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§ 1. Introduction.

Let M be an n-dimensional connected differentiable manifold and g a Rieman-
nian metric tensor field on M. We denote by (M, g) a Riemannian manifold
with the metric tensor field g. Let there be given two metric tensor fields g
and g* on M. If g* is conformal to g, that is, if there exists a function p on
M such that g*=e2f>g, then we call such a change of metric tensor field g-*g*
a conformal change of metric. In particular, if ρ=constant then the conformal
change of metric is said to be homothetic and if p=0 then the conformal change
of metric is said to be isometric.

Let (M,g) and (M',gf) be two Riemannian manifolds and f:M-*Mr a dif-
feomorphism. Then g*=f*gf is a Riemannian metric tensor field on M. When
g* is conformal to g, that is, when there exists a function p on M such that
g*=e2Pg, we call /':(M, g)-+(M', g') a conformal transformation. In particular,
if p=constant then / is called a homothetic transformation or a homothety and
if ^ = 0 then / is called an isometric transformation or an isometry.

If a vector field v on M satisfies

(1.1) LΌg=2φg,

where LΌ denotes the Lie derivation with respect to v and φ a function on M,
then υ is called an infinitesimal conformal transformation. The v is said to be
homothetic or isometric according as φ is a constant or zero.

Given a Riemannian manifold (M, g), we denote by gjif | . •}, Fι> Kkji

h, K}i

and K, respectively, the components of the metric tensor field g, the Christoffel
symbols formed with gjif the operator of covariant differentiation with respect

to I | , the components of the curvature tensor field, the components of the

Ricci tensor field and the scalar curvature of (M, g), where and in the sequel,
indices h,i,j,k, - run over the range {1,2, •• ,n}. Hereafter we assume that
functions under consideration are always differentiable.

When we consider a conformal change of metric
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if Ω is a quantity formed with g then we denote by β* the quantity formed
with g* by the same rule as that Ω is formed with g.

Recently, Goldberg and Yano [2] studied non-homothetic conformal changes
of metrics and obtained the following

THEOREM A. Let (M, g) be a compact orientable Riemannian manifold of
dimension n>3 with constant scalar curvature K and admitting a non-homothetic
conformal change of metric g*=e2pg such that K*=K. Then if

(1.2) j > n + 1 G ^ '
where

(1.3) G^Kji—Z-gji

and u=e~p, ui=Fiuf uh=uιg
ih and dV denotes the volume element of (M,g), then

(M, g) is isometric to a sphere.

Yano and Obata [13] proved following theorems.

THEOREM B. // a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g^—e2f>g such that

Γ (Λu)KdV=0, G*jiG*jί=u*GjiG
i\

where Δu~gjΨ'SV%u, then (M, g) is conformal to a sphere.
THEOREM C. // a compact orientable Riemannian manifold (M, g) of dimen-

sion n>2 and with K— constant admits a non-homothetic conformal change of
metric g*=e2pg such that

then (M, g) is isometric to a sphere.
THEOREM D. // a compact orientable Riemannian manifold (M, g) of dimen-

sion n>2 admits a non-homothetic conformal change of metric g*=e2pg such
that

f tfu)KdV=0, Z*kJihZ*k>th=u<ZkJthZ
k>th,

where

(1.4) Ztii

h=Kkit

h-

then (M,g) is conformal to a sphere.
THEOREM E. // a compact orientable Riemannian manifold (M, g) of dimen-

sion n>2 and with K= constant admits a non-homothetic conformal change of
metric g*=e2pg such that
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then (M, g) is isometric to a sphere.
THEOREM F. // a compact orientable Riemannian manifold (M, g) of dimen-

sion n>2 admits a non-homothetic conformal change of metric g*=e2pg such that

f (Ju)KdV=0,
J M

W*kjihW*kjih=u*WkjihW
kjih, a+(n-2)bΦθ,

where

(1.5) W^aZ^+biδϊGji-δϊGu+G^gji-GSg^,

a and b being constants, then (M, g) is conformal to a sphere.
THEOREM G. If a compact orientable Riemannian manifold (M, g) of dimen-

sion n>2 and with K= constant admits a non-homothetic conformal change of
metric g*=e2pg such that

W*kjihW*kJih=u*WkjihW
kJih, a+(n-2)bΦ0,

then (M, g) is isometric to a sphere.
THEOREM H. If a compact orientable Riemannian manifold (M, g) of dimen-

sion ri^fl admits a non-homothetic conformal change of metric g*=e2pg such that

K*=K, LduK=0, J u-n+

where Ldu denotes the Lie derivation with respect to a vector field uh=gihFiU,
then (M\g) is isometric to a sphere.

