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Introduction. In a nonlinear Volterra integral equation

we formally differentiate (1) to obtain an integro-differential equation

(2) x\t)=f'(t)+K(t, t, x(t))+j lKt{ty s, x(s))ds ,

where Kt(t, s, x)=dK(t, s, x)/dt If the function K does not explicity contain a
variable t, the equation (2) is reduced to a differential equation. Hence the
results concerning (1) or (2) are the generalizations of those corresponding to
differential equations. As for the results in differential equations, for example,
see [2].

The purpose of this paper is, at first, to obtain some comparison theorems
for the integral equation

(3) u(t)

or

(4) u'(t)=f'(t)+g(t, t, u(t))+ f lgt(tf s, u(s))ds

with or without the monotonicity of g(t, s, u) in u, where u is a real variable,
and then to show that some of them may be applied to the study of the
asymptotic behaviors of solutions and also to the successive approximation
method for (1).

§ 1. Comparison theorems. As to the comparison theorems or existence of
the maximal solution for (3), it is usually assumed that g(t, s, u) is nondecreasing
in u. For example, see [3]. The following result shows the existence of the
maximal solution without the monotonicity of g(t, s, u) in u. It is, however,
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assumed that fit) is differentiable and gt(t, s, u)=dg(t, s, u)/dt is nondecreasing
in u.

THEOREM 1. Suppose that the following conditions are satisfied:
(i) fit) is differentiable for O^t^a with values in an open subset E of

R={x; — oo<χ<oo};
(ii) g(t,s,u) and gtit,sfu) are continuous for O^s^t^a and u<=E, \g(t,s,u)\

fgM, and gt(t, s, u) is nondecreasing in u for any fixed t, s.
Then there exists a constant « G ( 0 , a] such that the equation (3) has a con-

tinuous solution on [0, a]. Furthermore there exists a solution u*(t) of (3) such
that the inequality u(t)^u*(t) is satisfied on [0, a] for any solution u(t) of (3).

Proof Let β be an arbitrary number in (0, a). It is easily observed that
there exist a constant εo>O and a compact subset K of E such that every con-
tinuous function u(t) satisfying \u(t)—f(t)\^εQ (fl^t^β) belongs to K. If we
choose α=min(/3, εo/M), by the usual method, it follows that the continuity of
f(t) and git, s, u) implies the existence of continuous solutions of (3) on [0, α].

We next prove the existence of the maximal solution of (3) on [0, a]. To
this end, for any constant ee(0, ε0) we consider an integral equation

(5) u(t)=f(t)+e+j\g(t, s, u(s))+ε)ds.

Then for any ^e(0, α), if we choose ε sufficiently small, for example, if
γ<miniβ, (ε0—ε)/(M+ε))^α, there exists a continuous solution u(t, ε) of (5) on
[o, rϊ.

Let u{t) and u(t, ε) (O^t^γ) be the continuous solutions of (3) and (5) re-
spectively. Then it is clear that u(t) and u(t, ε) are the solutions of the following
integro-differential equations respectively:

(6) *(t)=f'(t)+g(t, t, M(0)+jVt(ί, 5, u(s))ds , κ(0)=/(0),

(7) u'(t)=f'(t)+g(t, t, u(t))+ε+ f V*(ί, s, u(s))ds , κ(0)=/(0)+6 .
J o

We first prove an inequality u(t)^u(t, ε) (0<Lt^γ). Let ί*=inf {ίe[0, γl;
u(t)^u(t, ε)}. It is clear that 0<t*£γ, since w(0)<w(0, ε). We claim that t*=γ.

On the contrary, suppose that 0<t*<γ. From the continuity of solutions,
we have u(t*)=u(t*, ε) and u(t)^u(t, ε) (O^t^t*). Then

f'(t*)+g(t*, t*, u(t*))+Cgt(t*, s, uis))ds
J 0

=um= lim y ^ limί—ί*—o Γ—Γ ί—t*-o * ~ " £

=M'(ί*, s)=/'(i*)+g-(i*, ί*, M(ί*, β))+e+f "ft(f, s, M(S,
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which is a contradiction, since ε>0, u(t*)=u(t*, ε), and gt(t*,s,u) is non-
decreasing in u. Hence t*=γ.

