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ON THE STABILITY OF TWO-DIMENSIONAL

LINEAR STOCHATIC SYSTEMS

BY KUNIO NISHIOKA

1. Introduction and preliminaries.

Consider a two-dimensional linear system of temporally homogeneous
stochastic differential equations:

(1.1) dX(t)=B X(t)dt+C- XtydByffi+D- X(t)dB2(t)

where B, C, and D are 2x2 constant matrices and Bt(t) ( ι=l, 2) are independent
Brownian motions. Our concern is the asymptotic stability with probability 1
of the system (1.1), i.e., we say that Xx°(t) is stable if

P,oίJim|J?(ί)l=0}=l f

and that it is divergent if

(here and later on Xx°(t) stands for a solution of (1.1) satisfying X*°(0)=xo).
Applying Ito's formula to p(t)=\og\X(t)\, Khas'minskii [6] showed that

(1.2) \im^r-(p(T)-p(O))=\im-ψ-ΓQ(θ(t))dt a. s.,

where θ(t) is the angular component of X(t) and

(1.3) Q(θ)=(B.e(θ), e(θ))+±-Sp A(e(θ))-(AW)).e(θ), e(θ)),

in which
2

(1.4) a(x)tj= Σ (cιmcjn+dtmdjn)xmxn
m,n=l

e{θ)={cosθi sintf)

(we denote by ctJ and xx an (ί, ;>element of a matrix C and an ί-element of a
vector X, respectively, etc.). Then, he has proved: if
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exists and / is a constant independent of samples (which may depend on x°),
then, for an arbitrary x0 (Φθ),

Xx°(t) is stable in case that /<0,
it is divergent in case that />0,
it is neither stable nor divergent in case that /=0.

However, to show the existence of the constant /, he needed the non-degenerate
condition, i.e.,

(A(x)λ, λ)^a\x\2\λ\2, (a is some positive constant).

Our purpose, in this paper, is to determine / without any assumption, then
we shall be able to extend Khas'minskii's result to all equations with the form
of (1.1). Approaches in this direction were done by Khas'minskii [6] and [7],
Kozin-Prodromou [8], and etc., but their results cannot be applied to all equa-
tions with the form of (1.1).

In Section 2, we study asymptotic behaviors of one-dimensional diffusion
processes in a finite interval with various singular boundaries. In Sections 3
and 4, we classify the system (1.1) into 18 types according to natures of its
singular points and discuss to determine /, for each type. Our results are sum-
marized in Section 5, and several examples are discussed in Section 6.

2. The asymptotic behaviors of a one-dimensional diffusion process.

Consider a one-dimensional diffusion process x(t), which is given by

(2.1) dx(t)=b(x(t))dt+σ(x(t))dB(t),

where we suppose that b(x) and σ(x) satisfy the global Lipschitz condition. An
associated generator L of x(t) is defined by

Denote by τs the firist hitting time for a point r, i.e.,

inf {t;x(t)=r}
ί>0

[oo, if such t does not exist.

Denote by τ[rλ, r2] the first exit time from an interval [rx, r2], i. e.,

inf {t; x(t)^[rlf r 2] c}
ί>0

oo , if such t does not exist.

The following lemma is due to Khas'minskii [7].

LEMMA 2.1. Assume that there exists a function V(x) such that V(x) is C2-
class and positive in an interval (au a2), and that

i, r 2] =
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LV(x)S-k, for jcε[fll,flj,

where k is a positive constant. Then, for an arbitrary x^[_au α2],

Let (aly a2) be an open regular interval, i.e., σ%x)>0 for xe(al9 a2). The
Feller's canonical scale s(x) associated with x{t), on (alt α2), is defined by

(2.2) ^ )

where bλ and fr2 are suitably fixed in the interval (alf a2).

Definitien. The boundary point aλ+0 (α2—0) of the interval (al9 a2) is re-
pelling if s(a1+0)= — oo (s(α2—0)=+oo), and it is attracting otherwise.

