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INTEGRABILITY CONDITIONS FOR
POLYNOMIAL STRUCTURES

BY JIRI VANZURA

0. Let / be a tensor field of type (1, 1) defined on a differentiable manifold
and satisfying there a polynomial equation

with constant coefficients. Under the assumption that the polynomial ξnjrQ<iζn~1

+ ••• +α n -if+α n has only simple roots we give two necessary and sufficient
conditions for the integrability of the tensor field /. The integrability conditions
presented in the paper generalize those known for various structures on mani-
folds (e.g. almost complex, almost contact, almost product structure etc.). All
differentiable structures involved are supposed to be of class C°°.

1. We consider a connected differentiable manifold M. A tensor field / of
type (1, 1) on M is called polynomial structure on M if it satisfies the equation

R(f)=fn+(*ifn-1+ - +αn-1/+α»/=0

where alf •••, an are real numbers and / denotes the identity tensor of type (1,1).
By /* we understand here the composition /o . o/. The polynomial R(ξ)=

kx

ξn+^iξn~1+ '" +an-iζ+an we shall call characteristic polynomial of the structure.
We suppose moreover that R(ξ) is the minimal polynomial of the endomorphism
fx: TX(M)-*TX(M) for any x^M.

Decompose the polynomial R(ξ) into the prime factors

where

Λί(f)=(f-6<)*<; k^l, ι=ί,

' Ij^ί, <ή-dj<0, j = l , - , s .

The polynomials ξ—b( i = l , ••• ,r, as well as the polynomials ξi+2c}ξ+dJ;
j — 1 , •••, s are pairwise distinct.
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Let TX{M) denote the tangent space of M at x. We define r+s subspaces
(Dl)x and {D'i)x of TX{M) by

(UO^Ker Λί(Λ), (Z)J/)*=Ker ΛJ'(Λ).

Both (A )* and (£")* are obviously invariant under fxi and the tangent space
TX(M) can be decomposed

i?i(f) and i?jί(£) are the minimal polynomials of the restrictions of fx to (D't)x and
W)a? respectively.

PROPOSITION 1. There exist uniquely determined polynomials Q[, Q" such that
for any x<=M there is

(i) (P'ι)l — (Pΐ)x, (PjOl — (P'j')x ,

where (Pί)*=«(Λ), (P'J)χ=QKfχ)>
(ii) degQi<degR, degQ"<άegR, where deg denotes degree of polynomial

Γ) D

Proof. Let us introduce the polynomials V^=~DΓ, Vj=-nτr, ι=lt ~,r;

j=l,~-,s. Their greatest common divisor is obviously equal to 1 and thus we
can find polynomials W[, W" such that

Writing Wl=SlRl+Ti, W'^S'jR'j+T'j with deg Tί < deg i?ί and deg T;; < deg R'}
we set

The details of the proof are left to the reader.
Proposition 1 implies immeditely that Pi, P" are tensor fields of class C°°,

and hence we get easily

COROLLARY, dim D't (dim D'J) is constant on M and thus (AV , D'r, D", ~, D'J)
is an almost product structure.

We shall call it almost product structure associated with the polynomial
structure f. Obviously P[, P" are the projectors corresponding to this almost
product structure.
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2. Let N be a differentiable manifold and g, h be two tensor fields of type
(1, 1) on N such that gh—hg. We introduce a tensor field on N by

{g, h}(X, Y)=lgX, hY^+gh[_X, n-glX, hY^-h[_gX, F]

where X, Y are vector fields on N. One can easily check that this definition is
good.

Now let an almost complex structure / be given on N. We recall that a
vector field X on N is called infinitesimal automorphism of / if there is LXJ=Q
where Lx denotes the Lie derivative along X. In other words X is an infini-
tesimal automorphism of / if and only if for any vector field Y on N there is

PROPOSITION 2. Let X be an infinitesimal automorphism of J, and let g be
a tensor field of type (1, 1) such that gj=jg. Then gX is an infinitesimal auto-
morphism of J if and only if there is {g, J}(X, F)—0 for any vector field Y.

Proof follows immeditely from the equality

(LgχJ)(Y)=ZgX, JYl-JίgX, Yl

= {g,J}(X, Y)-gJίX} Yl+glX,JYl

= {g,J}(X,Y).

From now to the end of the parahraph we shall suppose that the almost
complex structure / on N is integrable, i. e. that N is a complex manifold. In such
a case there is an isomorphism from the Lie algebra of all infinitesimal auto-
morphisms of / onto the Lie algebra of all holomorphic vector fields on N given

by Z->Z— -o-(Λ—iJX). Via this isomorphism we get from Proposition 2.

