ON A CHARACTERIZATION OF QUATERNION PROJECTIVE SPACE BY DIFFERENTIAL EQUATIONS

By Yoshiaki Maeda

§ 1. Introduction.

The existence of a non-trivial solution of certain differential equations on a Riemannian manifold M often determines some geometric and topological properties of M. For example, in [9] Obata proved the following Theorems 1 and 2.

Theorem 1. Let M be a complete connected and simply connected Riemannian manifold of dimension $n(\geqq 2)$. In order for M to admit a non-trivial solution f for the system of differential equations

$$
\begin{equation*}
\nabla_{k} \nabla_{\jmath} f_{i}+k\left(2 f_{k} g_{j i}+f_{\jmath} g_{k i}+f_{\imath} g_{k \jmath}\right)=0, \quad k=\text { const }>0, \tag{I}
\end{equation*}
$$

where $f_{2}=\nabla_{k} f$, it is necessary and sufficient that M be isometirc with a sphere S^{n} of radius $1 / \sqrt{k}$ in the Euclidean ($n+1$)-space.

Theorem 2. Let M be a complete connected and simply connected Kaehler manifold of dimension $2 m(\geqq 4)$. In order for M to admit a non-trivial solution f for the system of differential equations

$$
\begin{equation*}
\nabla_{k} \nabla_{\jmath} f_{i}+k\left(2 f_{k} g_{j i}+f_{\jmath} g_{k i}+f_{\imath} g_{k j}-F_{\jmath}{ }^{t} f_{t} F_{k i}-F_{\imath}{ }^{t} f_{t} F_{k \jmath}\right)=0, \quad k=\text { const }>0, \tag{II}
\end{equation*}
$$

where $F_{j}{ }^{2}$ is the complex structure of M, it is necessary and sufficient that M be isometric with the complex projective space $P^{m}(C)$ with Fubini-study metric of constant holomorphic sectional curvature $4 k$.

In [1], Blair showed a relation between Theorems 1 and 2 by deducing Theorem 2 from Theorem 1 in the case where M is a Hodge manifold. The idea of his proof is to show that the projection of (I) on $S^{2 m+1}$ via the Hopffibration $\pi: S^{2 m+1} \rightarrow P^{m}(C)$ gives the equation (II) on $P^{m}(C)$. In a similar way we can characterize the quaternion projective space $P^{m}(H)$ by differential equations via the Hopf-fibration $\tilde{\pi}: S^{4 m+3} \rightarrow P^{m}(H)$. The purpose of this parer is to prove the following Theorem 3.

Theorem 3. Let M be a complete connected quaternion Kaehler manifold of dimension $4 m(\geqq 8)$. In order for M to admit a non-trivial solution f for the

Received Dec. 1, 1974.
system of differentirl equations

$$
\begin{equation*}
\nabla_{c} \nabla_{b} f_{a}+k\left(2 f_{c} g_{b a}+f_{b} g_{c a}+f_{a} g_{c b}-\Lambda_{c b a}{ }^{e} f_{e}-\Lambda_{c a b}{ }^{e} f_{e}\right)=0, \quad k=\text { const }>0, \tag{III}
\end{equation*}
$$

where $\Lambda_{c b a}{ }^{e}$ is a global tensor field on M defined by (2.3), it is necessary and sufficient that M be isometric with the quaternion projective space $P^{m}(H)$ with constant Q-sectional curvature $4 k$.

We remark that grad f in Theorem 1 and 2-are an infinitesimal projective transformation and an infinitesimal H-projective transformation respectively. From our case, as an analogue, we can expect that grad f in Theorem 3 gives a certain special infinitesimal transformation. Namely, in a quaternion Kaehler space, the one parameter group generated by grad f, where f is a non-trivial solution of (III), leaves the family of all curves r whose covariant derivative of the tangent vector field \dot{r} of r is contained in the quaternion subspace spanned by r.

The author thanks Prof. M. Obata for his valuable suggestions and encouragement during the preparation of this paper and also thanks Prof. S. Ishihara and Dr. M. Konishi for giving advices to him for many formulas given in [2] and [6].
§2. Quaternion Kaehler manifolds (See [2].).
Let M be a differentiable manifold of dimension n and there exist a subbundle V of the tensor bundle of type $(1,1)$ over M satisfying the following condition:
(a) In any coordinate neighborhood U of M, there is a local basis $\{F, G, H\}$ of the bundle V, where $\{F, G, H\}$ are tensor fields of type (1,1) in U satisfying

$$
\begin{align*}
& F^{2}=G^{2}=H^{2}=-I, \tag{2.1}\\
& G H=-H G=F, \quad H F=-F H=G, \quad F G=-G F=H,
\end{align*}
$$

I being the identity tensor field of type $(1,1)$ in M. Such a local basis $\{F, G, H\}$ of V is called a canonical local basis of V in U.

Thus the bundle V is a 3 -dimensional vector bundle. Such a bundle V is called an almost quaterion structure and the pair (M, V) an almost quaternion manifold. An almost quaternion manifold is orientable and of dimension $n=$ $4 m(m \geqq 1)$.

