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INTEGRABILITY CONDITIONS FOR
POLYNOMIAL STRUCTURES

By JiRi VANZURA

0. Let f be a tensor field of type (1, 1) defined on a differentiable manifold
and satisfying there a polynomial equation

fn+a1fn—l+ o +an—1f+anI:0

with constant coefficients. Under the assumption that the polynomial £"+a,&"*
+ - +a,_,£+a, has only simple roots we give two necessary and sufficient
conditions for the integrability of the tensor field f. The integrability conditions
presented in the paper generalize those known for various structures on mani-
folds (e.g. almost complex, almost contact, almost product structure etc.). All
differentiable structures involved are supposed to be of class C*.

1. We consider a connected differentiable manifold M. A tensor field f of
type (1, 1) on M is called polynomial structure on M if it satisfies the equation

R(H)=f"+a,f*7 4 - +api fHa,1=0

where a,, -+, a, are real numbers and I denotes the identity tensor of type (1, 1).
By f* we understand here the compOsition fo---of., The polynomial R(&)=
2

kX
&"+a &+ - +a,_&+a, we shall call characteristic polynomial of the structure.
We suppose moreover that R(£) is the minimal polynomial of the endomorphism
Jo: To(M)-T,(M) for any x M.
Decompose the polynomial R(¢) into the prime factors

R(&)=Ri(&) -+ RL(E)R{(§) -+ R{(&)
where
Ri(&)=(6—b)"; kizl, 1=1,-,r,

RUO=(E+2e8+d)7; 21, —d,;<0, j=1, 5.

The polynomials §—b;; i=1,-+,7, as well as the polynomials &*+2c¢;é+d,;
j=1, -, s are pairwise distinct.
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Let T,(M) denote the tangent space of M at x. We define r+s subspaces
(D). and (DY), of T,(M) by

(D).=Ker R{(f.), (D)),=Ker Rj(fz).

Both (D), and (Dj), are obviously invariant under f,, and the tangent space
T,(M) can be decomposed

To(M)=(D):D -+ BD7)BD)D -+ DDz,

i(&) and R}(&) are the minimal polynomials of the restrictions of f, to (D), and
(DY), respectively.

PROPOSITION 1. There exist uniquely determined polynomials Q}, Q7 such that
for any xeM there is
(1) (Pi=(P)z, (PF=(P))s,
(Pi)z(Pip)z=(P5)(P1,)=0 for i,#1,,
(P7)o(P)e=(P,)o(P})=0 for j,#7.,
(Po(P))e=(P)x(P1).=0,
SPDAZPN=1,
Im (P),=(D7), Im (P7),=(Dj),
where (P),=Qi(f2), (P):=Q7(fa).

(i) deg Q;<deg R, deg Q) <deg R, where deg denotes degree of polynomaal.

Proof. Let us introduce the polynomials Viz%, V‘//:—%,T, 1=1, -+, 7;
2 J

j=1,---,s. Their greatest common divisor is obviously equal to 1 and thus we
can find polynomials W,, W/ such that

SWLVik EWiVy=1.
1= J=

Writing Wi=S;R;+T,, W/=S/RY+T7 with deg T;<deg R, and deg T/ <deg R}
we set

=TIV, Q=TiVy.
The details of the proof are left to the reader.

Proposition 1 implies immeditely that P;, P} are tensor fields of class C=,
and hence we get easily

COROLLARY. dim Dj (dim D7) 1s constant on M and thus (Di,--+, D], D{,--+, DY)
is an almost product structure.

We shall call it almost product structure associated with the polynomal
structure f. Obviously P;, P/ are the projectors corresponding to this almost
product structure.
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2. Let N be a differentiable manifold and g, & be two tensor fields of type
(1, 1) on N such that gh=hg. We introduce a tensor field on N by

{g, B}(X, Y)=[gX, hY J+gh[ X, Y]—glX, hY]—h[gX, Y]

where X, Y are vector fields on N. One can easily check that this definition is
good.

