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§1. Introduction.

Let M be an n-dimensional connected differentiable manifold and g a Rieman-
nian metric tensor field on M. We denote by (M, g) a Riemannian manifold
with the metric tensor field g. Let there be given two metric tensor fields g
and g* on M. If g* is conformal to g, that is, if there exists a function p on
M such that g*=e®g, then we call such a change of metric tensor field g—g*
a conformal change of metric. In particular, if p=constant then the conformal
change of metric is said to be homothetic and if p=0 then the conformal change
of metric is said to be isometric.

Let (M, g) and (M, g’) be two Riemannian manifolds and f:M—M' a dif-
feomorphism. Then g*=j*g’ is a Riemannian metric tensor field on M. When
g* is conformal to g, that is, when there exists a function p on M such that
g¥=e*g, we call f:(M, g)—(M, g’) a conformal transformation. In particular,
if p=constant then f is called a homothetic transformation or a homothety and
if p=0 then f is called an isometric transformation or an isometry.

If a vector field v on M satisfies

(11) ng:2¢g’

where L, denotes the Lie derivation with respect to v and ¢ a function on M,
then v is called an infinitesimal conformal transformation. The v is said to be
homothetic or isometric according as ¢ is a constant or zero.

Given a Riemannian manifold (M, g), we denote by gji, {jhi , Vo Kiji®y K;

and K, respectively, the components of the metric tensor field g, the Christoffel
symbols formed with gj;;, the operator of covariant differentiation with respect

to { jhi}’ the components of the curvature tensor field, the components of the

Ricci tensor field and the scalar curvature of (M, g), where and in the sequel,
indices 4,1, j, k, --- run over the range {1,2,---,n}. Hereafter we assume that
functions under consideration are always differentiable.

When we consider a conformal change of metric
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gr=e"g,

if £ is a quantity formed with g then we denote by 2* the quantity formed
with g* by the same rule as that 2 is formed with g.

Recently, Goldberg and Yano [2] studied non-homothetic conformal changes
of metrics and obtained the following

THEOREM A. Let (M, g) be a compact orientable Riemannian manifold of
dimension n>3 with constant scalar curvature K and admitting a non-homothetic
conformal change of metric g¥=e*g such that K*=K. Then if

1.2) j‘Mu‘"“GjiufuldVgO ,
where
1.3 Gjizj{ji_-ff—gji

and u=e°, u;=V,u, u*=u,g** and dV denotes the volume element of (M, g), then
(M, g) is isometric to a sphere.

Yano and Obata [13] proved following theorems.

THEOREM B. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e*g such that

~f}]{[([’u)[{dVv:O y G*jiG*ji—_-u4GjiGji y

where du=giV ;V ,u, then (M, g) is conformal to a sphere.

THEOREM C. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 and with K=constant admits a non-homothetic conformal change of
metric g*=e**g such that

G*jiG*ji—_—u4Gj1;Gji ,
then (M, g) is isometric to a sphere.
THEOREM D. If a compact orientable Riemannian manifold (M, g) of dimen-

sion n>2 admits a non-homothetic conformal change of metric g*=e*g such
that

f JADEAV=0, 2%, 24 =it 2, 2

where
(14) ijih-"—'Kkjih——K—‘(afg“—ahgk )
n(n—1) i Ty Sk
then (M, g) is conformal to a sphere.
THEOREM E. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 and with K=constant admits a non-homothetic conformal change of
metric g*=e*g such that

Z*kjinZ*k”h=u4ijinijm y
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then (M, g) is isometric to a sphere.
THEOREM F. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e?**g such that

[ (duykdv=0,

o
W*kﬂhW*kjihzu4ijianjih , a-l-(n—Z)biO ,

whevre

(1.5) Wisi"=aZy;"+0(0G j;— 043G i+ G 1" 25:— G, 8x) »

a and b being constants, then (M, g) is conformal to a sphere,

THEOREM G. If a compact orientable Riemanman manifold (M, g) of dimen-
sion n>2 and with K=constant admits a non-homothetic conformal change of
metric g*=e%g such that

W*kjth*kjih—_—u4ijthkjih N a+(n““2)b7‘:0 3

then (M, g) is isometric to a sphere,
THEOREM H. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n=2 admits a non-homothetic conformal change of metric g*=e*g such that

K*=K, LgK=0, fMu‘"“Gjiu’uldV?__O,

where Ly, denotes the Lie derivation with respect to a vector field u*=g"V u,
then (M, g) is isometric to a sphere.