For an almost quaternion manifold (M, V), let $\{F, G, H\}$ and $\left\{F^{\prime}, G^{\prime}, H^{\prime}\right\}$ be canonical local bases of V in U and in another coordinate neighborhood U^{\prime} of M, respectively. Then we have in $U \cap U^{\prime}$

$$
\begin{align*}
& F^{\prime}=s_{11} F+s_{12} G+s_{13} H, \\
& G^{\prime}=s_{21} F+s_{22} G+s_{23} H, \tag{2.2}\\
& H^{\prime}=s_{31} F+s_{32} G+s_{33} H,
\end{align*}
$$

where $S=\left(s_{\alpha \beta}\right) \in S O(3),(\alpha, \beta=1,2,3)$, because $\{F, G, H\}$ and $\left\{F^{\prime}, G^{\prime}, H^{\prime}\right\}$ satisfy (2.1). Thus, if on U we can put Λ as following:

$$
\begin{equation*}
\Lambda=F \otimes F+G \otimes G+H \otimes H \tag{2.3}
\end{equation*}
$$

then using (2.2) gives that Λ determines in M a global tensor field of type (2, 2), which will be denoted also by Λ.

Next let there be given an almost quaternion structure V in a Riemannian manifold (M, g) and assume that for any canonical local basis $\{F, G, H\}$ of V, each of F, G and H is almost Hermitian with respect to g. Moreover we suppose that the set (M, g, V) satisfies the following condition:
(b) If ϕ is a cross-section of the bundle V, then $\nabla_{X} \phi$ is also a cross-section of V for any vector field X on M, where V denotes the Riemannian connection of the Riemannian manifold (M, g, V).

Such a set (M, g, V) is called a quaternion Kaehler manıfold and the set $\{g, V\}$ a quaternion Kaehler structure in M. The condition (b) is equivalent to the following condition:
(b') For a canonical local basis $\{F, G, H\}$ of V in U,

$$
\begin{align*}
& \nabla_{X} F=r(X) G-q(X) H, \\
& \nabla_{X} G=-r(X) F+p(X) H, \tag{2.4}\\
& \nabla_{X} H=q(X) F-p(X) G
\end{align*}
$$

for any vector field X on M, where p, q and r are local 1 -forms in U. Thus, using (2.4), we easily find

$$
\begin{equation*}
\nabla \Lambda=0 . \tag{2.5}
\end{equation*}
$$

Here, we can easily verify that condition (2.5) is equivalent to condition (b^{\prime}).
It is known that any quaternion Kaehler manifold is an Einstein space, i. e., that the Ricci tensor S of (M, g) has the form

$$
\begin{equation*}
S=-\frac{s}{4 m} I, \tag{2.6}
\end{equation*}
$$

s being the scalar curvature of (M, g) which is a constant if M is connected, where $\operatorname{dim} M=4 m(m \geqq 2)$.

We denote by $R_{d c b}{ }^{e}$ components of the curvature tensor of (M, g) and put $R_{d c b a}=R_{d c b}{ }^{e} g_{e a}$. Put $F_{b a}=F_{b}{ }^{e} g_{e a}, G_{b a}=G_{b}{ }^{e} g_{e a}, H_{b a}=H_{b}{ }^{e} g_{e a}$, which are all skewsymmetric.

Let a function f satisfy the differential equation (III). Then using (III) and the Ricci identity we get.

$$
\begin{aligned}
\nabla_{c} \nabla_{b} f_{a} & -\nabla_{b} \nabla_{c} f_{a}=-R_{c b a}{ }^{e} f_{e} \\
& =k\left(f_{b} g_{c a}-f_{c} g_{b a}+2 \Lambda_{c b a}{ }^{e} f_{e}+\Lambda_{c a b}{ }^{e} f_{e}+\Lambda_{b a c}{ }^{e} f_{e}\right)
\end{aligned}
$$

Contracting with $g^{b a}$ we have from (2.6)

$$
(s-4 m(4 m+8) k) f_{c}=0,
$$

where the function f is non-trivial. Then we have
Lemma 2.2. If M admits a non-trivial solution for (III), then the scalar curvature s is equal to $4 m(4 m+8) k>0$.

Next the following integral formula is known:
Proposition 2.3 (Ishihara [3].). Let M be a compact quaternion Kaehler manifold. Then

$$
\begin{aligned}
& \int_{M}\left(3 m\left(\nabla^{a} \nabla_{a} X^{b}+s /(4 m+8) \cdot X^{b}\right)\right) X_{b}+1 / 16\left\|\mathcal{L}_{X} \Lambda\right\|^{2} \\
& \left.\quad+\left(F_{a}{ }^{b} \nabla_{b} X^{a}\right)^{2}+\left(G_{a}{ }^{b} \nabla_{b} X^{a}\right)+\left(H_{a}{ }^{b} \nabla_{b} X^{a}\right)^{2}\right)=0,
\end{aligned}
$$

where X^{b} is a vector field on M.
Assume that M admits a non-trivial solution f for (III). Contracting (III) with $g^{c b}$ and using Lemma 2.2, we have

$$
\begin{equation*}
\nabla_{a} \nabla^{a} f_{b}+s /(4 m+8) \cdot f_{b}=0 . \tag{2.7}
\end{equation*}
$$

Because of skew-symmetry of F, G and H, we get

$$
\begin{equation*}
F_{c}{ }^{b} \nabla_{b} f^{c}=G_{c}{ }^{b} \nabla_{b} f^{c}=H_{c}{ }^{b} \nabla_{b} f^{c}=0 . \tag{2.8}
\end{equation*}
$$

M is an Einstein space whose scalar curvature is positive, because of Lemma 2.2. Thus M is compact, since M is complete. Substituting X^{a} by f^{a} in Proposition 2.3 and making use of (2.7) and (2.8), we get

$$
\begin{equation*}
\mathcal{L}_{\mathrm{grad} f} \Lambda=0 . \tag{2.9}
\end{equation*}
$$