Remark. In the Feller's classification of singular points, an exit and a
regular boundary are always attracting, and an entrance boundary is always
repelling, but we cannot state anything about a natural boundary.

We see asymptotic behaviors of x(t) in (al9 a2) with some singular boun-
daries

(A) α(α1)=σ(α«)=0,

b{a,)^, and b

(B) σ(α1)=σ(fla)=0,

6(fli)=0, and ^

By virtue of the assumption that b(x) and σ(x) satisfy the global Lipschitz con-
dition, it follows that aλ and a2 are, respectively, either the entrance or the
natural boundary from (A), and that ax and a2 are, respectively, the natural
and the exit boundary from (B). The following lemmas can be proved by a
modification of the method of Gikhman-Skorokhod [3],

LEMMA 2.2. Assume that (A) holds. If ax and a2 are both repelling, then
xx°(t) is recurrent in (alf a2) for an arbitrary xo^(al9 a2).

LEMMA 2.3. Assume that (A) holds. If ax is attracting and a2 is repelling,
then for an arbitrary xo^(alf a2)

LEMMA 2.4. Assume that (A) holds. If ax and a2 are both attracting, then
for an arbitrary xo<^(alf a2)

P (A\mx(t)-a}- ^2)-^*)
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PX0{hmx{t)-a2\-{

LEMMA 2.5. Assume that (B) holds. If aλ is repelling, then for an arbitrary

LEMMA 2.6. Assume that (B) holds. If aλ is attracting, then for an arbi-
trary xo^(alf a2)

p

3. The determination of J(θ0).

Let U1 be a real constant regular matrix. Then, if Y=OX-X, the system
(1.1) is transformed into the following system:

Then we can make the transformed matrix (U^C-Uϊ1) have one of the cononical
forms, i.e.,

ω (4 !(4
(? ,!) e^c w (5 ?)•

Thus, in order to discuss the stability of the solution of the system (1.1), we
may assume that the matrix C has one of the forms (I) through (IV).

Since the system (1.1) has a special, namely linear, form, there is no vari-
able but θ(t) in the right hand side of the equation (1.2). Thus, in order to
determine

it is sufficient to see only the behavior of θ(t), which is given by the equation

(3.1) dθ(t)=Φ(θ(t))dt+Ψ(θ(t))dB(t),

where Θ(O)=ΘQ and

(3.2) Φ(0)=-(β.e(0), e*(θ))+(A(e(θ))-e(θ), e*(θ)),

(3.3) Ψ\θ)={A{e{θ))e*(θ\ e*(θ))

e*(0)=(sin0, -cos0),
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and B{t) is a Brownian motion on the circumference of the unit circle. Note
that, since Φ(θ+π)=Φ(θ) and Ψ2(θ+π)=Ψ2(θ),

(3.4) Q(θ+π)=Q(θ).

Note that, if P{\imθ(t)=a}=l, where a is a point in the circumferences of the

unit circle, then

lim -y-J TQ(θ(t))dt=Q(a) a. s.

The following lemma is due to Maruyama-Tanaka [9].

LEMMA 3.1. // a one-dimensional diffusion process is recurrent in an interval,
then it has an invariant measure.

We shall determine J(θ0) for the forms (I) and (II) of the matrix C.

(I) (1°). In this case θ(t) is non-singular, because

where
ψ%(θ)={-d21 sin2θ+(dn-d22) sin θ cos θ+d21 cos20}2.

Since a non-singular diffusion on the circumference is recurrent. θ(t) has an
invariant measure there, by virtue of Lemma 3.1. The density of an invariant
measure exists, and it is the solution of Kolmogorov's forward equation, asso-
ciated with θ(t), with the normal condition and the periodic condition. Thus,
we have 1°) of Summary in Section 5.

