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SUFFICIENT CONDITIONS FOR AN ENTIRE FUNCTION

TO BE PSEUDO-PRIME

BY MITSURU OZAWA

§ 1. Introduction.

A meromorphic function F(z)=f(g(z)) is said to have f(z) and g(z) as left
and right factors respectively, provided that / is meromorphic and g is entire
(g may be meromorphic when / is rational). F(z) is said to be prime (pseudo-
prime) if every factorization of the above form implies that g(z) is linear (a
polynomial) unless f(z) is linear (rational). If the entire transcendency of f(z)
implies the linearity of g(z\ then F(z) is said to be right-prime in entire sense.

It is known that a simple geometrical restriction on the distribution of zeros
is enough to make zero a Nevanlinna deficient value. In this tendency there
have appeared several works [6], [9], [10]. What effects they do have to the
factorization theory of meromorphic functions in the above sense is our main
problem in this paper. Indeed we shall prove the following

THEOREM 1. Let F(z) be an entire function of hyperorder ρF less than a
positive integer q. Let {an} be the set of A-points of F(z). Assume that

and

Then F(z) is right-prime in entire sense.

Here the hyperorder means

η- log log T(r, F)
US logr

This is a precision of Baker's result [1], in which the order finiteness of F
is assumed and further the opening of the given sector is assumed to be positive
but arbitrarily small. Tsuzuki [11] has given a result of the same kind for
ρF<l (not βp) and for the aperture less than π— δ, <5>0. Here ρF means the
order of F.
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§ 2. Lemmas.

We need several properties on the value distribution.

LEMMA 1. [2]. Let f(z) be an entire function of finite order ρf^l. Then
f(z) takes every value infinitely often with at most one exception in every sector
whose aperture is greater than π(2—l/pf').

LEMMA 2. [11], Let f(z) be an entire function of order less than one and
let {wn} be an unbounded sequence for which f(z)=wn has roots only in the sector
\π— arg^l^ω, 0<ω<π/2 for every n. Then f(z) is linear.

LEMMA 3. [6]. Let f(z) be an entire function and g(z) the canonical product
formed by the zeros of f(z). Assume that the set of zeros {an} of f(z) satisfies

Σ l f l » l ~ β = o o ,

and

with a positive integer q. Then with a positive constant A(q),

We should remark that in [6] the formulation is less general than the above
one and is concerned with only g. However the author of [6] knows apparently
the above general formulation. For completeness we shall give here a proof of
Lemma 3 by making use of several properties in [6].

Proof of Lemma 3. In [6] the following was proved :

Further it is known that, if g(z) is of order q+1, Σ\an\~q~1<°° implies m(r, g)
=o(rq+1\ Evidently, if g(z) is of order less than q+1, m(r, g)= o(rq+1). Let us
denote f(z) as g(z) exp P(z) with transcendental entire or a non-constant poly-
nomial P(z) (the constant case is trivial). Then firstly assuming p^q we have

—έ)^m(r, g)-m(r, e~p)^

if P is a polynomial of degree p. Hence

Therefore by [6]
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If P^q+1, m(r,/)^m(r, e~p}-m(r, g)^Hrq+1. If P(z) is transcendental, then by
Liouville's theorem and Borel-Caratheodory's theorem

)^ -i- log M~-, ep-m(r, g)

Thus

Therefore <5(0, /)^1. This completes the proof of Lemma 3.

We need some growth lemmas.

LEMMA 4. [8]. Let f(z) be exp L(z) with a non-constant L(z). Then the
lower order μf of f satisfies μ/^1.

LEMMA 5. [8]. Let F(z) be expressed as f(g(z)) with entire f and g. If

§3. Proof of Theorem 1.

Suppose that F(z)=f(g(z)} with transcendental entire / and g. Assume that
f(w)=A has only finitely many roots. In this case f(w)=A+P(w) exp L(w) with
a polynomial P and entire L^const. Then μ/^l and hence ρF^pg By pF<0.
we have pg<q. Let p be the degree of P and {Wj} the set of zeros of P. Then

N(r, A, F)= f}7V(r, wJ9 g)^pm(r, g) .
3 = 1

By the assumption on {an} the order of N(r, A, F}^q and hence pg^q. This
is impossible. Therefore f(w)=A has infinitely many roots {wn}. Let {znt} be
the set of z^n-points of g(z). This is a subset of {αj. Hence for every n

