\}$. Finally we set $E = E_1 \cup E_2$ and W = S - E.

Hejhal [4, pp. 15-18] proved the following lemma.

LEMMA 2. Let c_1, \dots, c_n be positive numbers with $c_1 + \dots + c_n = 2$, $n \ge 2$. Suppose that E is a compact totally disconnected set of linear measure 0 which lies on an n-star formed by n rays emanating from the origin to ∞ , with successive angles $\pi c_1, \dots, \pi c_n$. Let $c_0 = \max\{c_j: j=1, \dots, n\}$ and $1 \le p < \infty$. Suppose that $f \in H_p(S-E)$, then

$$f(z) = \sum_{j=0}^{\infty} a_{\nu} z^{-\nu} \qquad (0 < |z| \leq \infty),$$

with $a_{\nu}=0$ for all $\nu \geq 1/pc_0$.

Using (10) we easily see that the maximum angle of the 2k angles formed by the 2k-star $K_1 \cup K_2$ on which E lies is π/p , i. e. $c_0 = 1/p$, where c_0 is as in Lemma 2. Applying Lemma 2, it turns out that $H_p(W)$ contains no non-constant functions, i.e.

$$(12) W \in O_p$$

Next we shall prove that $f(z)=z^{-1}$ belongs to $H_{k/2}(W)$. For this we must show that the subharmonic function $w(z)=|z|^{-k/2}$ admits a harmonic majorant in W. First we deal with the case where k is even and next the other.

Let k=2m, $m=1, 2, \dots$, and we consider the following functions analytic in W:

$$f_{I}(z) = \exp(z^{-m}),$$

$$f_{2}(z) = \exp(-z^{-m}),$$

$$f_{3}(z) = \exp(e^{m\pi i/p}z^{-m}) \equiv f_{1}(e^{-\pi i/p}z),$$

$$f_{4}(z) = \exp(-e^{m\pi i/p}z^{-m}) \equiv f_{2}(e^{-\pi i/p}z).$$

We can easily check that A and the image $f_j(W)$ of W under f_j are disjoint, in other words, f_j omits in W the set A of positive capacity, for j=1, 2, 3, 4. Then, by Nevanlina-Frostman theorem (see [2, p. 150] or [4, p. 18]), we see that $f_j \in AB^*(W)$, i.e. $\log^+|f_j|$ admits a harmonic majorant in W. Let χ_j be the least harmonic majorant of $\log^+|f_j|$ in W for j=1, 2, 3, 4. Then we easily see

(13)
$$|\operatorname{Re} z^{-m}| \leq \chi_1(z) + \chi_2(z),$$

(14)
$$|\operatorname{Re} e^{i\theta} z^{-m}| \leq \chi_{\mathfrak{z}}(z) + \chi_{\mathfrak{z}}(z),$$

where $\theta = m\pi/p$, since $\log^+|e^a| + \log^+|e^{-a}| = |\operatorname{Re} a|$ for any complex number a.

SHŌJI KOBAYASHI

For simplicity, we write $z^{-m} = u + iv$. Then (14) is

(15)
$$|u\cos\theta - v\sin\theta| \leq \chi_3 + \chi_4.$$

Since $\sin \theta > 0$ by (11), we can obtain from (13) and (15)

(16)
$$|v| \leq \frac{1}{\sin \theta} (|u| + \chi_3 + \chi_4) \leq \frac{1}{\sin \theta} \sum_{j=1}^4 \chi_j.$$

Combining (13) and (16), we see

(17)
$$w(z) = |z|^{-m} \le |u| + |v| \le \chi_1 + \chi_2 + \frac{1}{\sin \theta} \sum_{j=1}^4 \chi_j,$$

and hence

(18)
$$f(z) = z^{-1} \in H_{k/2}(W) .$$

Next we assume that k is odd. Let R be the 2-sheeted Riemann surface associated with the function z^2 , and R_0 be the Riemann surface obtained by removing from R all the points whose projections lies on E. We consider the following functions single-valued and analytic on R_0 :

$$f_{1}(z) = \exp(z^{-k/2}),$$

$$f_{2}(z) = \exp(-z^{-k/2}),$$

$$f_{3}(z) = \exp(e^{k\pi i/2p}z^{-k/2}),$$

$$f_{4}(z) = \exp(-e^{k\pi i/2p}z^{-k/2})$$

It is easy to see that f_j omits the points of A on R_0 , and hence $f_j \in AB^*(R_0)$, for j=1, 2, 3, 4. Let χ_j be the least harmonic majorant of $\log^+|f_j|$ on R_0 . Then, in the same manner as (13) and (14), we get

(19)
$$|\operatorname{Re} z^{-k/2}| \leq \chi_1(z) + \chi_2(z)$$

(20)
$$|\operatorname{Re} e^{i\theta} z^{-k/2}| \leq \chi_3(z) + \chi_4(z)$$

for $z \in R_0$, where $\theta = k\pi/2p$. But the both sides of (19) and (20) are defined and single-valued for $z \in W - \{\infty\}$, and the right sides are defined and single-valued for $z \in W - \{\infty\}$, and the right sides are harmonic in $W - \{\infty\}$, since $z^{-k/2} = -z^{*-k/2}$, where, for $z \in R_0$, z^* represents the other point on R_0 which is projected on the same point as z. Therefore we can show that $w(z) = |z|^{-k/2}$ admits a harmonic majorant in $W - \{\infty\}$, by the same way as we obtained (17) from (13) and (14). Hence

(21)
$$f(z) = z^{-1} \in H_{k/2}(W - \{\infty\}) = H_{k/2}(W),$$

since any isolated point is removable for every Hardy class (see Lemma 1).

By (18) and (21) we see $W \in O_{k/2}$. Combining this with (12), we obtain $W \in O_p - O_{k/2}$, and hence $O_{k/2} < O_p$ as desired.

462

4. Concluding remarks.

Combining Theorem 2 and Hejhal's results (2), we have got the following H_p classification scheme for plane domains:

(22)
$$O_{G} \leq O_{1}^{-} < O_{1} < O_{p_{2}} \leq O_{3/2}^{-} < O_{p_{3}} \leq O_{2}^{-} < O_{2} < O_{p_{4}}$$
$$\leq O_{5/2}^{-} < O_{5/2} < O_{p_{5}} \cdots < \bigcup_{q < \infty} O_{q} < O_{AB} ,$$

where p_k is any real number with $k/2 < p_k < (k+1)/2$ for $k=2, 3, \cdots$.

References

- HEINS, M., Hardy classes on Rieman surfaces, Lecture Notes in Math., Springer-Verlag 98 (1969).
- [2] HEINS, M., Lindelöfian maps, Ann. of Math. 62 (1955), 418-446.
- [3] HEJHAL, D.A., Classification theory for Hardy classes of analytic functions, Bull. Amer. Math. Soc. 77 (1971), 767-771.
- [4] HEJHAL, D.A., Classification theory for Hardy classes of analytic functions, Ann. Acad. Sci. Fenn. A.I. 566 (1973), 1-28.
- [5] NEVANLINNA, R., Analytic functions, Springer-Verlag (1970).
- [6] PARREAU, M., Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. de Fourier 3 (1952), 103-197.
- [7] RUDIN, W., Analytic functions of class H_p , Trans. Amer. Math. Soc. 78 (1955), 46-66.
- [8] SARIO, L. AND NAKAI, M., Classification theory of Riemann Surfaces, Springer-Verlag (1970).
- [9] YAMASHITA, S., On some Families of analytic functions on Riemann surfaces, Nagoya Math. J. 31 (1968), 57-68.

Department of Mathematics Tokyo Institute of Technology