(II) Since for this case

we see that

(i) if d12Φθ, then θ(t) is non-singular, and that
1 3

(ii) if d12=0, then it has singular points at θ~-τr-π and -o~^

Investigating the behaviors of the canonical measure m{dθ) and the canonical
scale s(θ), associated with θ(t), we can see the natures of the singular points,
which are shown in Figures 1, 2 and 3 of Appendix.

2°) If d12φθ, then Ψ2(θ)>0. Thus, we have 2°) of Summary in Section 5,
by the same argument as in 1°).

3°) If d12=0 and b12φθ (see Figures 1 and 2), then we can show easily
that θ(t) is recurrent, making use of Lemma 2.1. Therefore, we have 3°) of
Summary.

4°) If ^12=0 and £12=0, then the singular points are the natural bundaries
(see Figure 1). According to the behaviors of s(θ) in the neighbourhood of the
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singular points, we have that

(i) in case dnφd22

1 3
if 4 υ > —1, then -g-π+O and -^-TΓ+O are attracting, and
if fc[Ό^ — l, then they are repelling,

and that
(ii) in case dn=d22 and /c(^= — bn+b22Φθf

1 3
if 4 2 ) >0, then -π-π+O and -x-π+O are repelling, and
if /42)<0, then they are attracting,

and that
(iii) in case dn=d22, κf)=Of and tcf=b21—cλc2—d21dnΦθ,

1 3
if 4 3 ) >0, then -y-τr+0 and -g-π+O are repelling and

1 3

-^-π—0 and -75-π—0 are attracting, and

if £43)<0, then the former are attracting and latter are repelling,

(iv) in case dn=d22, fc[2)=0, and 4 3 ) =0,
•ί -FJ-TΓ+O and ^-ττ+O are always attracting

where

r m _ 2{(-b11+b22)+d22(dn-d22)}
4 " (-dn+d22)

2

1 3
Note that the singular points -π-π and ~γπ are "trap"s in any case. It follows

1 3
from the above, Lemmas 2.2, 2.3 and 2.4, that, for Θ0Φ-^-π and -«-TΓ,

(i) in case dnφd22)

if 4 υ > - l , then

Ptf0{jimί(0=-2-π or ~γ-π}=l

if 4 υ ^ —1, then θθ°(t) is recurrent on (^—-9"^, "T"717) a n ( ^ ("2"^^ ~2~π)

and that
(ii) in case dlx—d22 and Λ ^ ^ O ,

/ 1 1 \ / 1 3 \
if 4 2 ) >0, then ^°(0 is recurrent on \— -^-π,-^-n) and \^γπ,~2~π)> a n d

if 4 1 } <0, then

>=4*°r-H=lf
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and that
(iii) in case dlx—d22, 4 2 ) =0, and /cfΦΰ,

( if 4 3 ) >0, then

1 Λ

1 for

( 0 | } f o r
 (

if 4 3 ) <0, then

for 0 o e ( — —

o { } for 0Oe(-±-π,

and that

(iv) in case dn=di2, nf=0, and 4 3 ) =0,

P^{lim0(O=-|-π or - | -7r }=l .

Thus, taking (3.4) into account, we have 4°) of Summary.

4. The determination of J(θ0) (continuation).

In this section, we shall determine J(θ0) in case that the matrix C has the
forms (III) and (IV)

(III) Since for this case

ΨW^i-^+cJ* sin20 cos2θ+Ψ2

D(θ),
we see that

(i) if d12φθ and d21Φθ, then θ(t) is non-singular,
1 3

(ii) if d 1 2 =0 and d12φQ, then it has singular points at θ=—τy-π and -o~π,
(iii) if d12φθ and d21=Q, then it has singular points at θ=0 and π,

1 3
(iv) if d12=0 and d 2 1=0, then it has singular points at 0=0, -9"^, "̂, "o"71"-

According to the behaviors of m(dθ) and s(θ), we can classify the singular
points, as it is shown in Figure 4 through Figure 18 of Appendix.