Assume that there is an index n for which

Σ l*»J-ς=oo.
m=l

Then the Picard-Borel theorem implies that

Σ l ^ m l ~ 3 = o o , .7=2,3,-
m=l

with at most one exception of index, say 1. By Lemma 3

which is impossible. Hence for any n
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In this case pg^q. Assume that pg^l. Lemma 1 implies that g attains all the
values up to one exception infinitely often in the sector larg^ l <π— π/2(q+ϊ),
which is just the complementary sector of the given sector \π— arg z\ ^π/2(q+ϊ).
However all the roots of g(z)=wjt that is, zjm lie in the given sector \π— argz\
^π/2(q+ΐ). This is impossible. Assume that pβ<l. Then Lemma 2 gives the
linearity of g(z). Thus we have the pseudo-primeness of F in entire sense.

Suppose that / is transcendental entire and g is a polynomial. Then the
set of ^4-points of F should be distributed asymptotically as p roots of Λpz

p=wn

for nΞ>n0 with p=degg. If p^2, there appear infinitely many ^4-points of F
lying outside the given sector. This is impossible. This gives the right-prime-
ness of F in entire sense. q. e. d.

We cannot omit the condition pF<q. This is shown by F(z)=g(z) exp£θ),
where g(z) is the canonical product formed by the zeros of F(z). When pF (not
PF) satisfies ρF<q-\-l, we can prove our theorem without appealing to Lemma 3.
The proof of Corollary 1 indicates this fact.

§ 4. Corollaries.

COROLLARY 1. Let F(z) be an entire function of finite order ρF. Assume
that all the zeros of F lie in the sector S: \π— argz\^π/2(pF+έ), ε>0 and that
pF^l. If F has infinitely many zeros, then F is right-prime in entire sense. If
F has only finitely many zeros, then F is pseudo-prime in entire sense.

Proof. The case that F has only finitely many zeros was already proved
in [7]. Assume that F has infinitely many zeros. Suppose that F(z)=f(g(z))
with transcendental entire / and g. Then p/=Q, pg^=pF Let {wn} and {znt}
be the set of zeros of / and the roots of g(z)=wn respectively. {znl} is an
infinite set except for at most one index of n, say 1. {znt}^S. If jO^l, this is
impossible by Lemma 1. If pg<l, Lemma 2 gives us a contradiction. The right-
primeness in entire sense is almost trivial. q. e. d.

COROLLARY 2. Let F(z) be an entire function of hyperorder less than a
positive integer q. Assume that the set {an} of zeros of F'(z) satisfies the condi-
tions in Theorem 1. Then F(z) is right-prime in entire sense.

Proof. Consider the derived equation F/(z)—ff(g(z))g/(z). ρF—pF is almost
trivial. If f(w)=0 has only finitely many roots, f'(w)=P(w) exp L(w) with a
polynomial P(w) and entire ZχV)^const. Then μf,=μf^\. Therefore pF=

^pg which shows pg<q. Let p be the degree of P(w). Then

N(r, 0, F')=ΣN(r, w,, g)+N(r, 0, g')
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Since the order of N(r, 0, F') is not less than q, we have Pg^q. This is im-
possible. Hence f'(w) has infinitely many zeros. The remaining part can be
proved quite similarly as in Theorem 1. q. e. d.

COROLLARY 3. Under the same assumptions as in Corollary 1, F is prime,
if F has infinitely many zeros including at least one simple zero.

Proof. F(z) is right-prime in entire sense by Corollary 1. Suppose that

Evidently pg=ρF^l. Assume that g(z)=wl and g(z)~wz have infinitely many
roots. Then Lemma 1 implies a contradiction. Assume that g(z)=wl has only
finitely many roots. Then

where P, Q are polynomials and the degree of Q— q. Hence ρg^=q. In this case
PeQ=w2—w1 has roots whose arguments have 2q asymptotic directions dlt ••• , dzq.
They satisfy

Hence g(z}=w2 has roots lying outside \π—argx\^π/2(ρg+έ), which is again
impossible. Hence k should be equal to 1. By the existence of a simple zero
of F(z) we have F(z)=A(g(z)—Wj). This means that F(z) is prime in entire
sense. Evidently F is not periodic. Then by Gross' theorem [3], F is prime.

q. e. d.

This corollary gives an extension of Kimura's theorems in [4], [5]. Indeed
he assumed that all the zeros are negative and that n(r, 0) satisfies certain
regularity conditions such as n(r, ϋ)~arp or so. His proof in both theorems
depended heavily upon certain Tauberian theorems.
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