From (2.9) and (2.5), we have easily in the coordinate neignborhood U

$$
\begin{align*}
& \nabla_{a} f_{c} F_{b}{ }^{c}+\nabla_{b} f_{c} F_{a}{ }^{c}=0, \\
& \nabla_{a} f_{c} G_{b}{ }^{c}+\nabla_{b} f_{c} G_{a}{ }^{c}=0, \tag{2.10}\\
& \nabla_{a} f_{c} H_{b}{ }^{+}+\nabla_{b} f_{c} H_{a}{ }^{c}=0 .
\end{align*}
$$

§ 3. Fibred space with Sasakian 3 -structure (See [4].).
Let \tilde{M} have a Sasakian 3-structure and M be a quaternion Kaehler manifold, and assume that there exists a fibration $\pi: \tilde{M} \rightarrow M$ (See [5].). In such a case, \tilde{M} is necessarily of dimension $n+3=4 m+3$. We now assume that $\operatorname{dim} M>7$ (i. e. $m>1$). The fundamental geometry in such a situation has already been discussed in [4] and [5]. We shall recall some notions and results given in [4] and [5].

We take coordinate neighborhoods $\left\{\tilde{U}, x^{n}\right\}$ of \tilde{M} such that $\pi(\tilde{U})=U$ are
coordinate neighborhood of M with local coordinates $\left(v^{a}\right)$. Then the projection $\pi: \tilde{M} \rightarrow M$ may be expressed with respect to $\left\{\tilde{U}, x^{h}\right\}$ and $\left\{U, v^{a}\right\}$ by certain equations of the form

$$
v^{a}=v^{a}\left(x^{1}, \cdots, x^{n+3}\right),
$$

v^{a} denoting coordinates in U of the projection $P=\pi(\sigma)$ of a point σ with coordinates x^{h} in \tilde{U}, where $v^{a}\left(x^{1}, \cdots, x^{n+3}\right)$ are differentiable functions of variables x^{h} with Jacobian matrix $\left(\partial v^{a} / \partial x^{h}\right)$ of the maximal rank $4 m$. We take a fibre F such that $F \cap \tilde{U} \neq \emptyset$. Then, we may assume that $F \cap \tilde{U}$ is connected. We can introduce local coordinates (u^{α}) in $F \cap \tilde{U}$ in such a way that (v^{a}, u^{α}) is a system of local coordinates in $\tilde{U},\left(v^{a}\right)$ being coordinates of $\pi(F)$ in U.

We now put $E_{i}{ }^{a}=\partial v^{a} / \partial x^{2}$ and $C_{\alpha}=\partial / \partial u^{\alpha}$. Denoting by $C^{h}{ }_{\alpha}$ components of C_{α} in U, we put $C_{i}{ }^{\alpha}=\tilde{g}_{i n} \bar{g}^{\alpha \beta} C^{h}$, where $\tilde{g}_{j i}$ are components of \tilde{g} in $\tilde{U}, \bar{g}_{\alpha \beta}=$ $g_{j i} C^{j}{ }_{\alpha} C^{2}{ }_{\beta}$ and $\left(\bar{g}^{\alpha \beta}\right)=\left(\bar{g}_{\alpha \beta}\right)^{-1}$. We next define E^{h} by $\left(E^{h}{ }_{a}, C^{h}{ }_{\alpha}\right)=\left(E_{i}{ }^{a}, C_{i}^{\alpha}\right)^{-1}$. We now define three tensor fields ϕ, ψ and θ of type $(1,1)$ by

$$
\phi=\tilde{\nabla} \xi, \quad \phi=\tilde{\nabla} \eta, \quad \theta=\tilde{\nabla} \zeta .
$$

Then we can put in U, denoting E^{b} and E_{a} a vector field and a 1-form whose components are $E_{i}{ }^{b}$ and $E^{\imath}{ }_{a}$ respectively,

$$
\begin{equation*}
\phi^{H}=\phi_{b}{ }^{a} E^{b} \otimes E_{a}, \quad \psi^{H}=\psi_{b}{ }^{a} E^{b} \otimes E_{a}, \quad \theta^{H}=\theta_{b}{ }^{a} E^{b} \otimes E_{a}, \tag{3.3}
\end{equation*}
$$

where ϕ^{H} denotes the horizontal part of ϕ and so forth, $\phi_{b}{ }^{a}, \psi_{b}{ }^{a}, \theta_{b}{ }^{a}$ being local functions in U and $\phi^{H}, \phi^{H}, \theta^{H}$ satisfy (2.1) (See [5].). We easily have

$$
\begin{align*}
& \phi_{b a}=-\phi_{a b}=\phi_{b}{ }^{e} g_{e a}, \quad \psi_{b a}=-\psi_{a b}=\psi_{b}{ }^{e} g_{e a}, \tag{3.4}\\
& \theta_{b a}=-\theta_{a b}=\theta_{b}{ }^{e} g_{e a},
\end{align*}
$$

where $g_{a b}=g_{j i} E{ }_{a} E^{2}{ }_{b}$ which is a Riemannian metric of M. We get the Co-Gauss formulas (See [5], [6].)