COROLLARY 2. Let N be a manifold with a complex structure J on it, and
let g be a tensor field of type (1, 1) on N such that gj=jg and {g, /}=0. Now
if Z is a holomorphic vector field on N, then the field gZ is also holomorphic.

Consider now an almost product s tructure (Dlt ' ,Dt) on N with all the

distributions Dt invariant under /, i .e. J(Dι)=Dι, z = l , ••-,*. Such a structure

we may call complex almost product structure. If we denote by Pt the cor-
responding projectors, we can easily see that there is PιJ—JPι. Let dimDi=2nι,

t
n=^Σ,nt. We shall say that a complex almost product structure (Dlt •••, Dt) is

1 = 1

integrable if to any point of N there exists its open neighbourhood U with a
complex chart (zlf ••• ,zn) on it such that for any y^U, l^i^t there is

(D%)y={XeTy(N); {dz,
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To avoid possible confusion, remark here that X denotes real tangent vector
at y.

PROPOSITION 3. Let (Du ••• ,Dt) be a complex almost product structure on a
complex manifold N. Then (Du •••, Dt) is integrable if and only if

(i) LPit Pjl=0, I^ΞΛ JS-t where [ , ] denotes Nijenhuis torsion,
(ii) {Λ,/}=0, l^i^t.

Proof. It is easy to see that the both conditions are necessary. Let us prove
that they are also sufficient. Take any χ(=N. By virtue of (ii) and Corollary 2
we can find an open neighbourhood U of x and lineraly independent holomorphic
1-forms ωlt •••, ωn no it such that for any y^U, l^i^t there is

(Dx)y={XeTv(N); K

For nι-.1+l^j<^nι (we take n0—0) we can write

d(ϋj = Σ Ψuj Λ ωu + Σ o™ωu Λ ωΌ

u=nt-i+l ω<υ

where ^ are holomorphic 1-forms and a™ holomorphic functions on U. Recall
that the condition (i) is a necessary and sufficient condition for the integrability
of the almost product structure (Dlt •••, Dt) considered as a real one (see [3]).
Hence we obtain aψ—Q for the all u, v in question. Now applying the complex
version of the Frobenius theorem we find that there exist a smaller neighbour-
hood U'QU of x and holomorphic functions gi,~',gn defined on Uf such that
for n ι _ 1 + 1 ^ . 7 ^ n t _ 1 + n ι , z=l, •••, ί there is

a)j= Σ h«dgu

where hu

3 are holomorphic functions on U'. It is clear that (glf ••• ,gn) is a com-
plex chart on U/ having the properties required in the definition of integrability
of a complex almost product structure (Dlf ~,Dt).

3. Beginning with this section we shall deal with those polynomial struc-
tures only, the characteristic polynomial of which has only simple roots. Keep-
ing the notations from paragraph 1 we have then

We denote ni=dhnD'if n;=~-dim D'J, n=Σnf

it fc=iχ, n=ή+2fί=dim M. The

restriction f'J of / to D'J satisfies f'J2+2cJf'J+d,IJ=0, where I3 denotes the
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identity automorphism of Ό"3, and we can introduce an almost complex structure
J'{ on D'J by setting

J

On the other hand from this formula we obtain f'J=
it is quite natural to take the following

J'J—CjIj. Therefore

DEFINITION 1. A polynomial structure f on M is called integrable if to any
point of M there exists its open neighborhood U with a chart (xlf ~- ,xn) on it
such that the matrix expression of f with respect to this chart is

0 0

o u ?
where Kj—

Ik denotes here the unite (k, k)-matrix.

We are going now to give necessary and sufficient conditions for the inte-
grability of a polynomial structure. Let us define a tensor field Φ on M by

Φ=Σ- -P1!.

One finds easily that Φ satisfies the equation Φz+Φ=0. We may call Φ almost
contact structure associated with the polynomial structure /. More details about
such structure can be found for example in [2]. Φ is a polynomial structure
on M with characteristic polynomial R(ξ)=ξ(ξ2+Ϊ), with r = l , s = l , k1=lt /χ=l
(that is of type we have restricted ourselves to), P[=Φ2+I, P^—φ2. According
to Definition 1, Φ is integrable if to any point of M there exists its open neigh-
bourhood U with a chart (xlf •••, xn) on it such that the matrix expression of Φ
with respect to this chart is

o.

0

0

0 I In! \

- j . f | o :

where 0^ denotes the zero (w{, n{)-matrix, nί=dimKerΦ, nΐ=άimKer(Φ2+/).

Φ is integrable if and only if [Φ, Φ]=0, where [ , ] denotes again the Nijenhuis
torsion (see [2]).
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THEOREM 1. A polynomial structure f the characteristic phlynomial of which
has only simple roots is integrable if and only if the following conditions are
satisfied

( i ) UΊV i?2]=0, l£ilf ι2^r; £P»V P£]=0, l£jl9 j^s.