THEOREM 1. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e**g such that

K*:K, LduK:() y G*jiG*jisziGji y
then (M, g) is isometric to a sphere.
(See also Barbance [1].)

THEOREM J. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e**g such that

K*=K, L4, K=0, Z*IzjihZ*kﬁh:ijithjm ’
then (M, g) is isometric to a sphere.
(See also Hsiung and Liu [3].)

THEOREM K. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e®*g such that

K*=K, L;K=0,
I/I’r*kjinW*kjih-: I/ijthkﬂh y a-f-(n—Z)biO y

then (M, g) is isometric to a sphere.
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(See also Hsiung and Liu [3].)
Yano and Sawaki [14] proved following theorems.

THEOREM L. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e**g such that

LduK=0 ’ LduK*=0 ’
qujiGji= {(u—1)§0+1} G*jiG*)i ,

where p is a real number such that p<4 and ¢ a non-negative function on M,
then (M, g) is isometric to a sphere,

THEOREM M. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e**g such that

LduK-_—:O, LduK*ZO,
UPZy;in 28 = {(u—1)p+1} Z% 4 jun Zxhiin

where p and ¢ are the same as in Theorem L, then (M, g) is isometric to a

sphere.
THEOREM N. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e**g such that

LduK=0, LduK*=O,
ukajthkﬂh: {(u—1)§0+1} W*kjth*kjih , a+(n—2)b+0,

where p and ¢ are the same as in Theorem L, then (M, g) 1s 1sometric to a
sphere.

The purpose of the present paper is to prove generalizations of Theorems
A~N.
In the sequel, we need the following two theorems.

THEOREM O (Tashiro [8]). If a compact Riemannian manifold (M, g) of
dimension n=2 admits a non-constant function uw on M such that

V,-V,u—%dug,-i=0 ,
then (M, g) is conformal to a sphere in an (n+1)-dimensional Euclidean space.

(See also Ishihara [4], Ishihara and Tashiro [5].)

THEOREM P (Yano and Obata [13]). If a complete Riemannian manifold
(M, g) of dimension n=2 admits a non-constant function u on M such that

VPt aug=0, Luk=o0,

then (M, g) is isometric to a sphere in an (n-+1)-dimensional Euclidean space.
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§2. Preliminaries.

We consider a conformal change of metric

(2.1) g*jizeZngi .
First of all, we have
A* h
22) {" =1 o octoro—gue,
where
ei=V.p, p'=pig™,
from which
2.3) K*kjithkjih—aiji+5?Pki"thgjt'{"P]hgkz ,
where

1 i
5=V 0i=pi0it 50", 0" =05s8",
and consequently

(2.4) K*;;=K;;—(n—2)p;:—p/'g;:
and

2.5) e K*=K—2(n—1)p,*,
where

p:‘=é’p+n2—_2mp‘ , do=g’T,p;.

From (2.3), (2.4) and (2.5) and the definitions of G,;, Z,;;" and W,;", we have

2.6) G*3=G;—(n—2)V , pi—p;00)+—

;2 (dp—p.p)8j1

2.7) Z* " =Z3;" =0V j0i— 0;0:)+ 0% (V 1pi—pr0:)
— (10"~ 040"81+ T 0" —p;0M8m
+-2-(dp—pup')(3tg 1~ 21)

and

@8)  Wrylt=Wil+{a+n—2)b}{—8 10— 0,00+ 7 10i—paps)
— V40"~ 040" 85+ ;0" —0;0") s

+—i—<dp—pcp‘)<5i‘gﬁ— "2}

If we put
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2.9 u=e", w,=V"Vu,
then we have
(2.10) Vjui=—uWV ;0:—p;0:)
and
(2.11) du=—u(dp—p.0"),
and consequently
2.12) K*=u*K+2(n—1Dudu—n(n—1)uut,
(2.13) G*;;=G;i+(n—2)P;;,
(2.14) Z¥4ji"=Zji"+Qus"
and
(2.15) Wit =W +{a+(n—2)0} Qusi"
where
(2.16) Pﬁzu*(Vjui—%Augﬁ) ,
(2.17) Q4ji*=0}P;;—0" Py+P"g;;— P, g,
and
Pr=P;;g™".