$$
\begin{align*}
& \tilde{V}_{j} E_{i}{ }^{a}=-\left\{\begin{array}{c}
a \\
c b
\end{array}\right\} E_{j}{ }^{c} E_{i}{ }^{b}+h_{b}{ }^{a}{ }_{\beta}\left(E_{\jmath}{ }^{b} C_{i}{ }^{\beta}+C_{j}{ }^{\beta} E_{i}{ }^{b}\right), \tag{3.5}\\
& \tilde{V}_{j} C_{i}{ }^{\alpha}=-h_{c b}{ }^{\alpha} E_{j}{ }^{c} E_{i}{ }^{b}-P_{c \beta}{ }^{\alpha} E_{j}{ }^{c} C_{i}{ }^{\beta}-\left\{\begin{array}{c}
\alpha \\
\beta \gamma
\end{array}\right\} C_{j}{ }^{\beta} C_{i}{ }^{r},
\end{align*}
$$

where $h_{b}{ }^{a}{ }_{\beta}, P_{c \beta}{ }^{\alpha}$, $\left\{\begin{array}{c}a \\ c b\end{array}\right\}$ and $\left\{\begin{array}{c}\alpha \\ \beta \gamma\end{array}\right\}$ are local functions defined in \tilde{U} respectively. In particular, $\left\{\begin{array}{c}a \\ c b\end{array}\right\}$ and $\left\{\begin{array}{c}\alpha \\ \beta \gamma\end{array}\right\}$ are Christoffel's symbols formed with $g_{a b}$, and $\bar{g}_{\alpha \beta}$ respectively. Furthermore we get

$$
\begin{equation*}
h_{b}{ }_{\beta}{ }_{\beta}=-\left(a_{\beta} \phi_{b}{ }^{a}+b_{\beta} \psi_{b}{ }^{a}+c_{\beta} \theta_{b}{ }^{a}\right), \tag{3.6}
\end{equation*}
$$

where we put $\xi=a^{\alpha} C_{\alpha}, \eta=b^{\alpha} C_{\alpha}, \zeta=c^{\alpha} C_{\alpha}$ and $a_{\beta}=\bar{g}_{\beta \alpha} a^{\alpha}, b_{\beta}=\bar{g}_{\beta \alpha} b^{\alpha}, c_{\beta}=\bar{g}_{\beta \alpha} c^{\alpha}$ in \tilde{U}.
The following structure equation for π is satisfied (See [6], Chapter I, 6.):

$$
\begin{equation*}
K_{k j i}{ }^{h} E_{d}^{k} E^{j}{ }_{c} E_{b}^{i} C_{h}{ }^{\alpha}={ }^{\prime} \nabla_{d} h_{c b}{ }^{\alpha}-V_{c} h_{d b}{ }^{a}, \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
K_{k j i}{ }^{h} E^{k}{ }_{d} C^{j}{ }_{\beta} E^{2} C_{h}{ }^{\alpha}=-" \nabla_{\beta} h_{d b}{ }^{\alpha}+h_{d}{ }^{e}{ }_{\beta} h_{e b}{ }^{\alpha}, \tag{3.8}
\end{equation*}
$$

$K_{k j i}{ }^{h}$ being curvature tensor of \tilde{M} and

$$
\begin{aligned}
& \prime \nabla_{d} h_{c b}{ }^{\alpha}=\partial_{d} h_{c b}-\left\{\begin{array}{c}
e \\
d c
\end{array}\right\} h_{e b}{ }^{\alpha}-\left\{\begin{array}{c}
e \\
d b
\end{array}\right\} h_{c e}{ }^{\alpha}+P_{d \varepsilon}{ }^{\alpha} h_{c b}{ }^{\varepsilon}, \\
& \prime \nabla_{\beta} h_{d b}{ }^{\alpha}=\partial_{\beta} h_{d b}{ }^{\alpha}+\left\{\begin{array}{c}
\alpha \\
\beta \gamma
\end{array}\right\} h_{b d}{ }^{r}-h_{d}{ }^{e} h^{\alpha}{ }_{e b}{ }^{\alpha}-h_{b}{ }^{e} h_{d e}{ }^{\alpha} .
\end{aligned}
$$

Using the Ricci identity for ξ, η, ζ and (3.6), (3.7), (3.8), we have

$$
\begin{align*}
& \partial_{\beta} h_{a}{ }_{a}{ }_{\alpha} f_{e}-\left\{\begin{array}{c}
\gamma \\
\alpha \beta
\end{array}\right\} h_{a}{ }^{e}{ }_{r} f_{e}+f_{e} h_{d}{ }_{d}{ }_{\alpha} h_{a}{ }^{d}{ }_{\beta}+f_{a} \bar{g}_{\alpha \beta}=0, \tag{3.9}\\
& \partial_{c} h_{a}{ }_{a}{ }_{\alpha} f_{e}+\left\{\begin{array}{c}
d \\
e c
\end{array}\right\} f_{d} h_{a}{ }^{e}{ }_{\alpha}-\left\{\begin{array}{c}
d \\
c a
\end{array}\right\} f_{e} h_{d}{ }^{e}{ }_{\alpha}-P_{c \alpha}{ }^{\beta} h_{a}{ }^{e}{ }_{\beta} f_{e}=0, \tag{3.10}
\end{align*}
$$

and

$$
\begin{equation*}
f_{e} h_{d}{ }^{e}{ }_{\alpha} h_{c}{ }^{d}{ }_{\beta}+f_{e} h_{d}{ }^{e}{ } h_{c}{ }^{d}{ }_{\alpha}+2 f_{c} \bar{g}_{\alpha \beta}=0 . \tag{3.11}
\end{equation*}
$$