(ii) [φ,φ]=0.
(iii) {P», Φ}=0,

Proof. As usual it can be easily seen that the above conditions are neces-
sary. Thus we must prove they are also sufficient.

Let x ε M b e arbitrary point. By (i) the almost product structure (D[, ••• 9D'r,
D"@ -" ®D") is integrable, i. e. we can find an open neighbourhood U of x with
a chart (xl9 •••, x%9 yl9 ••• 9y2%) on it such that for any y&U, l^i^r there is

; (dxk)y(X)=0,

and moreover

W θ - @D»)y={X€iTv(M)\ (dxk)y(X)=0, l^k^n} .

The matrix expressions of Pi, P"9 Φ with respect to this chart are

0

\ " o •

/ °0

0

\

0

0

0

0

0

0
0

0

\

i

0

"h i

φ=
0 0

φ

where P'J, Φ are (2n, 2^)-matrices, the entries of which are functions of the
variables xl9 •••, %, yl9 ••• 9y2%. In the next we shall show that in fact they are
functions of yl9 ••• ,y2n only.

Let l^k^n, nλ+ hWι-i+l^*^w1+ Vnx be arbitrary. Then we have
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which implies gx =Q> where (#')P

using (ii) we get along the same lines

which implies gx =Q> where (#')P are entries of the matrix P'J. Further

dy

which imples again —*——=0, where Φ™ are entries of the matrix Φ.
oxk

Finally by (i), (ii), (iii), and by virtue of Proposition 3 it is not difficult to
see that we can perform a coordinate change

in such a way that the chart (xl9 •••, xn) has the properties required in Definition 1.

4. We start this paragraph with the following

LEMMA 1. Let Φ be a polynomial structure with characteristic polynomial
R(ζ)—ζ(ξ2+l)' Then Φ is integrable if and only if there exists a symmetric liner
connection V such that VΦ—Q.

Proof. Suppose first that there exists a aymmetric connection V with FΦ=0.
We have

and thus by virtue of [2] (or in a little more complicated way also by virtue
of our Theorem 1) the structure is integrable.

Conversely let Φ be integrable. Take any symmetric connection V and
define a new connection V by

FXY=ΓXY+Q(X, Y)

where

4Q(X, Y)=6Φψx

(This rather complicated formula can be found using the results of [1], §§ 3,4).
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Calculation shows that FΦ—0 and that the torsion tensor T(X, Y) of F is equal to

8T(X, F ) - - 3 [ Φ 2 , Φ2](Φ2Z, Φ2Y)-[Φ\ Φ21(X, Y)

-2Φ[Φ, Φ2](X, F)-Φ 2[Φ, Φ](Z, Y).

But because of the integrabiiity of Φ, T(X, Y) obviously vanishes, showing thus
that V is symmetric.

The main result of this paragraph is

THEOREM 2. A polynomial structure f the characteristic polynomial of which
has only simple roots is integrable if and only if there exists a symmetric linear
connection F such that Ff=0.

Proof. Let V be a symmetric connection such that F/=0. The projectors
PI, Pj are polynomials in /, and thus we have FFt=09 PP'J=0. Similarly from
the definition of the almost contact structure Φ associated with / we get FΦ=0.
Now it is an easy calculation to find that the conditions of Theorem 1 are
satisfied. Theorem 1 implies then the integrabiiity of /.

If / is integrable, then the almost product structure associated with / is also

integrable. Therefore we can find a symmetric connection F such that FPί=Q,

PP'J=0. Construct a connection F in the same way as in the proof of Lemma
1, taking for Φ the almost contact structure associated with /. There is FΦ—0,
the integrabiiity of / implies that of Φ, and thus we get from the proof of
Lemma 1 that F is symmetric.

Now we are going to prove that FP—0 where P denotes Pi or P"3. Because

of FP=0 it is sufficient to prove Q(X, PY)-PQ(X, Y)=0. We get

4Q(X, PY)-4PQ(X, Y)=3{P, Φ2}(Φ2X, ΦΎ)+4{P, Φ2}{Φ2X, Y)

-18{P, Φ2}(X, Φ2Y)-18{P, Φ2}(Xf ΦY)

-18Φ2{P, Φ}(X, ΦY)-18Φ{P, Φ}(X, Φ2Y)=Q

as a consequence of the simultaneous integrabiiity of the associated almost prod-
uct and almost contact structures.

We have thus found a symmetric connection F such that FΦ=0, FPri=0,
FP'J=0. From the obvious formula

f ^
t=i

we then get Ff=0. This finishes the proof.
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