From (2.16) and (2.17), we obtain
(2.18) Py Prt=u{ (7 )W ju,)————(du)?}
and
(2.19) Qi@ =4(n—2)P;; P"*
respectively.

We also have, from (2.13), (2.14) and (2.15),
(2.20) G*;,G*'=u*{G;,G''+2(n—2)G;; P'*+(n—2)*P; P7%}
(2.21) Z¥ i Z¥H =y {7, Z*I P 4-8G ;P4 4(n—2) P; P71}
and
(2.22) Wi W=y T W i W -8 {a+(n—2)b} *G ; P7*

+4(n—2){a+(n—2)b}*P;,P’*]

respectively. For the expression G;;P?* in (2.20), (2.21) and (2.22), we have, from
(2.16),
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(2'23) Gjinizu'lGjiV’ul B
where V7=gil/ .

§3. Lemmas.

LEMMA 1 (Lichnerowicz [6], Satd (7], Yano [9, 111). For a vector field v™
on a compact orientable Riemannian manifold (M, g), we have

3.1) IM(g“VjViv"—l—Kﬂvl—i— n;Z V"V,v‘)v,,dV

X(V]U,L-}_Vlvj_—}zl—stsgjt)dV:O.
Proof. By a straightforward computation, we have
Vi{<l7"v"+l7" vl———fl—Vtv‘g“)vh}
=(g7 7 o+ o+ 2 0,
2 s
X(Vjvi—l—Viv,——n—st gj,-) )

and consequently, integrating over M, we have (3.1).

REMARK. If a vector field v" defines an infinitesimal conformal transform-
ation, then we have
ngji=2pgji ,
that is,
2
Vjvi+Viv]_—n_Vtvtgji:0 .
From this, we can deduce

(3.2) g”VjVIv"—l—Kl"vl—l—nT—zV’LV,v‘zo.

Formula (3.1) shows that this is not only necessary but also sufficient in order
that the vector field v* defines an infinitesimal conformal transformation in a
compact orientable Riemannian manifold.

LEMMA 2 (Yano [10]). For a function u on a compact orientable Riemannian
manifold (M, g), we have
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(33) § (&7 7t Kru 27 v
+2§M(V’u'—%Augﬁ)(Vjui—-};—dugﬂ)dV:O

and

(34) [ @7 7+ Ky =2 (v

+2jM(V fu’—-%dug“)(V jui———i—dugﬂ)d V=0,

where w,;=V u, u*=u,g"* and du=g’"V ¥V u.

Proof. Putting v*=u" in (3.1) and using V'u*=F"uw’, we obtain (3.3). (3.4)
follows from (3.3) because of

[, 0 duwyundv=—( (duydv.

LEMMA 3 (Yano [10]). For a function u on a Riemannian manifold (M, g),
we have

(3.5 rrdu=g'Vv ¥ u*— K u*,
that is,
(3.6) gV Y ur=r"du+ K u* .

Proof. We have
Vh(Au)=Vh(gﬁ‘7juz)=gﬁ7h‘7;uz
=gV 7 nus— Knjituy)
=gV V u,—K'u,,
from which (3.5) follows.

LEMMA 4. For a function w on a compact orientable Riemannian manifold
(M, g), we have

3.7 fM<Kjiufu‘+ n;l u"V,,Au)dV
+fM<l7’ui-—%Augf")(Vjui——i—Augﬂ)dV=0
and

(3.8) (e —2=Layay

n

—I—_fM<I7 ’u’———rll—dugf"XV jui——rll—dugﬁ)d V=0.
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Proof. Substituting (3.6) into (3.3), we have (3.7), and substituting (3.6) into
(3.4), we have (3.8).

