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ON Hp CLASSIFICATION OF PLANE DOMAINS

BY SHOJI KOBAYASHI

1. Introduction.

Throughout the present paper, it will always be understood that 0<£<oo,
unless the contrary is explicitly stated. Let W be an open Riemann surface. Let
A(W) and M(W) denote the families of single-valued analytic and meromorphic
functions on W, respectively. We shall consider the following classes of func-
tions :

(i) the Hardy classes Hp(W)={f^Λ(W): \f\p admits a harmonic majorant
on W}

(ii) AB(W)={f<=A(W): / is bounded on W}
(iii) MB*(W)= {/eM(W): log+ |/ | admits a superharmonic majorant on W}
(iv) AB*(W)=A(W)rλMB*(W).

Let Op, OABj OMB*, OAB* denote the classes of W such that HP(W), AB(W),
MB*(W), AB*(W), respectively, reduces to the constants. W^OG means that
W is parabolic. Finally we set O~=yJ{Oq: Q<q<p} and O+=r\{Oq: p<g<oo}.
Let S denote the Riemann sphere and Cap (E) the logarithmic capacity of the
set E.

Heins [1] showed the following classification scheme:

(l) oG<oMB*<oAB*< r\ oq<o-<op<o;< u oq<oAB,

where < means a strict inclusion relation.
Suppose from now on that W is restricted to be a plane domain, and we

denote by the same symbols the corresponding classes of plane domains. Then
it is known that OG=OMB*=OAB* ([8, p. 280]) and OG<O1 ([1, p. 50]). But it is
left unsolved to determine what parts of the classification scheme corresponding
to (1) hold or not for plane domains. Recently Hejhal [3], [4] obtained some
results about this problem, that is, showed the following classification scheme
for plane domains:

(2) O σ ^Of<O 1 ^Oif 8 <O, / a ^Oi-<O 2 ^O^<O B / a ^θ8-<Os - < U Oq<OAB .
g<«,

We shall treat a decomposition of Hp functions in Section 2, and give some
improvements of HejhaΓs results (2) in Section 3. The idea of this paper was
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incited by that of HejhaΓs [4].

2. A decomposition of Hp functions.

In this section we shall prove

THEOREM 1. Let D3 ( ; = 1 , 2) be sub domains of S such that Dfr\Dc

2=0. Sup-
pose that f^Hp{D1r\D2)1 then f can be represented in the form

(3) /(*)=Λ(*)+/»(*) (z^DlΓ\D2)

where f^H^D,) for ; = 1 , 2.

We need a lemma which was first proved by Parreau [6, p. 182]. Other
proofs can be found in [4, pp. 7-9] or [9, p. 67].

LEMMA 1. Let E be a compact subset of S. If Cap(£)=0, then E is
removable for every Hp function, i.e. HP(V—E)=HP(V) for any subdomain V
of S which contains E.

Proof of Theorem 1. By Lemma 1, we may assume Cap(/}$ )>0 for 7=1, 2.
Let {D{P)VZQ be a regular exaustion of Ό3. Without loss of generality, we may
assume that (DlO))cr\(D(

2

O))c=0. Define

(4) / , « = lim ̂ l^Jjβ- dζ (zcED,),

then (3) is an easy consequence of Cauchy's integral formula. Therefore / , e
Hp(Dj) is all we must prove.

Let γ=dD[o:> and X be the least harmonic majorant of \f\p in D1Γ\D2. Since
f2 is bounded on (£>ίO))c, we see

(5) IΛU)IP=I/W-ΛWIP

for a large M. Let t<Ξ D[0)r\D(

2

0) be fixed and g(z; t; D) denote Green's function
for a domain D with pole at t. Since g{z\t\ D[v)r\D^) and g(z; t; D[v)) con-
verge uniformly on γ to g(z;t; . D J Π ^ E ) and g(z t D J , respectively, it is
easily shown that

g(z t(6) min siz t D^ΓΛ

as v—>co. Here note that we have assumed Caρ(Z)ί)>0. Using (6) we can
choose ε>0 independently on v so that

(7) g(z;t; Dl
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for z^γ, and hence for z^D[v)rλ(D[0))c by maximum principle. Therefore we see

(8) -j£-(z t D[^rλDn^e-lξ-(z t A(v))

for z^dD[v\ where the derivative is taken along the inner normal. Combining
(5) and (8), we have

; t. Dy

and hence f^Hp{D^. By symmetry we have f2^Hp(D2).

REMARK 1. Theorem 1 was proved by Rudin [7, pp. 56-57] in case the
boundary dΌ3 of D} is an analytic Jordan curve for 7=1, 2.

REMARK 2. By using Theorem 1, we can considerably shorten the proofs
of Theorem 5, — , 8 of HejhaΓs paper [4, pp. 9-13].

3. Hp classification.

In this section we shall prove

THEOREM 2. Let k be any integer not less than 2. Then

(9) Ok/2<OP

for any real number p with p>k/2.

Proof. We may assume that k/2<p^k. Let p be fixed with k/2<p<k,
then

(10)

(11) π/2^kπ/2p<π.

