# ON A METRIC INDUCED BY ANALYTIC CAPACITY II 

Dedicated to Professor Yûsaku Komatu on his 60th birthday

By Nobuyuki Suita

1. Introduction. Let $\Omega$ be a plane region having nonconstant bounded analytic functions. Let $c_{B}(\zeta)$ be the least upper bound of $\left|f^{\prime}(\zeta)\right|, \zeta \in \Omega$ in the class of bounded analytic functions satisfying $|f| \leqq 1$ in $\Omega$. In our earlier paper [5] of these reports we have proved that the curvature in the metric $d s_{B}=$ $\left|c_{B}(\zeta)\right||d \zeta|$ is not greater than -4 , by making use of a supporting metric due to Ahlfors [1].

In the present paper we will show that a method of Bergman [3] provides the same result and further a more precise estimation $\kappa(\zeta)<-4$ for a finitely connected region bounded by more than one curves.
2. Extremal problems. Let $\Omega$ be a plane region bounded by a finite number of analytic Jordan curves. The class of analytic functions $f$ such that $|f(z)|^{2}$ has a harmonic majorant in $\Omega$ is called the Hardy class of index two, denoted by $H_{2}(\Omega)$. Every function $f$ in $H_{2}(\Omega)$ has a non-tangential boundary value almost everywhere on the boundary $\partial \Omega$ of $\Omega$ which will be denoted by the same notation $f(z), z \in \partial \Omega$. The function $f(z)$ is measurable and square integrable on $\partial \Omega$ [4]. We define the inner product $(f, g)$ of $f$ and $g \in H_{2}(\Omega)$ by

$$
(f, g)=\int_{\partial \Omega} f(z) \overline{g(z)}|d z|
$$

Then $H_{2}(\Omega)$ becomes a Hilbert space. There exists the Szegö kernel function $k(z, \bar{\zeta})$ in $H_{2}(\Omega)$ which is characerized by the reproducing property:

$$
\begin{equation*}
f(\zeta)=\int_{\partial \Omega} f(z) \overline{k(z, \bar{\zeta})}|d z|, \tag{1}
\end{equation*}
$$

for $f \in H_{2}(\Omega)$ [3]. The following problems were dealt with by Bergman [3].
Consider two extremal problems:
I) Minimize $\|f\|^{2}=(f, f)$ in the subclass of $H_{2}(\Omega)$ each member of which satisfies $f(\zeta)=1$ for $\zeta \in \Omega$.
II) Minimize $\|f\|^{2}$ in the subclass of $H_{2}(\Omega)$ each member of which satisfies $f(\zeta)=0$ and $f^{\prime}(\zeta)=1$.

Received March 20, 1974.

It is easy to prove that there exists a unique solution $F_{0}(z)=k(z, \bar{\zeta}) / k(\zeta, \bar{\zeta})$ and that the minimum value $\lambda_{0}(\zeta)$ is equal to $1 / k(\zeta, \bar{\zeta})$. Problem II has also a unique solution given by

$$
F_{1}(z)=-\left|\begin{array}{lll}
0 & k(z, \bar{\zeta}) & k_{\bar{\zeta}}(z, \bar{\zeta}) \\
0 & k_{00} & k_{01} \\
1 & k_{10} & k_{11}
\end{array}\right| /\left|\begin{array}{ll}
k_{00} & k_{01} \\
k_{10} & k_{11}
\end{array}\right|
$$

and the minimum value $\lambda_{1}(\zeta)$ is equal to $k_{00} /\left(k_{00} k_{11}-\left|k_{01}\right|^{2}\right)$. Here $k_{\alpha \beta}$ denotes $\partial^{\alpha+\beta} / \partial \zeta^{\alpha} \partial \bar{\zeta}^{\beta} k(\zeta, \bar{\zeta})$. Note that $k_{01}=\bar{k}_{10}$.

In order to verify the extremality of $F_{1}$ we state a lemma which will be useful in the next section:

Lemma. $F_{1}$ is extremal if and only if it is orthogonal to every function $g \in H_{2}(\Omega)$ satisfying $g(\zeta)=0$ and $g^{\prime}(\zeta)=0$.

Proof. Let $F$ be a competing function in Problem II. Set $g=F-F_{1}$. Then we have

$$
\left\|F_{1}+\varepsilon g\right\|^{2}=\left\|F_{1}\right\|^{2}+\operatorname{Re}\left\{\bar{\varepsilon}\left(F_{1}, g\right)\right\}+|\varepsilon|^{2}\|g\|^{2} .
$$

Since $\varepsilon$ is arbitrary we have $\left(F_{1}, g\right)=0$. Conversely we find from $\left(F_{1}, g\right)=0$

$$
\begin{equation*}
\|F\|^{2}=\left\|F_{1}\right\|^{2}+\left\|F-F_{1}\right\|^{2}, \tag{2}
\end{equation*}
$$

which implies the extremality of $F_{1}$.
It is easy to see the orthogonal property of $F_{1}$ by making use of the reproducing property (1). Moreover the identity (2) shows the unicity of the extremal function.
3. Curvature. Let $c_{B}(\zeta)$ be the analytic capacity of $\partial \Omega$. There exists a unique function $f_{0}(z)$, called the Ahlfors function, which satisfies $f_{0}{ }^{\prime}(\zeta)=c_{B}(\zeta)$ and $\left|f_{0}(z)\right| \leqq 1$ in $\Omega$. Especially, if $\Omega$ is a plane region bounded by $n$ analytic Jordan curves, $f_{0}$ maps $\Omega$ onto an $n$-sheeted unit disc [2].