LEMMA 5. If a compact orientable Riemanman manifold (M, g) of dimension
n=2 admits a conformal change of metric g*=e®g, then, for any rveal number
p, we have

69 | TG dV
+(ptn—2) Mup-z(Vjuz)ufuthJr?ln— [ LK —urLoJOaV

- —p+§-2 fMu”‘3(utu‘)2dV—%ETZ)_JMW—%%‘KWV

—2 - ji
+- ébn-'(_;—l) jyup I“tuthV+fMup+letPJ dv=0,

@310) | w K uudv
M

_ p+Z—2 fﬂu"‘l(du)zdv— (p*l)(fl'i_n—z) fMup'zutu‘AudV
+ ng)n_—ll) fﬂup'luzuthV_—frTj(’%——lT)jM(up_zLduK*‘”pLduK)dV

+ WP PV =0
and

(3.11) fMu”‘lKﬁu’u’dV
+ LI [ o (d)d v+ s kv
——2711(’;—_11) [ P L K*—uP LKAV +[ ur#PPidV=0.
In particular, if p=—n-+2 then
(3.12) jMu‘"“Gﬂu’u’dV
+o| LKA —u L KAV [ at P PRV =0,

and if p=1 then

7 n'—']- i —
(3.13) fMKjiu’u dv—212 jM(Au>2dV+jMu2PﬂPJdV_0
and

(3.14) [ Kiwrd v+2oLf P dudV+[ wPyPrav=0.
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Proof. We first have
VP~ uV uh)=(p—0)u? 2V 'uuju,+u? ¥ ju,)Vud)+u?ulV Vour
=(p—DuP 2V uuu, +u? ¥ ju,)V'ub)
+uP K wiut+uP Vi (du) ,

where we have used (3.6), that is,
VVw=Ku'+Vidu,
and consequently, integrating over M, we have
(3.15) f u”“(V,-ul)(V’ui)dV+(p—-1)f w2V oty judV
M M
+fMu”"Kﬁu1u’dV
+[ wrtuFidu)dv=0.
M
Similarly, computing ¥V (u?'u*4u) and integrating over M, we have
(3.16) (b= wruutdudv+| urX(duydv
M M
—l-f uP~uW (du)dV=0.
M
By using (2.18), (3.15) and (3.16), we get
it — - i _l -
(3.17) fMup+1PjiP’ dV= jMup W )P ut)dV—— jMup W du)edV

=—(p—1)f T uudV— { L ndy

+—1—);—lfMup‘2u,u‘AudV—%fMu"‘luiVi(Au)dV .
On the other hand, from (2.12), we have
(3.18) Au:z(n—]‘_l)—(u"K*—uK)+Tnu"utu‘ ,

from which

(3.19) V,(Au):——zﬁ(u‘2uiK*+uiK)+—2—(%1?17(u'lV¢K*—ul7,-K)

——g—u‘zuiutu‘—l—nu‘l(Viut)u‘ .
Substituting (3.18) and (3.19) into (3.17) and using

K;i=Gj +_In£gji ,
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we have (3.9).
Substituting

uP P u K*=2(n—1)u? u,ut du—n(n—1)u?*(uu’)+u?uu* K
which can be obtained from (3.18) into
f up"uiVi(Au)dV:nf u? =V ju)uurdV
M M
—ﬁfﬁ{u"*ut utK*d V—iﬁfMup‘lutu‘KdV
+—2(n%1> [ 2 LKA —uP LK)V =] wruautydV
which follows from (3.19), we have
fMup“uiVi(Au)dV

:nf u"'z(Vjul)ufu’dV—f u? tuutdudV
M M

-1 jMup‘lu;u‘KdV+7(ﬁ1j17—j LKA —uPLa KNV
and consequently, by using

(3.20) fMu”"uiVi(Au)dV: —(p—l)fﬂu”'zu,u‘zlu dV—fMu”“(Au)de
which is equivalent to (3.16), we obtain

(3.21) JMup‘z(V,-u,)u’u’de—ﬁgif”u"‘zutu‘dudlf

—rf Vi we e dy

—'zn(%ﬁf T Lt —uP LK)V

Substituting (3.20) and (3.21) into (3.17), we get (3.10). From (3.16) and (3.20),
we have (3.11) immediately.