Let f be a function on M. We now consider a tensor $L_{k j i}$ given by

$$
L_{k j i}=\tilde{V}_{k} \tilde{V}_{j} \tilde{V}_{2} \hat{f}+2 \tilde{f}_{k} \tilde{g}_{j i}+\tilde{f}_{j} \tilde{g}_{k i}+\tilde{f}_{2} \tilde{g}_{k j},
$$

where \hat{f} denotes the lift of f (i. e., $\tilde{f}(\sigma)=f \circ \pi(\sigma)$.). Now we have

$$
\tilde{\nabla}_{2} \tilde{f}=\tilde{f}_{2}=E_{i}{ }^{a} \nabla_{a} f
$$

in \tilde{U}, ∇_{a} being a formal covariant derivative with respect to $\left\{\begin{array}{c}a \\ c b\end{array}\right\}$. Using (3.15), we get

$$
\begin{equation*}
\tilde{\nabla}_{j} \tilde{\nabla}_{2} \tilde{f}=\left(\nabla_{a} f_{b}\right) E_{\jmath}{ }^{a} E_{i}{ }^{b}+f_{a} h_{b}{ }^{a}{ }_{\alpha}\left(E_{\jmath}{ }^{b} C_{i}{ }^{\alpha}+C_{\jmath}{ }^{\alpha} E_{i}{ }^{b}\right) . \tag{3.12}
\end{equation*}
$$

Moreover differentiating (3.12) covariantly and using (3.15), we have

$$
\begin{align*}
\tilde{\nabla}_{k} \tilde{\nabla}_{j} \tilde{\nabla}_{\imath} \tilde{f}= & \left(\nabla_{c} \nabla_{b} f_{a}-h_{b}{ }^{e}{ }_{\alpha} f_{e} h_{c a}{ }^{\alpha}-h_{a}{ }^{e}{ }_{\alpha} f_{e} h_{c b}{ }^{\alpha}\right) E_{k}{ }^{c} E_{\jmath}{ }^{b} E_{i}{ }^{a} \\
& +\left(\nabla_{a} f_{d} h_{b}{ }^{d}{ }_{\alpha}+\nabla_{b} f_{d} h_{a}{ }^{b}{ }_{\alpha}\right) C_{k}{ }^{\alpha} E_{\jmath}{ }^{b} E_{i}{ }^{a} \\
& +W_{c a \alpha} E_{k}{ }^{c} E_{i}{ }^{a} C_{\jmath}{ }^{\alpha}+W_{c b \alpha} E_{k}{ }^{c} E_{j}{ }^{b} C_{i}{ }^{\alpha} \tag{3.13}\\
& +Z_{a \beta \alpha} C_{k}{ }^{\beta} C_{j}{ }^{\alpha} E_{i}{ }^{a}+Z_{b \beta \alpha} C_{k}{ }^{\beta} C_{i}{ }^{\alpha} E_{\jmath}{ }^{b} \\
& +\left(f_{e} h_{d}{ }_{d}{ }_{\alpha} h_{c}{ }^{a}{ }_{\beta}+f_{e} h_{d}{ }_{d}{ }_{\beta} h_{c}{ }^{a}{ }_{\alpha}\right) E_{k}{ }^{c} C_{j}{ }^{\beta} C_{i}{ }^{\alpha},
\end{align*}
$$

where $W_{c a \alpha}$ and $Z_{a \beta \alpha}$ are defined respectively by

$$
\begin{aligned}
& W_{c a \alpha}=\nabla_{a} f_{d} h_{c}{ }^{d}{ }_{\alpha}+\nabla_{c} f_{d} h_{a}{ }^{d}{ }_{\alpha}+\nabla_{c} h_{a}{ }_{\alpha}{ }_{\alpha} f_{e}+\left\{\begin{array}{l}
d \\
e c
\end{array}\right\} f_{d} h_{a}{ }^{e}{ }_{\alpha} \\
&-\left\{\begin{array}{c}
d \\
c a
\end{array}\right\} f_{e} h_{d}{ }^{e}{ }_{\alpha}-P_{c \alpha}{ }^{\beta} h_{a}{ }^{d}{ }_{\beta} f_{d},
\end{aligned}
$$

$$
Z_{a \beta \alpha}=\partial_{\beta} h_{a}{ }_{\alpha}{ }_{\alpha} f_{e}-\left\{\begin{array}{c}
\gamma \\
\alpha \beta
\end{array}\right\} f_{e} h_{a}{ }^{e} r+f_{e} h_{d}{ }_{d \alpha} h_{a}{ }^{d}{ }_{\beta} .
$$

Thus, substituting (3.13) in $L_{k j i}$ from (3.9), (3.10) and (3.11), we have

$$
\begin{align*}
L_{k j i}=\left(\nabla_{c} \nabla_{b} f_{a}\right. & \left.-h_{b}{ }^{e}{ }_{\alpha} h_{c a}{ }^{\alpha} f_{e}-h_{a}{ }^{e}{ }_{\alpha} h_{c b}{ }^{\alpha} f_{e}+2 f_{c} g_{b a}+f_{b} g_{c a}+f_{a} g_{c b}\right) E_{k}{ }^{c} E_{\jmath}{ }^{b} E_{i}{ }^{a} \\
& +\left(\nabla_{a} f_{d} h_{b}{ }^{d}{ }_{\alpha}+\nabla_{b} f_{d} h_{a}{ }^{d}{ }_{\alpha}\right) C_{k}{ }^{\alpha} E_{\jmath}{ }^{b} E_{i}{ }^{\alpha} \\
& +\left(\nabla_{a} f_{d} h_{c}{ }^{d}{ }_{\alpha}+\nabla_{c} f_{d} h_{a}{ }^{d}{ }_{\alpha}\right) E_{k}{ }^{c} C_{\jmath}{ }^{\alpha} E_{i}{ }^{a} \tag{3.14}\\
& +\left(\nabla_{b} f_{d} h_{c}{ }^{d}{ }_{\alpha}+\nabla_{c} f_{d} h_{b}{ }^{d}{ }_{\alpha}\right) E_{k}{ }^{c} E_{\jmath}{ }^{b} C_{i}{ }^{\alpha} .
\end{align*}
$$

§ 4. The construction of Hopf-fibration from the Sasakian 3 -structure.