Let {εn}n=i be a decreasing sequence such that εn-+0 (n—>oo). Then by
means of the same reason as above, it follows that the corresponding sequence
of solutions, {u(t, εn)}~=1, is nonincreasing on [0, γ~]. Since the family of functions,
{u(t, εn)}, is equicontinuous and uniformly bounded on [0, f], the sequence itself
converges uniformly on [0, γ~]. It is clear that the limiting function u*(t) is a
solution of (3) on [0, γ], and satisfies an inequality u(t)^u*(t) (O^t^γ) for any
solution u(t) of (3). Since γ^(0, a) is arbitrary, we obtain the required result.

If f(t) is a constant, we obtain the following result, for which the proof of
the existence of solutions may be done as an easy application of the Schauder-
Tychonov's fixed point theorem.

COROLLARY. Suppose that
( i) g(t,s,u) is continuous for O^s^t^a and \u—uo\^b, and \g(t, s,u)\^M
(ϋ) gt(t,s,u) ι s continuous for O^s^t^a and \u—uo\t^b, and nondecreasing

in u for any fixed t, s.
Then there exists the maximal solution of

u(t)=uo+Cg(t,s,u(s))ds
J 0

on [0, α], where α=min(α, b/M).

The following result is a comparison theorem without the assumption of the
monotonicity of g(t, s, u) in u.

THEOREM 2. In addition to the hypothese in Theorem 1, suppose that m(t)
is a continuous function on [0, aQ, and satisfies an inequality

D+m(t)£f(t)+g(t, t, m(t))+j^gt(t, 5, m(s))ds

on [0, α], where a is the same number as in Theorem 1, and D+m(t) represents
a Dini's derivative such that

Then the inequality m{t)^u*(t) is satisfied on [0, α], provided that m(0)

Proof. It is sufficient to prove an inequality m(t)^u(t, ε) on [0, γ], where
fe(0, a) is an arbitrary number and u(t, ε) is a solution of (5) existing on [0, γ]
for suffiently small ε. Let ί*=inf {fe[0, γ] m(t)^u(t, ε)}. It is clear that
0<t*^γ since m(0)</(0)+e=M(0, ε). We claim that t*=γ.

On the contrary, suppose that 0<t*<γ. Then from the definition of f*
there exists a decreasing sequence {ίn}~=i such that tn-+t* (n— ôo) and m(tn)
^u(tn, ε). By the continuity of m(t) and u(t, ε), we have m(f*)=tt(f*, ε). Hence
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f'(t*)+g(.t*, t*, m(f*))+(""&(**, s, m(s))ds
J 0

S, e))ds,

which is a contradition, since ε>0, m(t*)=u(t*, ε), and &(£*, 5, w) is nondecreasing
in u. Hence t*=γ. By the monotonicity of u(t, ε) in ε, we obtain m(t)^u*(t)
on [0, γ] as ε-^0. Since ^e(0, α) is arbitrary, we obtain the required result.

§ 2. Applications of comparison theorem. In this section, we will show
some applications of Theorem 2. The following result will be useful for the
study of asymptotic behaviors of solutions of (3) as in the theory of differential
equations.

THEOREM 3. Suppose that the following conditions are satisfied:
( i ) g(t,s,u) and gt(t,s,u) are continuous for O^s^t<oo and 0^w<oo, and

gt{t, s, u) is nondecreasing in u for any fixed ί, s
(ii) K(t, s,x) and Kt(t, s, x) are continuous for O^sfgί<oo and x^Rn

(iii) V(t, x) is a nonnegative function continuous for [0, oo)xRn and locally
Lipschitzian in x, a(r) is nonnegative, continuous, and strictly increasing for

o, and an inequality

(8) a(\x\)^V(t,x)

is satisfied for [0, oo)χi?w;
(iv) for any solution x{t) of

(9) x(t)=xo+ Cκ(t,s,x(s))ds,
J 0

an inequality

DV(t, x(t))^g(t, t9 V(t, * ( 0 ) ) + j W , s, V(s, x(s)))ds

is satisfied, where

DV(t, xV))=ΪJm-Jr(v(t+h, x(t)+h(K(t, t, x(ή)

+l\{t, s, xίs))ds))-V(t,

(v) u*it) is the maximal solution of

(10) M(f)=uβ+ft£(f,s,tt(s))ds
Jo

existing for [0, oo).
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Then for any solution x(t) of (9), the inequality

V(t,

is satisfied, provided that F(0, xo)^uo.