LEMMA 6. If a compact orientable Riemannian manifold (M, g) admiis a
conformal change of metric g*=e*g, then, for any real number p,

(3.22) jM(up'sG*jiG*ji_up+lGjiGj1:)dV
‘|‘2(n—2)PI ul’—lcﬂufuzdv_f_ﬂf u?L, KdV
M n 78

—(n—2)*f urP;PrdV=0.
M
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In particular, if p=—n+2 then
(323) fM(u‘"'lG*jiG*ji_u—n+3GjiGji)dV
—2(n—2y*f u'"+1G.<u1u1dV+@_:_2_)2_j WL KdV
M s n o du
—<n_2)2fMu'n+3PjinidV———0,
and if p=0 then
(324) [ @G+ 641—uG,,67av
_}_(_"ZZZI LduKdV——(n—Z)Zf uP, PrdV=0.
n " "
Proof. Using (2.20) and (2.23), we have
(3.25) fM(up'3G*jiG*ji—u”“G,-iG”)dV
:2<n—2).f qujiVJuldV’i"(n—z)zj up“PjinidV.
u b4
On the other hand, calculating V’(u?G;;u’) and using

VJGji:%z—ViK’

we have

VPG ut)y=pu? G ulut+ n2—7—12 wPu'lV K+u?G; ¥V,

and consequently, integrating over M, we have

626) [ wGniaV=—p[ urGundv—To 2 [ 7 Kav
M

Substituting this into (3.25), we have (3.22) to be proved.

LEMMA 7. If a compact orientable Riemannian manifold (M, g) of dimension
n=2 admits a conformal change of metric g*=e* g, then

(327) j‘M(u""'1G*jiG*ji_u—n+SGjiGji)dV

+ OBy K5V (=2 u P, PrAV=0.
M M
Proof. Adding (3.12) X2(n—2)* and (3.23), we have (3.27).

LEMMA 8. If a compact orientable Riemannian manifold (M, g) of dimension
n=2 admits a conformal change of metric g*=e% g, then, for any real number P,
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(3.28) [ ez 2t —up 2, 20V
+8p[ uriGyeun'd v+ A2 LKAV
—4(n—2)[ ur*PyPItdV=0.
M
In particular, if p=—n-+2 then
(3.29) J 2R 2, 24 Y
—8(n— - gy =2
8(n—2) TG d VS { L LaKdV
—4(n—2)[ wmP,PrAV=0,
M
and 1f p=0 then
(3.30) [ @72ty 22— Zy i 2V
+ 402D ([, KaV—an—2) uPPrav=0.
Proof. Using (2.21) and (2.23), we have
(3.31) [ @ 22— 2,0, 24 AV
—8f PG dV —4n—2) f WP PV =0,

Substituting (3.26) into (3.31), we have (3.28).

LEMMA 9. If a compact orientable Riemannian manifold (M, g) of dimension
n=2 admits a conformal change of metric g*=e**g, then

(3’32) j (u—n_IZ*kjihZ*kjin_u-n+3ijithjih)dV
M
+A(n;22_j‘ u'"LduK*dV+4(n—2)j u"m3P, Py =0 .
n M o

Proof. (3.32) follows from (3.12) and (3.29).

LEMMA 10. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n=2 admits a conformal change of metric g*=e®°g, then, for any real
number D,

(3.33) ju(up-sW* kﬁhW*kjih_up+1 ijihwkjih)d v

+8{a-+(n—2)b}*p| T GwwdV
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+ K2 a4 (n—-2h)2f wPLoKdV
—4(n—2){a+(n—2)b}*| WP PV =0,

In particular, if p=—n+2 then

(334) J @ W Wy i gy
—8(n—2){a+(n—2)b}ZfMu'"“G,-iu’u'dV
+@{a+(n—2)b}2jMu-"+2LduKdV
—4(n—2){a+(n—2)b}*[ WP PIAY=0,

and if p=0 then

(3.35) fM(u‘sW*k,-i,,W*k”"—uijth’”'i”)dV
+A=2 (a4 (1208 LuKdV
—4(n—2){a+(n—2)}*| JUPPIdV=0.