In this section we construct the Hopf-fibration $S^{3} \rightarrow S^{4 m+3} \rightarrow P^{m}(H)$ by using the given Sasakian 3 -structure on the sphere $S^{4 m+3}$. The construction of the Hopf-fibration $S^{1} \rightarrow S^{2 m+1} \rightarrow P^{m}(C)$ is studied by Yano and Ishihara [11].

First suppose that $2: S^{4 m+3}(1) \rightarrow R^{4 m+4}$ is an imbedding given by the equation $\sum_{A=1}^{4 m+4} y_{A}{ }^{2}=1$. Setting $y_{\imath}=u_{\imath},(1 \leqq i \leqq 4 m+3)$, we get $y_{4 m+4}= \pm\left[1-\sum_{\imath=1}^{4 m+3} u_{\imath}{ }^{2}\right]^{1 / 2}$. Then the differential i_{*} of the imbedding is given by

$$
\left(\imath_{*}\right)_{i}{ }^{A}=\left(\partial y_{A} / \partial u_{\imath}\right)= \begin{cases}\delta_{i}{ }^{J}, & (A=j=1, \cdots, 4 m+3) \\ -\frac{u_{i}}{\lambda}, & (A=4 m+4),\end{cases}
$$

where we have set $\left[1-\sum_{\imath=1}^{4 m+3} u_{\imath}{ }^{2}\right]^{1 / 2}=\lambda$ (resp. $=-\lambda$) for the hemisphere $y_{4 m+4}>0$ (resp. for $y_{4 m+4}<0$). The induced metric g is given by $g_{j_{2}}=\delta_{j i}+u_{i} u_{j} / \lambda^{2}$. We take the outer normal vector N, i. e., the components N^{A} of N is y_{A}. Let v^{a} denote the components of vector field on $R^{4 m+4}$. Then the components of its projection on $S^{4 m+3}$ are $v^{2}=\sum_{A=1}^{4 m+4} v^{A}\left(i_{*}\right)^{2}{ }_{A}$, where

$$
\left(i_{*}\right)^{2}= \begin{cases}\delta_{\jmath}{ }^{2}-u_{i} u_{\jmath}, & A=j \\ -u_{\imath}, & A=4 m+4\end{cases}
$$

We denote $\left\{\begin{array}{l}k \\ j i\end{array}\right\}$ the Christoffel's symbol formed with g. Then we have

$$
\left\{\begin{array}{l}
k \tag{4.1}\\
j i
\end{array}\right\}=u_{k}\left(\delta_{j i}+u_{j} u_{i}\right) .
$$

Since the imbedding is totally umbilical whose principal curvature is equal to 1 , we get

$$
\tilde{\nabla}_{j}\left(i_{*}\right)_{i}^{A}=g_{j i} N^{A}, \quad \tilde{\nabla}_{j} N^{A}=-\left(i_{*}\right)_{j}{ }^{A}
$$

where \tilde{V}, is the van der Waerden-Bortolloti covariant derivative. Let $\xi=$ $\sum_{\imath=1}^{4 m+3} \xi^{i} \partial / \partial u_{\imath}$ be a Sasakian strncture on $S^{4 m+3}$. We define a vector field $\tilde{\xi}=$
$\sum_{A=1}^{4 m+4} \xi^{A} \partial / \partial y_{A}$ by $\xi^{A}=\sum_{i=1}^{4 m+3} \xi^{\imath}\left(i_{*}\right)_{i}{ }^{A}$. From (3.1) and (4.2), we have

$$
\tilde{\nabla}_{j} \tilde{\nabla}_{i} \xi^{A}=-g_{j i} \xi^{A} .
$$

By Obata [9], the function ξ^{A} can be written on $S^{4 m+3}$ as

$$
\begin{equation*}
\xi^{A}=\sum_{B=1}^{4 m+4} a_{A B} y_{B} \tag{4.3}
\end{equation*}
$$

where $A=\left(a_{A B}\right)$ is a constant matrix. Extending ξ^{A} to $R^{4 m+4}$ by homotheties centered at the origin, we can make it a vector field $\tilde{\xi}$ on the $R^{4 m+4}$ and denote it by the same letter. In fact, the components of $\tilde{\xi}$ has the same form as given by (4.3). Because of the above constructure, $\tilde{\xi}$ is orthogonal to the Normal vector N :

$$
\sum_{A, B=1}^{4 m+4} a_{A B} y_{A} y_{B}=\sum_{A=1}^{4 m+4} \xi^{A} N^{A}=0
$$

from which we have

$$
\begin{equation*}
a_{A B}+a_{B A}=0 . \tag{4.4}
\end{equation*}
$$

Since ξ is unit vector,,$\sum_{A=1}^{4 m+4} \xi^{A} \xi^{A}=1$ on $S^{4 m+3}$. In particular at $u_{i}=0,(1 \leqq i \leqq 4 m+3)$, we have

$$
\begin{equation*}
\sum_{i=1}^{4 m+3} a_{i 4 m+4}^{2}=1 . \tag{4.5}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
\xi^{\imath} & =\sum_{A=1}^{4 m+4} \xi^{A}\left(i_{*}\right)^{2}{ }_{A} \\
& =\sum_{j=1}^{4 m+3}\left(\sum a_{j B} y_{B}\right)\left(\delta_{j}-u_{j} u_{\imath}\right)+\left(\sum_{B=1}^{4 m+4} a_{4 m+4 B} y_{B}\right)\left(-\lambda u_{\imath}\right) .
\end{aligned}
$$