The curvature $\kappa(\zeta)$ in the metric $d s_{B}=c_{B}(\zeta)|d \zeta|$ is given by

$$
-4 \frac{\frac{\partial^{2} \log c_{B}(\zeta)}{\partial \zeta \partial \zeta}}{c_{B}(\zeta)^{2}} .
$$

The differentiability of $c_{B}(\zeta)$ is guaranteed by the identity $c_{B}(\zeta)=2 \pi k(\zeta, \bar{\zeta})$ [5]. A direct calculation gives

$$
\begin{equation*}
\kappa(\zeta)=\frac{\left|k_{01}\right|^{2}-k_{00} k_{11}}{\pi^{2} k_{00}{ }^{4}}=-\frac{\lambda_{0}(\zeta)^{2}}{\pi^{2} \lambda_{1}(\zeta)} . \tag{3}
\end{equation*}
$$

We now state
Theorem. If there exists nonconstant bounded analytic functions on $\Omega$, the
curvature $\kappa(\zeta)$ is dominated by -4 . Furthermore, if $\Omega$ is bounded by a finite number of Jordan curves, the equality $\kappa(\zeta)=-4$ at one point $\zeta \in \Omega$ implies that $\Omega$ is conformally equivalent to the unit disc.

Proof. We first prove the second statement. Since $\kappa(\zeta)$ is conformally invariant we may suppose that $\Omega$ is a bounded region whose boundary consists of a finite number of analytic Jordan curves. By (3) we have

$$
\kappa(\zeta)=-\frac{1}{\pi^{2}\left\|F_{1}\right\|^{2} k_{00}^{3}},
$$

$F_{1}$ being the extremal function in Problem II. We take a competing function

$$
\varphi(z)=\frac{f_{0}(z) k(z, \bar{\zeta})}{2 \pi k_{00}^{2}}
$$

in the same problem. Then we have

$$
\left\|F_{1}\right\|^{2} \leqq\|\varphi\|^{2}=\frac{1}{4 \pi^{2} k_{00}^{3}}
$$

and hence $\kappa(\zeta) \leqq-4$. Suppose the number of boundary components of $\Omega$ is greater than one. Then the Ahlfors function $f_{0}(z)$ has at least one zero point $\zeta_{1}$ other than $\zeta$, say. We use

$$
g(z)=\frac{(z-\zeta) f_{0}(z)}{z-\zeta_{1}}
$$

as a test function in Lemma. We shall show that the integral

$$
\begin{equation*}
\int_{\partial \Omega} g(z) \overline{\varphi(z)}|d z|=\frac{1}{2 \pi k_{00}^{2}} \int_{\partial \Omega} g(z) \overline{f_{0}(z) k(z, \bar{\zeta})}|d z| \tag{4}
\end{equation*}
$$

does not vanish which implies that $\varphi$ is not extremal. The Szegö kernel function $k(z, \bar{\zeta})$ of $\Omega$ has its adjoint kernel $l(z, \zeta)$ which is regular in $\Omega$ except for a simple pole at $\zeta$ with residue $(2 \pi)^{-1}$ and never vanishes [3]. $k(z, \bar{\zeta})$ and $l(z, \zeta)$ satisfies a fundamental relation

$$
l(z, \zeta) d z=i \overline{k(z, \bar{\zeta})|d z|}
$$

along $\partial \Omega$ [3]. Then we find that the integral (4) is equal to

$$
\frac{1}{2 \pi i k_{00}^{2}} \int_{\partial \Omega} \frac{z-\zeta}{z-\zeta_{1}} l(z, \zeta) d z=\frac{\left(\zeta_{1}-\zeta\right) l\left(\zeta_{1}, \zeta\right)}{k_{00}^{2}} \neq 0 .
$$

This means that $\kappa(\zeta)<-4$.
To prove the first statement, we take a canonical exhaustion $\left\{\Omega_{n}\right\}$ of $\Omega$, each member of which is bounded by a finite number of analytic Jordan curves. The sequence of Szegö kernel functions $k_{n}(z, \bar{\zeta})$ of $\Omega_{n}$ converges to a function $k(z, \bar{\zeta})$. The convergence is uniform on every compact subset of $\Omega \times \Omega$ as a sequence of functions analytic in $z$ and $\bar{\zeta}$ [5]. Therefore the sequence of curvatures $\kappa_{n}(\zeta)$ in $\Omega_{n}$ converges to $\kappa(\zeta)$ in $\Omega$. Thus we have $\kappa(\zeta) \leqq-4$.

## References

[1] Ahlfors, L. V., An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
[2] Ahlfors, L. V., Bounded analytic functions, Duke Math. J., 14 (1947), 1-14. [3] Bergman, S., The kernel function and conformal mapping, Math. Surveys 5, Amer. Math. Soc. Providence, R. I. (1950).
[4] Rudin, W., Analytic functions of class $H_{p}$. Trans. Amer. Math. Soc., 78 (1955), 46-66.
[5] Suita, N., On a metric induced by analytic capacity, Kōdai Math. Sem. Rep., 25 (1973), 215-218.

Department of Mathematics
Tokyo Institute of Technology