Proof. Using (2.22) and (2.23), we have

(3.36) fM(up-3W*k,.th*kﬁh—uf’+1Wk,-i,,Wkﬂh)dV
—8{a+(n—2)b}szqujiV’u’dV
—4(n—2){a+(n—2)b}* j PP PRAV=0.

Substituting (3.26) into (3.36), we have (3.33).

LEMMA 11. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n=2 admits a conformal change of metric g*=e% g, then

3.37) J (urtw* kjth*kjih_u—“kujthkjih)dV
M
+ A=) (o (200} w Lo KV
n M
+4(n—2){a+(n—2)b}? f PPV =0.

Proof. (3.37) follows from (3.12) and (3.34).
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LEMMA 12. Suppose that a Riemannian manifold (M, g) of dimension n=2
admits a conformal change of metric g*=e**g and f and f* are non-negahwe
Sfunctions on M such that

(3.38) uPf={u?+u"—1)e} f*,

where p is a real number such that p<4, q and r non-negatwe numbers and ¢ a
non-negative function on M. Then

(3.39) (i fr—u ) — (T f* —uf)=0.
Proof. We have
(W ) — (A )
—u N 1—umH(fr—uf)
= (L= (Rl U U U f—utf)
=u " (1—u" (A —u?)fF—u P (1—u B (1—u*"?)f
+u (A —u" ) (L—u")ef* .
We can easily prove that
1= )(1-u)20, (A—u")(1—u'?)20, (I—u*)(1-w)20,

and consequently that (3.39) holds.

§4. Propositions.

PROPOSITION 1. If a compact Riemannian manifold (M, g) of dimension
n=2 admits a non-constant function u on M, then

@ 7 ) Puyz -2y,

equality holding if and only if (M,g) is conformal to a sphere. If moreover
Lo K=0 or K=constant, then the equality holds 1f and only 1f (M, g) is 1somelric
to a sphere.

Proof. (4.1) is equivalent to
1 [ 1 it
(V,-ul——TAugﬁ)(Vfu ——n—Aug’ )go,
and consequently equality in (4.1) holds if and only if
Vjui-———]ﬁ—dugjizo y

that is, by Theorem O, if and only if (M, g) is conformal to a sphere. The
latter part of this proposition follows from Theorem P.
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PROPOSITION 2. If a compact orientable Riemannian manifold (M, g) of
dimension n=2 admits a non-constant function u on M such that

(42) thu%ﬁ%wdu:o ,

then (M, g) is conformal to a sphere. If moreover L,,K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. From (3.5), we have
g’V ur—K u—V"4u=0.
Adding (4.2)X2 and this relation, we have
g a4 KM 2 pr Au=0.

Thus, by the Remark to Lemma 1, we see that the vector field u® on M defines
an infinitesimal conformal transformation and consequently that

1
Vjui—TAugﬁ:O .

Thus, by Theorem O, (M, g) is conformal to a sphere. The latter part of the
proposition follows from Theorem P.

PROPOSITION 3. If a compact orientable Riemannian manifold (M,g) of
dimension n=2 admits a non-homothetic conformal change of metric g¥=e* g
such that

K+ L ay=0,

then (M, g) is conformal to a sphere. If moreover L, K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. This is an immediate consequence of Proposition 2. But, an another
proof is as follows. From (3.14) and (4.2), we have P;;=0, that is,

1
Vjui—“ﬁ"Augﬂ;:O y

and consequently, by Theorem O, (M, g) is conformal to a sphere. The latter
part of the proposition follows from Theorem P.

PROPOSITION 4. If a compact orientable Riemannian manifold (M, g) of
dimension n=2 admits a non-constant function u on M such that

(43) [ K vzl (dwyav,

then (M, g) is conformal to a sphere. If moreover L, K=0 or K=constant, then
(M, g) is isomelric to a sphere.
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Proof. From (3.8) and (4.3), we have
1
Vjui——n—dugjiZO y
and consequently, by Theorem O, (M, g) is conformal to a sphere. The latter
part of the proposition follows from Theorem P.