5°) If d12Φθ and d21φQ, then θ(t) is recurrent on the circumference.
6°) If d 1 2=0, ^21^0, and b12Φθ (see Figures 4 and 5), then it is snown that

θ(t) is recurrent on the circumference, by applying Lemma 2.1 to θ(t).
7°) If d 1 2=0, d21Φ0, and &12=0, then there exists the natural boundary

points, as it is shown in Figure 6. Investigating the behaviors of s(θ), we have
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that

1 3
if κ7> — 1, then ^-τr±O and -γ-τr±0 are attracting, and

if Λ;75Ξ — 1, then they are repelling,

where
- - 2{(-611 +

7 " (
By virtue of Lemmas 2.2 and 2.4, it follows from the above that, for θoφ-ψπ

and -Λ-7Γ,

if Λ; 7 >— 1, then

~ -Λ-7Γ o r -FT

if Λ7^ — l, then 0*°(f) is recurrent on (—-ή~^,~o~π)

rτπ' ~τπΊ) f o r ^°e(—τπ* ΊΓπ

Thus, taking (3.2) into account, we have 7°) of Summary.

8°) d12Φ0, d21=0, and b21Φ0 (see Figures 7 and 8).
9°) d12Φ0, d21=0, and 621=0 (see Figure 9).

10°) d12=d21=0 and b12b21<0 (see Figures 10 and 11).

In the case of 8°) through 10°), we have 8°) through 10°) of Summary, by a
slight change in the preceding argument.

11°) d12=d21=0 and feia&21>0 (see Figures 12 and 13).

By virtue of Lemma 2.1, it is shown that, for 0 o

e Γ — γ π , θl or \~2~π, π l , θθ°(t)

goes into either (θ, -9-ff) or (π, -n~^) after a finite time with probability 1.

Therefore, we may assume that θ(t) starts only from a point θ0 in (o, -Q-π) or

in (π, ~2~τϋ\ Noting that the both boundaries of (θ, ~o~π) and of (π, ~γπ) are

repelling, we see that θ(t) has an invariant measure on (θ, -o~^) and on

(jcf ~2~πy Iί ^12<0, then we can show that θ(t) has also an invariant measure

on (~o"̂ » ^) and on (-9-^* 2ττY by virtue of a similar argument. Thus, we

have 11°) of Summary, noting (3.4) and the fact that an invariant measure
coincides with the canonical measure m(dθ) in this case (see Maruyama-Tanaka
[9]).
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12°) If d12=d2ί=0, b12Φθ, and b21=0, then there exists the natural boun-
dary points, as it is shown in Figures 14 and 15. According to the behaviors
of s(0), we have that

if ΛTi2̂ 1, then 0±0 and π±0 are repelling, and
if £i2<l, then they are attracting,

where

ΛΓ, = -
1(c1-c2)+d11(dn-d22)}

Suppose that b12>0. By virtue of Lemmas 2.2, 2.3, and 2.4, it follows from the
above that,

if ^12^1; then

0 #0 — 0 9

recurrent on (p> ~o~π) #oe(O, π),

/ 3 λrecurrent on \π,~γπ) θo^(π,2π),

and if /r1 2<l, then, with probability 1,

0 θo

lim
0 or 7Γ

0 or π

-iyπ, πj ,

1
(see Figure 14), because -^-7r—0 and ^-TΓ—0 are repelling and -g-π+O and

3

~2-π+0 are attracting. If 61 2<0 (see Figure 15), we can repeat the same argu-

ment, and we have 12°) of Summary.

13°) if d12=d21=0, 61 2=0, and b21ΦQ (see Figures 16 and 17), 13°) of Sum-
mary is obtained, by a slight change in the argument in 12°).

14°) If d12=d21=0 and b12=b21=0 (see Figures 18), then 14°) of Summary
follows from Example 1 in Section 6.