Now let an almost complex structure J be given on N. We recall that a
vector field X on N is called infinitesimal automorphism of J if there is Ly/=0
where Ly denotes the Lie derivative along X. In other words X is an infini-
tesimal automorphism of J if and only if for any vector field Y on N there is

0=(LxNY)=Lx(JY)=JLxY=[X, JYI-J[X Y].

PROPOSITION 2. Let X be an wnfinitesimal automorphism of J, and let g be
a tensor field of type (1,1) such that gJ=Jg. Then gX is an wnfinitesimal auto-
morphism of J 1f and only if there is {g, J}(X, Y)=0 for any vector field Y.

Proof follows immeditely from the equality
(Lex)(Y)=[gX, JY1—J[gX, Y]
={g J}(X, Y)—gJ[X, Y]+g[X, JY]
={g, }(X Y).

From now to the end of the parahraph we shall suppose that the almost
complex structure Jon N is integrable, i.e. that N is a complex manifold. In such
a case there is an isomorphism from the Lie algebra of all infinitesimal auto-
morphisms of J onto the Lie algebra of all holomorphic vector fields on N given

by X—»Z:%(X——UX). Via this isomorphism we get from Proposition 2.
COROLLARY 2. Let N be a manifold with a complex structure J on it, and

let g be a tensor field of type (1,1) on N such that gJ=Jg and {g, J}=0. Now
if Z is a holomorphic vector field on N, then the field gZ is also holomorphic.

Consider now an almost product structure (Dy,--,D,) on N with all the
distributions D, invariant under J, i.e. J(D,)=D,, 1=1,---,t. Such a structure
we may call complex almost product structure. If we denote by P, the cor-
responding projectors, we can easily see that there is P, /=/P,. Let dim D;=2n,,

13

n=>n,. We shall say that a complex almost product structure (D, ---,D,) is
=1

integrable if to any point of N there exists its open neighbourhood U with a
complex chart (2, -+, 2,) on it such that for any yeU, 1=<:<t there is

(D)y={XeT,(N); (dz,),(X)=0,
1==j=n4 - 40,0y, ny+ o Fn+1575n0} .
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To avoid possible confusion, remark here that X denotes real tangent vector
at y.

ProposITION 3. Let (Dy,---,D,) be a complex almost product structure on a
complex manifold N. Then (D, -, D;) is integrable if and only 1f

(i) [P, P,]=0, 1<1, j<t where [ , ] denotes Nijenhuis torsion,

() (P, J}=0, 11t

Proof. 1t is easy to see that the both conditions are necessary. Let us prove
that they are also sufficient. Take any x&N. By virtue of (ii) and Corollary 2
we can find an open neighbourhood U of x and lineraly independent holomorphic
1-forms oy, --+, @, no it such that for any yeU, 1<i<t there is

D)y={XETy(N); (,),(X)=0;
1<jEn+ - 40y, ny4 o 40, +157<n0} .

For n,.,4+1=j<n, (we take n,=0) we can write

ni—1+ng
do,= 3 v A0+ 2 a0, Aw,

U=ny -1+1 U<
where ¢% are holomorphic 1-forms and % holomorphic functions on U. Recall
that the condition (i) is a necessary and sufficient condition for the integrability
of the almost product structure (D, ---, D,) considered as a real one (see [3]).
Hence we obtain a3’=( for the all u, v in question. Now applying the complex
version of the Frobenius theorem we find that there exist a smaller neighbour-
hood U’'CU of x and holomorphic functions g, -+, g, defined on U’ such that
for n,_+1<7<n,.,+n,, 1=1,---,t there is

Ty —1tNg

w=n;-1+1
where h* are holomorphic functions on U’. It is clear that (g, -+, &,) is a com-
plex chart on U’ having the properties required in the definition of integrability
of a complex almost product structure (D, ---, D,).