Proof By the standard method, it follows that for any given ε>0 sufficiently
small there exists a solution u(t, ε) of

u(t)=uo+ε+C(g(t, s, u(s))+ε)ds

for [0, oo). It is easily observed that there exists an interval [0, a), in which
the equation (9) has a continuous solution x(t). Hence we first prove an in-
equality V(t, x(t))^u(t, ε) for 0^t<a.

Let rn(t)=V(t, x(t)). From the hypotheses (iii) and (iv),

D+m(t)= fi£-J-(7(f+λ, x(t+h))-V(t,

= M^-(v(t+h, x(t)+h(K(t, t,

+J \{t, s, x(s))ds)+o(h))-V(t,

t, x(t))^g(t, t, m(t))+Cgt(t, s, m(s))ds.
J 0

Hence by Theorem 2, it follows that m(t)^u(t, ε) (0^t<a), provided that m(0)
= "̂ (0, xo)<uo+ε=u(0, ε). Thus the inequality V(t, x(t))^u*(t) (O^Kα) is obtained
as ε->0.

We next prove that under the condition (8) the solution x(t) is continuable
to the whole interval 0^£<oo. On the contrary, suppose that there exists a
finite interval [0, t*) (0<ί*<oo), in which the solution x{t) of (9) exists, but it
is not continuable to the right beyond t=t*.

For any fixed T>ί*, the solution u*(t) is bounded on [0, T]. Hence, if
u*(t)^M on [0, T], the function K(t, s, x) is bounded for O^s^ί^T and \x\^Lf

where L>a~\K) is a fixed constant. Then by the usual method, it follows that
the limit of x(t) as t—>ί*—0 exists and x(t) is continuable to the right beyond
f=ί*, which is a contradiction. Hence we have ί*=oo and V(t, x(t)) ̂ u(t, ε) for

. The required result is immediately obtained as ε—»0.

COROLLARY. g=0 is admissible in Theorem 3, and V(t, x(t))^=V(0, xo) (0^
t<oo).

By means of the same method as above, we easily obtain the following

THEOREM 4. Suppose that the following conditions are satisfied:
( i) g(t, s, u), V(t, x), and K(t, s, x) satisfy the conditions (i), (ii), (iii) in

Theorem 3;
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(ii) φ(r) is nonnegative and continuous for 0^r<oo and an inequality

DV(t, x(t))+φ(\x(t)\)^g(t, t, \x(t)\)+Cgs(t, s, \xis)\)ds,

is fulfilled for any continuous solution x(t) of (9).
Then the inequality

V(t, *(*))+J V(Ws)|)rfsgiί*(O,

holds, provided that F(0, xo)^uo, where u*(t) is the maximal solution of (10).

The following result is a direct consequence of Theorem 2 which assures
the uniqueness of solutions.

THEOREM 5. Suppose that the following conditions are satisfied:
( i) f{t) is differentiate for O^t^a
(ii) K(t, s, x), Ktit, s, x) are continuous for O^s^t^a and x<=Rn

(iii) git, s, u), gtit, s, u) are continuous for O^s^t^a and 0gw<oo, gtitf s, u)
is nondecreasing in u for any fixed t and s, git, s, 0 ) Ξ 0 , and an inequality

Kit, t, xit))-Kit, t, yit))+j\κtit, s, xis))-Ktit, s, y(s)))ds

tit,s, \xis)-yis)\)ds

is satisfied for any continuous solutions xit) and yit) of

(11) xit)=fit)+^Kit, s, xis))ds

existing on O^ί^α (̂ Ξ
(iv) w(ί)=0 is the maximal solution of

(12) u(t)=Cg(t,s,u(s))ds.
J 0

Then the integral equation (11) has at most one solution.

Proof Let xit) and yit) be two solutions of (11) and m(ί)= I xit)—yit) \. Then

= |/f(i, t, xit))-Kit, t, y(t))+j\κt(t, s, xis))-Ktit, s, y(s)))ds

^git, t, m(t))+j^gt(t, s, m(s))ds.

