N. SUITA KODAI MATH. SEM. REP. 27 (1976), 159-162

ON A METRIC INDUCED BY ANALYTIC CAPACITY II

Dedicated to Professor Yûsaku Komatu on his 60th birthday

By Nobuyuki Suita

1. Introduction. Let Ω be a plane region having nonconstant bounded analytic functions. Let $c_B(\zeta)$ be the least upper bound of $|f'(\zeta)|$, $\zeta \in \Omega$ in the class of bounded analytic functions satisfying $|f| \leq 1$ in Ω . In our earlier paper [5] of these reports we have proved that the curvature in the metric $ds_B = |c_B(\zeta)| |d\zeta|$ is not greater than -4, by making use of a supporting metric due to Ahlfors [1].

In the present paper we will show that a method of Bergman [3] provides the same result and further a more precise estimation $\kappa(\zeta) < -4$ for a finitely connected region bounded by more than one curves.

2. Extremal problems. Let Ω be a plane region bounded by a finite number of analytic Jordan curves. The class of analytic functions f such that $|f(z)|^2$ has a harmonic majorant in Ω is called the *Hardy class* of index two, denoted by $H_2(\Omega)$. Every function f in $H_2(\Omega)$ has a non-tangential boundary value almost everywhere on the boundary $\partial\Omega$ of Ω which will be denoted by the same notation $f(z), z \in \partial\Omega$. The function f(z) is measurable and square integrable on $\partial\Omega$ [4]. We define the inner product (f, g) of f and $g \in H_2(\Omega)$ by

$$(f,g) = \int_{\partial \mathcal{Q}} f(z) \overline{g(z)} |dz|.$$

Then $H_2(\Omega)$ becomes a Hilbert space. There exists the Szegö kernel function $k(z, \bar{\zeta})$ in $H_2(\Omega)$ which is characerized by the reproducing property:

(1)
$$f(\zeta) = \int_{\partial \mathcal{Q}} f(z) \overline{k(z, \bar{\zeta})} |dz|,$$

for $f \in H_2(\Omega)$ [3]. The following problems were dealt with by Bergman [3]. Consider two extremal problems:

I) Minimize $||f||^2 = (f, f)$ in the subclass of $H_2(\Omega)$ each member of which satisfies $f(\zeta)=1$ for $\zeta \in \Omega$.

II) Minimize $||f||^2$ in the subclass of $H_2(\Omega)$ each member of which satisfies $f(\zeta)=0$ and $f'(\zeta)=1$.

Received March 20, 1974.

NOBUYUKI SUITA

It is easy to prove that there exists a unique solution $F_0(z) = k(z, \bar{\zeta})/k(\zeta, \bar{\zeta})$ and that the minimum value $\lambda_0(\zeta)$ is equal to $1/k(\zeta, \bar{\zeta})$. Problem II has also a unique solution given by

$$F_{1}(z) = - \begin{vmatrix} 0 & k(z, \bar{\zeta}) & k_{\bar{\zeta}}(z, \bar{\zeta}) \\ 0 & k_{00} & k_{01} \\ 1 & k_{10} & k_{11} \end{vmatrix} / \begin{vmatrix} k_{00} & k_{01} \\ k_{10} & k_{11} \end{vmatrix}$$

and the minimum value $\lambda_1(\zeta)$ is equal to $k_{00}/(k_{00}k_{11}-|k_{01}|^2)$. Here $k_{\alpha\beta}$ denotes $\partial^{\alpha+\beta}/\partial\zeta^{\alpha}\partial\bar{\zeta}^{\beta}k(\zeta,\bar{\zeta})$. Note that $k_{01}=\bar{k}_{10}$.

In order to verify the extremality of F_1 we state a lemma which will be useful in the next section:

LEMMA. F_1 is extremal if and only if it is orthogonal to every function $g \in H_2(\Omega)$ satisfying $g(\zeta)=0$ and $g'(\zeta)=0$.

Proof. Let F be a competing function in Problem II. Set $g=F-F_1$. Then we have

$$||F_1 + \varepsilon g||^2 = ||F_1||^2 + \operatorname{Re}\{\overline{\varepsilon}(F_1, g)\} + |\varepsilon|^2 ||g||^2$$

Since ε is arbitrary we have $(F_1, g)=0$. Conversely we find from $(F_1, g)=0$

(2)
$$||F||^2 = ||F_1||^2 + ||F - F_1||^2,$$

which implies the extremality of F_1 .

It is easy to see the orthogonal property of F_1 by making use of the reproducing property (1). Moreover the identity (2) shows the unicity of the extremal function.

3. Curvature. Let $c_B(\zeta)$ be the analytic capacity of $\partial \Omega$. There exists a unique function $f_0(z)$, called the *Ahlfors function*, which satisfies $f_0'(\zeta) = c_B(\zeta)$ and $|f_0(z)| \leq 1$ in Ω . Especially, if Ω is a plane region bounded by n analytic Jordan curves, f_0 maps Ω onto an n-sheeted unit disc [2].