3. Beginning with this section we shall deal with those polynomial struc-
tures only, the characteristic polynomial of which has only simple roots. Keep-
ing the notations from paragraph 1 we have then

R:(S):'S_bz ; 1:1, LT,
Rj(§)=¢&42¢,6+d,;  j=1,-,s.

S

We denote n{=dim D), n}=-5- dim D}, A=, fi=%ny, n=ii+2i=dim M. The
1= J=1

restriction f7 of f to D} satisfies f7?+2¢c,f/+d,[;=0, where I, denotes the
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identity automorphism of D7, and we can introduce an almost complex structure
J7 on D} by setting
]” fl/_l_cj
Vd;—ct
On the other hand from this formula we obtain f}=~'d;—c%J]—c,I,. Therefore
it is quite natural to take the following

DEFINITION 1. A polynomial structure f on M is called integrable if to any
point of M there exists its open neighborhood U with a chart (xy,---,x,) on it
such that the matrix expression of f with respect to this chart is

C1Ini
0-.: 0 —c ]// Vd;—c Ly
......... c. I J H J 7
S where K;=
2 0 Vd;—c; In” - Ing’
0 o

K,
I, denotes here the unite (k, k)-matrix.

We are going now to give necessary and sufficient conditions for the inte-
grability of a polynomial structure. Let us define a tensor field @ on M by

ftel
O=2 i

One finds easily that @ satisfies the equation @*+®@=0. We may call @ almost
contact structure associated with the polynomial structure f. More details about
such structure can be found for example in [2]. @ is a polynomial structure
on M with characteristic polynomial R(&)=§&(£*+1), with r=1, s=1, k=1, ;=1
(that is of type we have restricted ourselves to), P{=@%*+ 1, P/=—@*. According
to Definition 1, @ is integrable if to any point of M there exists its open neigh-
bourhood U with a chart (x,, ---, x,) on it such that the matrix expression of @
with respect to this chart is

PII

Ox; 0

where O,/ denotes the zero (ni, nj)-matrix, nj=dim Ker @, n{=dim Ker (0*+1I).

D is mtegrable if and only if [@, @]=0, where [ , ] denotes again the Nijenhuis
torsion (see [2]).
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THEOREM 1. A polynomial structure f the characteristic phlynomial of which
has only simple roots is integrable if and only if the following conditions are
satisfied

(i) [P, P,1=0, 1=, ,=r; [P}, P5,1=0, 1=7,, Jo=s.

LP, P}1=0, 1=:1=r; 1<j<s.

(ii) [@, @]=0.

Giii) {Py, ?}=0, 1<j<s.

Proof. As usual it can be easily seen that the above conditions are neces-
sary. Thus we must prove they are also sufficient.

Let xM be arbitrary point. By (i) the almost product structure (D1, -+, D/,
D!® --- BDY) is integrable, i.e. we can find an open neighbourhood U of x with
a chart (x, -+, X3, ¥y, >+, ¥,%) on it such that for any y€U, 1<i<r there is

(DD)y={XET,(M); (dx)y(X)=0, (dy,),(X)=0,
ISkSn+ o +1yey, it o 0 +1<k<i, 1<1<2i}
and moreover
(DYD - DDY)y={XeT,(M); (dxp),(X)=0, 1=k=#}.

The matrix expressions of P;, P/, @ with respect to this chart are

0
fo 0 [0 o
0 Fi=

ol o E|

\

\ o s
where P/, @ are (2, 271)-matrices, the entries of which are functions of the

variables xy, ---, Xz, Y1, -+, Yaz. In the next we shall show that in fact they are

functions of »,, -+, ¥,z only.
Let 1=k<h, ny+ - +n,.,+1<k=<n,+ - +n, be arbitrary. Then we have

]

r 0 Nm 0 " 0 0
—P,-[Wk—, él(pj )7 m]_PJ [—?;C—k_’ —aj’l_]
_ & e 8

m=1 axk aym

’ 7 a 0 — 0 z ym. 0
0=[P, PJ](W;’ a—yl)—[a_xk’ > ()7 I

m=1
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opr
axk

using (ii) we get along the same lines

0 0 0 7 0
0=02, 09Xz 25,) =~ 7% 2005, ]