In order to prove the theorem, we must construct a plane domain W for
which HP(W) reduces to the constants but Hk/2(W) contains non-constant func-
tions. Our construction is similar to that of HejhaΓs (cf. Example 1 and 2 of
[4, pp. 19-20]).

Let A be a Cantor set constructed on the arc {z: | z | = l and |a rgz | ^ττ/4}.
We can construct A so that (i) A is a compact totally disconnected set of
linear measure 0, (ii) Cap(A)>0, (iii) A is symmetric with respect to the real
axis and (iv) l&A (see [5, p. 150]). Let Eo be the union of the images under
all the branches of the multi-valued function h(z)=(logz)~2/k, and define Eλ—
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EoyJ{0}. Then it is easily shown that Eλ is a compact totally disconnected set
of linear measure 0 which lies on the &-star K1={z: argz=π/k+2mπ/k, m=0, 1,
•••, k—1}. Let E2=eπί/pEί, that is, E2 be the set obtained by rotating E1 through
the angle π/p. Then E2 is a compact totally disconnected set of linear measure
0 which lies on the k-ster K2={z:aτgz=π/k+π/p+2mπ/k, m=0,l, — , k—1}.
Finally we set E=E1UE2 and W=S-E.

Hejhal [4, pp. 15-18] proved the following lemma.

LEMMA 2. Let clf •••, cn be positive numbers with cx+ ••• +c n —2, nΞ>2. Sup-
pose that E is a compact totally disconnected set of linear measure 0 which lies
on an n-star formed by n rays emanating from the origin to oo, with successive
angles πcly"'tπcn. Let co=max {c3 :j=l, •••, n} and lfg£<co. Suppose that
ft=Hp(S-E), then

with av=0 for all v^

Using (10) we easily see that the maximum angle of the 2k angles formed
by the 2&-star KλVJK2 on which E lies is π/p, i. e. co=l/p, where c0 is as in
Lemma 2. Applying Lemma 2, it turns out that HP(W) contains no non-constant
functions, i. e.

(12) Wt=Op.

Next we shall prove that f{z)—z~λ belongs to Hk/2(W). For this we must
show that the sub harmonic function w(z)= \z\~k/2 admits a harmonic majorant
in W. First we deal with the case where k is even and next the other.

Let k=2mf m=l, 2, •••, and we consider the following functions analytic
in W:

f1(z)=exp(z~m),

Λ(*)=exρ (-enκi/pz-n)

We can easily check that A and the image fj(W) of W under / ; are disjoint,
in other words, / ; omits in W the set A of positive capacity, for 7=1, 2, 3, 4.
Then, by Nevanlinna-Frostman theorem (see [2, p. 150] or [4, p. 18]), we see
that fj^AB*(W), i.e. log+ |/, | admits a harmonic majorant in W. Let X, be the
least harmonic majorant of log+ |/, | in W for —1, 2, 3, 4. Then we easily see

(13)

(14)

where θ=mπ/p, since \og+\ea\+\og+\e~a\ = \Rea\ for any complex number α.
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For simplicity, we write z~m—u+iv. Then (14) is

(15) I u cos θ-v sin θ | ^ % 3 + % 4 .

Since s in#>0 by (11), we can obtain from (13) and (15)

(16) M ^ ^

Combining (13) and (16), we see

(17) M ;( 2 r ) = = | 2 r | -»g | M | +

and hence

(18) Λz)=z

Next we assume that k is odd. Let R be the 2-sheeted Riemann surface
associated with the function z2, and Ro be the Riemann surface obtained by
removing from R all the points whose projections lies on E. We consider the
following functions single-valued and analytic on Ro:

It is easy to see that f3 omits the points of A on Ro, and hence fj(=AB*(R0),
for 7=1, 2, 3, 4. Let X, be the least harmonic majorant of log + | / ; | on Ro. Then,
in the same manner as (13) and (14), we get

(19)

(20)

for z(=R0, where θ—kπ/2p. But the both sides of (19) and (20) are defined and
single-valued for z^W— {oo}, and the right sides are defined and single-valued
for 2G W— {oo}, and the right sides are harmonic in W— {oo}, since z~

k/2=—z*~k/2,
where, for z^R0, z* represents the other point on Ro which is projected on the
same point as z. Therefore we can show that w(z)=\z\~k/2 admits a harmonic
majorant in W— {oo}, by the same way as we obtained (17) from (13) and (14).
Hence

(21) Az)=z-1^Hk/Λ(W-{co})=Hk/i(W)9

since any isolated point is removable for every Hardy class (see Lemma 1).
By (18) and (21) we see W&Ok/2. Combining this with (12), we obtain

p—Ok/2, and hence Ok/2<OP as desired.
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4. Concluding remarks.

Combining Theorem 2 and Hejhal's results (2), we have got the following

Hp classification scheme for plane domains:

(22) OGSθτ<O1<OP2^Os/2<O3/2<Op^θ2<O2<OP4

^0;/2<05/2<0P5... < U Oq<OAB ,

where pk is any real number with k/2<pk<(kJ

Γl)/2 for k=2, 3, •••.
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