(IV) Let U2 be a real constant regular matrix. Since the matrix C, for
this case, is commutable for any matrix, if X/=U2 X, the system (1.1) is trans-
formed into the following system:

(4.1) dX\t)=(U2.B.Uϊ1)'X'(t)dt+C X'(t)dB1(t)

where the transformed matrix is one of the canonical forms (I)
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through (IV). We may replace (1.1) by (4.1), in order to discuss the stability of
the system (1.1). Denote by B' the transformed matrix (JJ^B-IJ^1), etc.

15°) D' has the form (I).
16°) D' has the form (II).
17°) D' has the form (III).

15°) through 17°) come to the special case of (I) through (III), replacing B by
Bf, C by D', and D by cl, where / is the identity matrix.

18°) If Df has the form (IV), then D' is commutable for any matrix. Then,
there exists a real constant regular matrix, such that, if X"^UZ'X', the system
(4.1) is transformed into the following system:

where the transformed matrix (U^B'Uz1) is one of the canonical forms. Hence,
we may replace (4.1) by (4.2), in order to discuss the stability of the system
(1.1).

Denote by Brf the transformed matrix {JJz-Br lJiλ), etc. The angular com-
ponent θ"(f) of X"(t) is given by

(4.3) dθ''{t)=Φff(θ''(t))dt+Ψf'(θ'f(t))dB{t)

where Φ"(θ) and Ψ'{θ) are defined by (3.2) and (3.3), in which B, C, and D are
respectively replaced by B", cl, and d'l. For this case, Ψ2(θ)—0, and the equa-
tion (4.3) comes into the deterministic differencial equation:

(4.4)

By substituting the solutions of the equation (4.4) into J(θ0), we have 13°) of
Summary.

5. Summary of J(θ0) and the extension of Khas'minskii's result.

The following table is the summary of J(θ0), which are obtained in Sections
3 and 4.

For simplicity, we use the following notations, in the definitions of the
invariant measures μtiβ):

rv ~. m 1
a, β)

_ j

a, β)

α, ψ)dφ
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\βW{φ,β)dφ

a, β)
where

Denote by N a constant which is defined by the normal condition:

Γμ(θ)dθ=l.
J 0

1°) (I), >̂ J(θo)=\2πQ(θ)μi(θ)dθ.
J 0

2°) (II), d12Φ0^J(θ0)=CπQ(θ)μ2(θ)dθ.
J 0

3°) (II), dlz=0, b12Φ0 ^ J(θo)=CπQ(θ)μs(θ)dθ.
J 0

4°) (II), d,,=0, b12=0.

f (a) duΦdu, * ? ' > - ! =>/((?β)=(?(-i-jr)

(d) d n =d M , 4

5°) (III), d l t#0,

6°) (III), d12=0,

7°) (III), d l t=0,

(a) * T > - 1 4>

J(θo)=CπQ(θ)μ6(θ)dθ.

(b) * τ ^ - l /((?,)=
1 3

8°) (III),
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0, dn=0, bu=0.

Q(0)

9°) (III),

(a) κ9<

(b) *,^1 ^ J(θo)=

10°) (III), dlt=dtl=Q, b

IV) (III), c ί l x = d , 1 = 0 , b

(a) 6 1 2 >0 => J(θo)=

(b) έ>12<0 4> /(<?o)=VJ

12°) (III), d 1 2 = d 2 1 = 0 , &12¥=0, ί>21=0.

( a ) yc ^ 1 ϋ? *>O ^

(b) κu £l, 61 2<0 4>

, (c) « 1 2 <1 ^

13°) (III), du=dtl=0,

ί (a) * « > - l

(b) * « ^ - l , 621>

14°) (III), rf12=rf21=0,

max |δ u -

O(o)

0O= O, 7Γ

0(0)

(f *
iff

α:

(ί* +J2*

o=0, π

0 = 0 , 7Γ

θ0Φθf —7Λ-K, 7Γ,

# 0 = : 0 , 7Γ
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The special cases of 1°) through 14°).

15°) (IV) D' is the form (I)
16°) (IV) D> is the form (II)
17°) (IV) D' is the form (III) >
18°) (IV) D' is the form (IV).