: odp . D
== 5.-0(5-)

0x,

which implies =0, where (p})P are entries of the matrix ﬁ;’. Further

m ~
which imples again %‘i—l:o, where @7 are entries of the matrix ®.
k

Finally by (i), (ii), (iii), and by virtue of Proposition 3 it is not difficult to
see that we can perform a coordinate change

xﬁ'+1:§0'ﬁ+1(y1y o YVor)

xn :(,Dn (yh o yyZﬁ)

in such a way that the chart (xy, ---, x,) has the properties required in Definition 1.

4. We start this paragraph with the following

LEMMA 1. Let @ be a polynomial structure with characteristic polynomial
R(&)=¢&(&*+1). Then @ is integrable 1f and only i1f there exists a symmetric liner
connection V such that V®=0.

Proof. Suppose first that there exists a aymmetric connection V with V®=0.
We have

%E@, PUX, V)=F 9xD)(Y )=V or )Y X)—OF xP)(Y )+ PV yP)(X)=0

and thus by virtue of [2] (or in a little more complicated way also by virtue
of our Theorem 1) the structure is integrable. )

Conversely let @ be integrable. Take any symmetric connection V' and
define a new connection ¥V by

V,Y=F,Y+Q(X, Y)
where
4Q(X, YV)=6D%F z@*)(Y)—20(F yO)(Y)-+4F z0°)(Y)

FADF (X)) +AF y 02)(X)+D*(F 9y D)(X)
FOF 53 D?)(X) 4307 42y O)(X)+O(F 92y D)(X)
4 e D) (X) .

(This rather complicated formula can be found using the results of [17, §§3, 4).
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Calculation shows that 7@=0 and that the torsion tensor T(X, Y) of V is equal to
8T(X, Y)=—3[@?, 0*](9*X, O*Y)—[@?% ?*](X, V)
_2@[¢y @ZJ(X’ Y)*@zt@y @:I(Xr Y) .

But because of the integrability of @, T(X, Y) obviously vanishes, showing thus
that ¥V is symmetric.
The main result of this paragraph is

THEOREM 2. A polynomial structure f the characteristic polynomial of which
has only simple roots is integrable if and only if there exists a symmetric linear
connection V such that Vf=0.

Proof. Let V be a symmetric connection such that /f=0. The projectors
P;, P/ are polynomials in f, and thus we have V' P;=0, V' P/=0. Similarly from
the definition of the almost contact structure @ associated with f we get V@=0.
Now it is an easy calculation to find that the conditions of Theorem 1 are
satisfied. Theorem 1 implies then the integrability of f.

If f is integrable, then the almost product structure associated with f is also
integrable. Therefore we can find a symmetric connection ¥ such that V P;=0,
VP P’=0. Construct a connection V in the same way as in the proof of Lemma
1, taking for @ the almost contact structure associated with f. There is F@=0,
the integrability of f implies that of @, and thus we get from the proof of
Lemma 1 that V is symmetric.

Now we are going to prove that ' P=0 where P denotes P, or P/. Because
of VP=0 it is sufficient to prove Q(X, PY)—PQ(X, Y)=0. We get

4Q(X, PY)—4PQ(X, Y)=3{P, O*}(P*X, O*Y )+4{P, O*}(D*X, V)

—18{P, D} (X, O*Y)—18{P, ®*}(X, OY)
—180%{P, O} (X, OY)—180{P, ®}(X, ®*Y)=0

as a consequence of the simultaneous integrability of the associated almost prod-
uct and almost contact structures.

We have thus found a symmetric connection / such that F@=0, V' P;=0,
VP/=0. From the obvious formula

f=EhPA SN G 0P

we then get Vf=0. This finishes the proof.
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