PROPOSITION 5. If a compact orientable Riemannian manifold (M, g) of
dimension n=2 admits a non-homothetic conformal change of metric g*=e*°g
such that

. n—1
jMKﬁufu avzl- jM(Au)ZdV,

then (M, g) is conformal to a sphere. If moreover L, K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. This is an immediate consequence of Proposition above. But, we
can give an another proof. From (3.13) and the above relation, we find P;;=0,
that is,

and consequently, by Theorem O, (M, g) is conformal to a sphere. The latter
part of the proposition follows from Theorem P.

(For Propositions 2~5, see Yano and Hiramatu [12].)

PROPOSITION 6. If a compact orientable Riemannian manifold (M, g) of
dimension n=2 admits a non-homothetic conformal change of melric g*=e*’g
such that

-n+1 1 _1_ -n g —nt+2
(4.4) | TG dV g jM(u LoK*—u "L, K)dV=0,
then (M, g) 1s conformal to a sphere. If moreover Ls K=0 or K=constant, then
(M, g) is isometric to a sphere.
Proof. By using (3.12) and (4.4), we have P;;=0, that is,
Vjut——i—dugji:(),

and consequently, by Theorem O, (M, g) is conformal to a sphere. We have the
latter part of the proposition by Theorem P.

The latter part of the proposition above is a generalization of Theorems A
and H.

PROPOSITION 7. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e*’g
such that
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__ 9\
(45) [ 6,67 —uG,, 67+ "2 1, Kdv <0,
M n M

then (M, g) is conformal to a sphere. If moreover Ly, K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. By using (3.24) and (4.5), we have P;;=0, that is,
1
Vju,;—-TAugﬁ=0 ,

and consequently, by Theorem O, (M, g) is conformal to a sphere. Using
Theoroem P, we can prove the latter part of the proposition.
The first part of Proposition 7 is a generalization of Theorem B because of

j (AW KdV=— f LaKdV,

and the latter part a generalization of Theorem C.

PROPOSITION 8. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e®g
such that

__9\2
(4.6) f (u‘""G*ﬁG*”—u'"‘“stin‘)dV—l—(n—zl—f u "Ly K*dV=0,
M n M

then (M, g) is conformal to a sphere. If moreover Ly, K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. This follows from (3.27) and Theorems O and P.

PROPOSITION 9. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e* g
such that

) [ @z gzt —uz, 2 av+ XD [ [ Kav<o,
M n M

then (M, g) is conformal to a sphere. If moreover L, K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. This follows from (3.30) and Theorems O and P.

The first part of this proposition is a generalization of Theorem D and the
latter part is a generalization of Theorem E.

PrOPOSITION 10. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e®tg
such that

48 | @z gzt z,, 70y OB o ey =0,
M n M
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then (M, g) is conformal to a sphere. If moreover L, K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. This follows from (3.32) and Theorems O and P.

PROPOSITION 11. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e**g
such that

4.9 fM(u*W*ka*“i"—uWk:‘thkﬂh)dV
+22D (o4 (28} LauKdV=0,
n P
a+(n—2)b=+0,

then (M, g) 1s conformal to a sphere. If moreover L, K=0 or K=constant, then
(M, g) 15 isometric to a sphere.

Proof. This follows from (3.35) and Theorems O and P.
The first part of Proposition 11 generalizes Theorem F and the latter part
generalizes Theorem G.

PROPOSITION 12. If a compact orientable Riemanman manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e%g
such that

(4.10) [ iws Wby WY
M
+A0=2) (04 (n—2)0)2[ Ly K*dV20,
n M

a+n—2)b+0,

then (M, g) 1s conformal to a sphere. If moreover L., K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. This follows from (3.37) and Theorems O and P.

PrOPOSITION 13. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e**g
such that

(4.11) u?G ;G = {ut+u"—1)p} G*;,G**
and
(4.12) j @ La K~ Loy K)AVZ0,

where p is a real number such that p<4, q and r non-negative numbers and ¢ a
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non-negative function on M, then (M, g) is conformal to a sphere. If moreover
L. K=0 or K=constant, then (M, g) is isometric to a sphere.