The curvature $\kappa(\zeta)$ in the metric $ds_B = c_B(\zeta) |d\zeta|$ is given by

$$-4rac{rac{\partial^2 \log c_B(\zeta)}{\partial \zeta \ \overline{\partial \zeta}}}{c_B(\zeta)^2} \,.$$

The differentiability of $c_B(\zeta)$ is guaranteed by the identity $c_B(\zeta)=2\pi k(\zeta, \bar{\zeta})$ [5]. A direct calculation gives

$$\kappa(\zeta) = \frac{|k_{01}|^2 - k_{00}k_{11}}{\pi^2 k_{00}^4} = -\frac{\lambda_0(\zeta)^2}{\pi^2 \lambda_1(\zeta)} .$$

We now state

(3)

THEOREM. If there exists nonconstant bounded analytic functions on Ω , the

160

curvature $\kappa(\zeta)$ is dominated by -4. Furthermore, if Ω is bounded by a finite number of Jordan curves, the equality $\kappa(\zeta)=-4$ at one point $\zeta \in \Omega$ implies that Ω is conformally equivalent to the unit disc.

Proof. We first prove the second statement. Since $\kappa(\zeta)$ is conformally invariant we may suppose that Ω is a bounded region whose boundary consists of a finite number of analytic Jordan curves. By (3) we have

$$\kappa(\zeta) \!=\! - \! rac{1}{\pi^2 \|F_1\|^2 k_{00}^3}$$
 ,

 F_1 being the extremal function in Problem II. We take a competing function

$$\varphi(z) = \frac{f_0(z)k(z, \bar{\zeta})}{2\pi k_{00}^2}$$

in the same problem. Then we have

$$\|F_1\|^2 \leq \|\varphi\|^2 = \frac{1}{4\pi^2 k_{00}^3}$$

and hence $\kappa(\zeta) \leq -4$. Suppose the number of boundary components of Ω is greater than one. Then the Ahlfors function $f_0(z)$ has at least one zero point ζ_1 other than ζ , say. We use

$$g(z) = \frac{(z-\zeta)f_0(z)}{z-\zeta_1}$$

as a test function in Lemma. We shall show that the integral

(4)
$$\int_{\partial \mathcal{Q}} g(z)\overline{\varphi(z)} |dz| = \frac{1}{2\pi k_{00}^2} \int_{\partial \mathcal{Q}} g(z)\overline{f_0(z)k(z,\bar{\zeta})} |dz|$$

does not vanish which implies that φ is not extremal. The Szegö kernel function $k(z, \bar{\zeta})$ of Ω has its adjoint kernel $l(z, \zeta)$ which is regular in Ω except for a simple pole at ζ with residue $(2\pi)^{-1}$ and never vanishes [3]. $k(z, \bar{\zeta})$ and $l(z, \zeta)$ satisfies a fundamental relation

$$l(z, \zeta)dz = ik(z, \overline{\zeta})|dz|$$

along $\partial \Omega$ [3]. Then we find that the integral (4) is equal to

$$\frac{1}{2\pi i k_{00}^2} \int_{\partial \mathcal{Q}} \frac{z-\zeta}{z-\zeta_1} l(z,\zeta) dz = \frac{(\zeta_1-\zeta)l(\zeta_1,\zeta)}{k_{00}^2} \neq 0.$$

This means that $\kappa(\zeta) < -4$.

To prove the first statement, we take a canonical exhaustion $\{\Omega_n\}$ of Ω , each member of which is bounded by a finite number of analytic Jordan curves. The sequence of Szegö kernel functions $k_n(z, \bar{\zeta})$ of Ω_n converges to a function $k(z, \bar{\zeta})$. The convergence is uniform on every compact subset of $\Omega \times \Omega$ as a sequence of functions analytic in z and $\bar{\zeta}$ [5]. Therefore the sequence of curvatures $\kappa_n(\zeta)$ in Ω_n converges to $\kappa(\zeta)$ in Ω . Thus we have $\kappa(\zeta) \leq -4$.

NOBUYUKI SUITA

References

- AHLFORS, L. V., An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
- [2] AHLFORS, L. V., Bounded analytic functions, Duke Math. J., 14 (1947), 1-14.
- [3] BERGMAN, S., The kernel function and conformal mapping, Math. Surveys 5, Amer. Math. Soc. Providence, R. I. (1950).
- [4] RUDIN, W., Analytic functions of class H_p. Trans. Amer. Math. Soc., 78 (1955), 46-66.
- [5] SUITA, N., On a metric induced by analytic capacity, Kodai Math. Sem. Rep., 25 (1973), 215-218.

Department of Mathematics Tokyo Institute of Technology