/ (a) B" is the form (I) J(θo)=CπQ''{θ)dθ=M—Uc*+d'

(b) B" is the form (II) J(θo)=Q"(~π)

(c) B" is the form (III) y(0o)=max {&{', b'i)—~{c2+dn)

(d) B" is the form (IV) Kθ^b"—ί-(c2+rf'2)

In this table,

V)

3°)

4°)

f W(0, φ)dφ
J o

> θ)}

2°) μ2{θ)=N{F{0, θ) +

f
•̂  0

1 H(0, θ)\

—3Γ)

,_ 2{(-fc11+fcM)+<i,.(rfii-d,,)}

μΐ\θ)=
NF(0,β) -^-π^θ<-^,

NF(fl, θ) -±-

μf\θ-π)

5°) μs(θ) is the same form as

6°) &I2>0 4> j«6(^):



224 KUNIO NISHIOKA

3°)

10°)

11')

=> μe(θ)=
μlθ-π) - ^ 2

„ _ 2{(-b11+b22)+φ1-c2)+d^(dn-d22)}
7 ~ { c c f i d d ^

NF(0, θ) —\-π^θ<^-π

=>

=>

NH*(θ,π)

μlθ-π)

NH(O,Θ)

μa(θ-π)

μt(θ)=
ψ-π, θ) 0<θ<π

I μ»(θ-π) π<θ<2π

ί NH(O,Θ)

=> ̂ β)= NHfa,
' μl0(θ-π)

NH*(θ,π) ~-

μlo(θ-π)

£g>(^—π )

π<θ<2π

l o o
_ _

1 2 ~
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μ&KΘ) =

/n(θ-π) -γπ<θ<2π

_ 2{(—b11+b22)+c2(c1—c2)+d22(dn—d22)}

μlM)=

-γπ<β<π

-j-π<θ<2π .

Therefore, we have determined J(θ0) for every system with the form (1.1),
and the following proposition follows, automatically, from Khas'minskii's result.
Denote an angular component of a point X<BR2 by θ(x).

PROPOSITION 4.1. J(θ(x)) is determined, with probability 1, for an arbitrary
point x^R2. Thus, for xoΦθ,

if /(tfWXO, then Xx«(t) is stable,

if /(#(*o))>O, then it is divergent, and

)—0, then it is neither stable nor divergent.

6. Examples.

Example 1. Consider the following system:

(6.1)

Since the system (6.1) are written by two independent linear equations, we can
solve them explicitly:

(6.2) *f"(0=*.,. exp {(bt—±
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where xo=(Xo,i, 0̂,2) is a point from which X(t) starts. The following result is
obtained by (6.2) and the law of iterated logarithm:

xf^it) is table if xOtiΦθ and if Λ<0,
it is divergent if xo,i^O and if Jt>0,
it is neither stable nor divergent if xOfiΦθ and if /*=0,
it vanishes if xOti=0,

where

Example 2. Consider the following second order deterministic system:

(6.3) x{t)=b2x(t)+bxx{t).

Now, we are concerned with the system which has an addition of the excitation,
by the Gaussian white noise B(t), to the right hand side of the system (6.3):

(6.4) *(0=

If xλ(t)=x(t) and x2(t)=x(t), we have

(6.40 dX^=(t b)χWdt+Q °o)X(t)dB(t)

For the system (6.47), θ=±-^-π are the singular points of θ(t) and their nature

are just the same as in Figure 1 of Appendix. Thus, in 3°) of Summary, we
have,

Q{θ)={l+b1) sin θ cos θ+b2 $in2θ+-γ σ2 cos20(l-2 sin20),

in which

W(-\π, θ)= - ^ - e x p {-^-{2 tan2θ-3b2 tan θ-βbj} .