Proof. Subtracting (3.24) from (3.27), we obtain
(4.13) fﬂ{(u‘"'lG*jiG*”—u‘"*sGﬂG“')—(u'sG*ﬁG*”—uGﬂG"i)}dV

+ =2 [ Ly ¥ Ly KDALY
n M

+(n—2)? j @t P, PAV=0.
By Lemma 12, from (4.11), (4.12) and (4.13), we have P;;=0, that is,
Vjui—~—111—Augji=0

and consequently, by Theorem O, (M, g) is conformal to a sphere. By using
Theorem P, we can prove the latter part of this proposition.
The latter part of Proposition 13 is a generalization of Theorem L.

COROLLARY 1. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e*g
such that

(4.14) G;GI'=G*,;,G*I*
and
[, "Lk~ LauK)dV 0,
then (M, g) is conformal to a sphere. If moreover L;, K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. Putting p=g=r=0 in (4.11), we have (4.14), and consequently this
corollary follows immediately from Proposition 13.
The latter part of this corollary is a generalization of Theorem I.

PROPOSITION 14. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e%g
such that

(4-15) ukajithﬁh: {ul4(u"— 1)90} Z*kjinZ* kyik
and

J @ LaK*—La,K)dV20,

where p,q, v and ¢ are the same as in Proposition 13, then (M, g) is conformal
to a sphere. If moreover L, K=0 or K=constant, then (M, g) 1s isometric to a
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sphere.

Proof. Subtracting (3.30) from (3.32), we have
(4.16) fM{(u'n_IZ*kjinZ*kjih—u—"+3ijithjih)
‘—‘(u-SZ*kjihZ*kjih——qujithjih)}dV

+ 4D [ (yn Ly K Lo AV
n u

+a(n—2)f @) Py PV =0.
Using Lemma 12, (4.12), (4.15) and (4.16), we have P;;=0, that is,
1
Vjui——TAugﬂ=0,

and consequently, by Theorem O, (M, g) is conformal to a sphere. By using
Theorem P, we can prove the latter part of the proposition.
The latter part of Proposition 14 is a generalization of Theorem M.

COROLLARY 2. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e®g
such that

4.17) T AR =7, Z kI
and
[ (" LauK*— Lo K)AVZ0,
M

then (M, g) is conformal to a sphere. If moreover Lg,K=0 or K=constant, then
(M, g) 1s 1sometric to a sphere.

Proof. Putting p=¢=r=0 in (4.15), we get (4.17), and consequently Corollary
2 follows immediately from Proposition 14.
The latter part of Corollary 2 generalizes Theorem J.

PROPOSITION 15. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e*g
such that

(4.18) WPW i W= (w0 (u"— 1)} WH i WHH

a+(n—2)b+0
and

j @ LaK*— Ly, K)dV 20,
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where p,q, v and ¢ are the same as in Proposition 13, then (M, g) is conformal
to a sphere. If moreover L, K=0 or K=constant, then (M, g) 1s isometric to a
sphere.

Proof. Subtracting (3.35) from (3.37), we have
419) [ AT W )
—(u—sW*kjinW*kjih—uijthkjih)}dV

+24828 (01 (n—2)0)*f (" LauK*— LauK)AV

+4(n—2){a+(n—2)b}*f @) PPV =0,
By using Lemma 12, from (4.12), (4.18) and (4.19), we have P;;=0, that is,
1
Vjui—TAugjizo ,

and consequently, by Theorem O, (M, g) is conformal to a sphere. By using
Theorem P, we can prove the latter part of Proposition 15.
The latter part of Proposition 15 is a generalization of Theorem N.

COROLLARY 3. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e®g
such that

(4.20) W sin WHE A=W i W™ a+(n—2)b+0
and

[ LouK*— Lo K)dV20,
M

then (M, g) is conformal to a sphere. If moreover L;,K=0 or K=constant, then
(M, g) 1s isometric to a sphere.

Proof. Putting p=¢=r=0 in (4.18), we get (4.20), and consequently Corollary
3 follows immediately from Proposition 15.
The latter part of Corollary 3 is a generalization of Theorem K.
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