Using (4.4), we get

$$
\begin{equation*}
\xi^{\imath}=\sum_{j=1}^{4 m+3} a_{\imath j} u_{j}+\lambda a_{i 4 m+4} . \tag{4.6}
\end{equation*}
$$

Differentiating (4.6) covariantly and using (4.1) and (4.4), we have

$$
\begin{aligned}
\phi_{k}{ }^{2} & =\nabla_{k} \xi^{2}=\frac{\partial \xi^{2}}{\partial u_{k}}+\sum_{t=1}^{4 m+3}\left\{\begin{array}{c}
i \\
k t
\end{array}\right\} \xi^{t} \\
& =a_{i k}-\frac{1}{\lambda} a_{4 m+4}^{2}+\sum_{t} u_{i}\left(\delta_{k t}+\frac{1}{\lambda^{2}} u_{k} u_{t}\right)\left(\sum_{j} a_{t j} u_{\jmath}+\lambda a_{t 4 m+4}\right) \\
& =a_{i k}-\frac{1}{\lambda} a_{24 m+4}+\left(\sum_{j} a_{k j} u_{\jmath}\right) u_{i}+\lambda a_{k 4 m+4} u_{i}+\frac{1}{\lambda}\left(\sum_{t} a_{t 4 m+4} u_{t}\right) u_{k} u_{\imath} .
\end{aligned}
$$

Then we have from (4.4)

$$
\phi_{k j}=\sum_{\imath=1}^{4 m+3} g_{j i} \phi_{k}{ }^{2}=a_{j k}+\frac{1}{\lambda} a_{k 4 m+4} u_{j}-\frac{1}{\lambda} a_{j 4 m+4} u_{k} .
$$

Since $\sum_{j=1}^{4 m+3} \phi_{k j} \xi^{\jmath}=0$, we get by (4.6)

$$
\begin{align*}
& \sum_{i, j=1}^{4 m+3} a_{i k} a_{\imath j} u_{j}-\frac{1}{\lambda}\left(\sum_{i, j=1}^{4 m+3} a_{\imath j} a_{i 4 m+4} u_{\jmath}\right) u_{k} \tag{4.7}\\
& \quad+\lambda\left(\sum_{\imath=1}^{4 m+3} a_{i k} a_{24 m+4}\right)-\sum_{i}\left(a_{i 4 m+4}\right)^{2} u_{k}+a_{k 4 m+4}\left(\sum_{i=1}^{4 m+3} a_{j 4 m+4}\right)=0 .
\end{align*}
$$

At $u_{i}=0,(1 \leqq \imath \leqq 4 m+3)$, we have

$$
\begin{equation*}
\sum_{i=1}^{4 m+3} a_{\imath \jmath} a_{i 4 m+4}=0 . \tag{4.8}
\end{equation*}
$$

Because of (4.5) and (4.8), (4.7) is reduced to

$$
\begin{equation*}
\sum_{\imath=1}^{4 m+3} a_{k i} a_{\imath j}+a_{k 4 m+4} a_{4 m+4 j}=-\delta_{k j} . \tag{4.9}
\end{equation*}
$$

By (4.8) and (4.9), we have $A^{2}=-I$, where I is the identity matrix. Let $\{\xi, \eta, \zeta\}$ be the natural Sasakian 3 -structure on $S^{4 m+3}(1)$. From the above construction the extended vector fields $\tilde{\xi}, \tilde{\eta}$ and $\tilde{\zeta}$ on $R^{4 m+4}$ can be written as

$$
\tilde{\xi}=A N, \quad \tilde{\eta}=B N, \quad \tilde{\zeta}=C N
$$

where the matrices $A=\left(a_{A B}\right), B=\left(b_{A B}\right), C=\left(c_{A B}\right)$ are constant and skewsymmetric. They satisfy $A^{2}=B^{2}=C^{2}=-I$. Since $\tilde{\xi}, \tilde{\eta}$ and $\tilde{\zeta}$ are mutually orthogonal,

$$
\sum_{A, B, C} a_{A B} b_{A C} y_{B} y_{C}=\sum_{A, B, C} a_{A B} c_{A C} y_{B} y_{C}=\sum_{A, B, C} b_{A B} c_{A C} y_{B} y_{C}=0,
$$

from which we have

$$
\begin{align*}
\sum_{B}\left(a_{A B} b_{B C}+a_{C B} b_{B A}\right) & =\sum_{B}\left(b_{A B} c_{B C}+b_{C B} c_{B A}\right) \tag{4.10}\\
& =\sum_{B}\left(c_{A B} a_{B C}+c_{C B} a_{B A}\right)=0 .
\end{align*}
$$

By the definition (3.2) of the Sasakian 3-structure, we get

$$
\left.[\tilde{\xi}, \tilde{\eta}]\right|_{S_{4} m+3}=\left[i_{*} \xi, i_{*} \eta\right]=i_{*}[\xi, \eta]=\left.2 \tilde{\xi}\right|_{S_{4} m+3}
$$

From the above equation, using (4.10), we have

$$
\sum_{A, C}\left(a_{A C} b_{A B}-c_{C B}\right) y_{C}=0
$$

This means that $B A=-A B=C$. Similarly, we have $C B=-B C=A$ and $A C=$ $-C A=B$. Then $\{A, B, C\}$ defines a quaternion structure on $R^{4 m+4}$. We consider the distribution D spanned by ξ, η and ζ. Then the projection $\pi: S^{4 m+3}$ $\rightarrow S^{4 m+3} / D$ is the Hopf-fibration. So we get

Propssition 4.1. Let $S^{4 m+3}(1)$ be a shere of radius 1 and have the natural Sasakian 3 -structure $\{\xi, \eta, \zeta\}$. Then $S^{4 m+3} / D$ is a quaternion projective space

§ 5. Proof of Theorem 3.