Unfortunately, we cannot have the functional relation between blf b2, and σ that
determines the algebraic sign of J(θ(xQ))t but the numerical integration of (6.5)
have been given by Kozin-Prodromou [8], for the case b1=—1.

Example 3. We shall study the system which has an addition of the dump-
ing term, by the Gaussian white noise B(t), to the right hand side of the system
(6.3):
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(6.5)

Making use of the same substitution as Example 2, we have

(6.5')

_ 262

1 3
The singular points of θ(t) are #=0, ~n~π, π> and ~n~π which have

C (i) the same natures as in Figure 12 if ^ x >0,

j (ii) the same natures as in Figure 14 if b1=0, and

^ (iii) the same natures as in Figure 11 if b1<0.

(i) If bi>0, then we have, in ll°)-(a) of Summary,

(6.6) Q(β)=(l+bι) sin θ cos θ+b2 sin2 0+~γσ2 sin20-<72 sin40 ,

(6.7)

xexp{ ^-~^β ^ Ί S T

(ii) If b1=Qt then we have, in 12°) of Summary, that

if * 1 2 = - ^ r - < l , then /(0(*O))=O(O)=O,

if ^12^1, then

(6.8)

O(0)=0

where Q(0) and ^ u ( β ) are given by (6.6) and (6.7), with ^ = 0 .
We cannot calculate (6.8), but we can know the stability of X(t) at this

time. We can solve (6.50, i.e.,

and we have, by virtue of the law of iterated logarithm, that

if b2—2~σ2>0f then x2(t) is divergent, and

if b2—2~σ2=0, then x2(t) is neither divergent nor

stable but xx(t) is divergent.
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Thus, we have that
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1
Xx°(t) is neither stable nor divergent if b2-~-σ2<0 and if θ(xo)Φθ, π,and that

it is divergent if b2—^-σ2^0 and if θ(xo)Φ0, π,

and that Xx°(t)=(x0)1, 0) if θ(xo)=0.

(iii) If b1<0f then we have, in 10°) of Summary, Q(θ) is given by (6.6) and

jθW(ψ)dψ

in which

2 sinfl
σ2 cos θ
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Appendix.

In this appendix, we show natures of all singular points, on the circumfer-
ence of the unit circle, associated with the angular component θ(t), which is give
by the equation (3.1).

We use the following notations in the figures:
h* (H) denotes that the left (right) boundary is an entrance boundary, and
h— (—»l) denotes that the left (right) boundary is an exit boundary, and

9 denotes that the left and the right boundary is a natural boundary.

Fig. 1. (II), b12>0. Fig. 2. (II), b12<0. Fig. 3. (II), b12=0.
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Fig. 4. (Ill),
d12=0, d21Φθ, b12>0.

Fig. 7. (Ill),

2φθ} fl?2i = 0, b21>0.

Fig. 10. (Ill),
dί2=d21 = 0i b12<0, b21>0.

Fig. 5. (Ill),
^12=0, fi^l^O, 6 1 2 <0.

Fig. 8. (Ill),

Fig. 11. (Ill),
d21 = Q, b12>0, b21<0.

Fig. 6. (Ill),
d12=0, d21Φθ, b12=0

Fig. 9. (Ill),

Fig. 12. (Ill),

2 = d21 = 0, b12>0, b21>0.

Fig. 13. (Ill), Fig. 14. (Ill), Fig. 15. (Ill),
21 = 0, &1 2<0, b21<0. dί2=d21 = 0, b12>0, b21=0. d12=d21=0, b12<0} b21 = 0.
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Fig. 16. (Ill),
d21 — 09 b12=Q, b2i>0.

Fig. 17. (Ill),
dί2=d21 = Q, b12=Q, b21<Q.

Fig. 18. (Ill),

2=d21=Q} b12=b21
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