Hence by Theorem 2, it follows that m(f)^w*(f), where u*it) is the maximal
solution of (12) which is identicaly equal to zero. This implies xit)=yit).



COMPARISON THEOREMS 153

§ 3. Successive approximation method. As in the theory of differential
equations, in order to apply comparison theorems to the successive approxi-
mation method originally due to Wazewsky, it is necessary to establish a com-
parison theorem, in which the monotonicity of g(t, s, u) in u is assumed. By
means of the same reason as before, the following Lemma will easily be proved.

LEMMA. Suppose that
(i) sit, s, u) is continuous for O^s^ί^α and O^u^b, 0^g(t, s, u)^M, and

nondecreasing in u for any fixed t, s;
(ii) m(t) is a continuous function satisfying an inequality

(13) rn(t)^

on [0, a], where α=min (α, b/M).
Then an inequality mit)^Lu*it) (O^t^a) is satisfied, where u*(t) (O^t^a) is

the maximal solution of (12).

THEOREM 6. Suppose that the following conditions are satisfied:
( i ) fit) is continuous on O^t^a;
(ii) K(t, s, x) is defined and continuous for O^s^t^a, x^Rn, and \K(t, s, x)\

^M for any t, s, x;
(iii) in addition to the assumptions in Lemma, g(t, s, 0)ΞΞ0 for any t, s, and

the integral equation (12) has the unique solution u(t)=0;

(iv) \K(t, s, x)-K(t, s,y)\^g(t, s, \x-y\)

for any t, s, x, y.
Then the sequence {#*(*)}£=<> defined by

*o(O=/(O,

j^(t, s, xk(s))ds (ft=0, 1, •••)

is well defined on [0, α] as continuous functions on [0, a], where α=min(α, b/M).
Furthermore, the sequence {**(£)}£=o converges uniformly to the unique solution
of the integral equation

(14) x(t)=f(t)+$^K(t, s, x(s))ds

on [0, α].

Proof. In order to prove the above result, the analogous method to that in
[1] will be used.

By the easy induction, it is clear that every function xk(t) is well defined
on [0, α] as a continuous function.

We now define a sequence {uk(t)}^=Q on [0, α] as follows:
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M,(ί)=Afί,

uk+1(t)= Γ 'git, s, uk(s))ds (k=0,1, •••).
J 0

Then every function uk(t) is well defined as a continuous function, and by the
induction, it is easily proved that O^uk+I(t)^uk(t) (k=Q, 1, •••) are satisfied on
CO, α ] .

From the properties of g, it follows that the sequence {w*(O}?=o is uniformly
bounded and equicontinuous. Since the sequence is nonincreasing, the sequence
itself converges uniformly on [0, a]. It is clear that the limiting function is a
solution of (12), which is supposed to be unique and identically equal to zero.

Now from the definitions of {Xk(t)}t=o, {uk(t)}^, and the monotonicity of g,
it follows by the induction that \xk+i(t)-xk(t)\^uk(t) (k=0,1, •••) on [0, a].
Hence, if we put φ(t)—)\^\xk+1(t)—xk(t)\1 by the uniform convergence of uk(t)

to zero, the above inequality yields φ(t)=O (O^t^a), which implies that the
sequence {**(f)}?=o converges uniformly on [0, a]. If we denote by x*(t) the
limiting function, it is clear that x*(ί) is a continuous solution of (14).

We next prove the uniqueness of solutions. Suppose that there are two
solutions x(t) and y(f) of (14). Then we have

I x(t)-y(t) I ^ f V ( ί , s, x(s))-K(t, s, y(s)) \ ds
0

r(t,s, \x(s)-y(s)\)ds.

If we put m(t)=\x(t)—y(t)\, we have an inequality

rn(t)^Cg(t,s,rn(s))ds.
J 0

Then by the above lemma, it follows that the inequality m(t)^Lu*(t) (0^t<La)
is satisfied for the maximal solution w*(ί) of (12), which is identically equal to
zero. Hence m(f)=0, which implies x{t)=y(t) ( O ^ ί ^ α ) .
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