We first note that it suffices to prove the theorem for $k=1$. For, if $k \neq 1$, the homothetic change $\tilde{g} \rightarrow g=k g$ of metric transforms the differential equation given in Theorem 3 into the corresponding one with $k=1$. We are now going to give a proof of Theorem 3.

Sufficiency. Let $S^{4 m+3}(1)$ be the sphere in $R^{4 m+4}$ with its natural Sasakian 3 -structure $\{\xi, \eta, \zeta\}$. i. e., according to the notation of $\S 4$, we may put

$$
\xi=F N, \quad \eta=G N, \quad \zeta=H N,
$$

where F, G, H are matrices defined by the following:

We define a function \tilde{f} on $S^{4 m+3}$ by $\tilde{f}=(1 / 2)\left(u_{1}{ }^{2}+u_{2}{ }^{2}+u_{3}{ }^{2}+u_{4}{ }^{2}\right)$. Then it is easily checked that \tilde{f} is a solution of the differential equation (I) and $\mathcal{L}_{\xi} \tilde{f}=\mathcal{L}_{\eta} \tilde{f}=\mathcal{L}_{\zeta} \tilde{f}$ $=0$. We now consider the Hopf-fibration $\pi: S^{4 m+3} \rightarrow P^{m}(H)$. Then \tilde{f} is projectable with respect to π. We can define a function f on M by $f \circ \pi=\tilde{f}$. From (3.13), we get

$$
\nabla_{c} \nabla_{b} f_{a}-h_{b}{ }_{\alpha}{ }_{\alpha} f_{e} h_{c a}{ }^{\alpha}-h_{a}{ }^{e}{ }_{\alpha} f_{e} h_{c b}{ }^{\alpha}+2 f_{c} g_{b a}+f_{b} g_{c a}+f_{a} g_{c b}=0 .
$$

Thus, by (3.6), f satisfies (III).
Necessity. Let M satisfy the assumption of Theorem 3. The following proposition is known in [7] and [10].

Proposition 5.1. Let (M, g, V) be a quaternion Kaehler manıfold. Then there exists a $P R^{3}$-bundle \tilde{M} over M which is canomically assoczated to M. Moreover of the scalar curvature s of M is positive, \tilde{M} has a Sasakian 3-structure.

From the above proposition and Lemma 2.1, we get
Proposition 5.2. If M admits a non-trivial solutıon f for (III), then there exists a $P R^{3}$-bundle \tilde{M} over M which is canoncally associated to M and admits a Sasakian 3-structure.

We denete by π the projection $\pi: \tilde{M} \rightarrow M$. We consider a solution f of the differential equation (III). Then the lift \tilde{f} of f with respect to π satisfies (3.14). From (2.10) and (3.6), we have

$$
\begin{align*}
& \nabla_{a} f_{c} h_{b}{ }_{\alpha}+\nabla_{b} f_{c} h_{a}{ }^{c}{ }_{\alpha}=0, \tag{5.1}\\
& \nabla_{c} \nabla_{b} f_{a}-h_{b}{ }_{\alpha}{ }_{\alpha} f_{e} h_{c a}{ }^{\alpha}-h_{a}{ }_{\alpha}{ }_{\alpha} f_{e} h_{c b}{ }^{\alpha}+2 f_{c} g_{b a}+f_{b} g_{c a}+f_{a} g_{c b}=0 . \tag{5.1}
\end{align*}
$$

Thus, from (5.1) and (5.2), we get $L_{k j i}=0$ (defined in $\S 3$.). This implies that the function \hat{f} is a non-trivial solution of the differential equation (II). Then \tilde{M} is isometric to a space of constant curvature 1 by Theorem 2. If we take a universal covering M^{*} of \tilde{M}, then M^{*} is isometric to $S^{4 m+3}(1)$. And the natural Sasakian 3 -structure can be induced on M^{*} from that defined in M. Then from Proposition 4.1, M is isometric to $P^{m}(H)$.

Thus Theorem 3 is completely proved.

References

[1] D. Blair, On the characterization of complex projective space by differential equations, to appear.
[2] S. Ishihara, Notes on quaternion Kaehler manifolds, to appear.
[3] S. Ishihara, Integral formulas and their applications in quaternion Kaehler manifolds, to appear.
[4] S. Ishihara, Quaternion Kaehler manifolds and Fibred Riemannian space with Sasakian 3 -structure, Kodai. Math. Sem. Rep. 1973, p. 321-329.
[5] S. Ishihara and M. Konishi, Fibred Riemannian spaces with Sasakian 3structure, Diff. Geo. in honor of K. Yano, Kinokuniya, Tokyo, 1972, p. 179-194.
[6] S. Ishihara and M. Konishi, Differential geometry of fibred space, Publ. S. G.G. 9, 1973.
[7] M. Konishi, On manifolds with Sasakian 3-structure over quaternion Kaehler manifolds, to appear.
[8] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13, 1966.
[9] M. Obata, Riemannian manifolds admitting a solution of a certain system of differential equation, Proc. U.S.Japan seminar in Diff. Geom., Kyoto, Japan, 1965, p. 101-114.
[10] K. Sakamoto, On the topology of quaternion Kaehler manifolds, Tôhoku Math. Journ. 26, 1974, p. 389-405.
[11] K. Yano and S. Ishihara, Fibred spaces with invariant Riemannian metric, Kōda1. Math. Sem. Rep. 19, 1967, p. 317-360.

> Department of Mathematics Tokyo Metropolitan University Fukazawa, Setagaya-ku, Tokyo Japan