THEOREM I. // a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e2pg such that

K*=K, LduK=0, 0 * ^ = 0 ^ ,

then (M, g) is isometric to a sphere.

(See also Barbance [1].)

THEOREM J. // a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e2pg such that

K*=K, LduK=0, Z*kmZ*vih=ZkjίhZW,

then (M,g) is isometric to a sphere.

(See also Hsiung and Liu [3].)

THEOREM K. // a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*—e2pg such that

K*=K, LduK=0,

W\jihW^ih=WkjihW^ih, a+(n-2)bΦ0,

then (M, g) is isometric to a sphere.
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(See also Hsiung and Liu [3].)
Yano and Sawaki [14] proved following theorems.

THEOREM L. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*—e2f>g such that

LduK=0, LduK*=0,

where p is a real number such that p^i and φ a non-negative function on M,
then (M, g) is isometric to a sphere.

THEOREM M. // a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e2f>g such that

LduK=0, LduK*=0,

u*>ZkJihZ
k^= {(u-l)φ+l}Z*kJihZ*w,

where p and φ are the same as in Theorem L, then (M, g) is isometric to a
sphere.

THEOREM N. // a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e2pg such that

LduK=0, LduK*=0,

upWkmWkjih= {(u-ΐ)φ+l} W*kJihW**'ih , a+(n-2)bΦ0,

where p and φ are the same as in Theorem L, then (M, g) is isometric to a
sphere.

The purpose of the present paper is to prove generalizations of Theorems
A~N.

In the sequel, we need the following two theorems.

THEOREM 0 (Tashiro [8]). // a compact Riemannian manifold (M, g) of
dimension ri^fl admits a non-constant function u on M such that

then (M, g) is conformal to a sphere in an (n+1)-dimensional Euclidean space.

(See also Ishihara [4], Ishihara and Tashiro [5].)

THEOREM P (Yano and Obata [13]). // a complete Riemannian manifold
(M, g) of dimension n>2 admits a non-constant function u on M such that

^ r = 0 , LduK=0,

then (M, g) is isometric to a sphere in an (n+ΐ)-dimensional Euclidean space.
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§ 2. Preliminaries.

We consider a conformal change of metric

(2.1) g*}t=*>gn •

First of all, we have

(2-2) {/;}*= {/ }+<5* pt+dtpj-

where

from which

(2.3) Kt

where

Pji

and consequently

(2.4)

and

(2.5)

where

Ph=pigih

From (2.3), (2.4) and (2.5) and the definitions of GjU Zkji

h and Wm

Λ, we have

p P ) + ^(2.6) G*li=Gji-{n

(2.7) Z*kJi

Λ=ZkJ

-<P\ph- PkP

h

and

(2.8) W*kji

h=Wkji

h+{a+(n-2)b}{-δ<ϊ{V ;Pi-piPi)+^(V kPi-PkPi)

If we put
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(2.9) u=e-f>, Ui=Vtu,

then we have

(2.10) ^jUi=-u(Pjpi-pίpi)

and

(2.11) Ju=-u(Jp-ptp
t),

and consequently

(2.12) K*=u*K+2(n-ϊ)uJu-n(n-ϊ)utu
t,

(2.13) G*it=G,t+(n-2)Pjt,

(2.14) ^ * W i * = ^ W i * + Q w < *

and

(2.15) W*m*= Wkίi

h+ {a+(n-2)b} Qkji

h,

where

(2.16)

(2.17) <?«4*

and

P ^

From (2.16) and (2.17), we obtain

(2.18) P ^

and

(2.19)

respectively.
We also have, from (2.13), (2.14) and (2.15),

(2.20) G*jiG*3i=ui{GjtG
si+2(n-2)GjiP

ji+(n-2YPjiP
il} ,

(2.21) Z* w «Z**"*=u< {Z w < f t Z«'»+8G ί < P"+4(n-2)P y t P^}

and

(2.22) W*kmW*kJih=u4ίWkmWk>ih+8{a+(n-2)b}2GjiP
ίi

respectively. For the expression G^P ** in (2.20), (2.21) and (2.22), we have, from
(2.16),
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(2.23) GjtP'^u^GjiF'u*,

where Γ>=

§ 3. Lemmas.

LEMMA 1 (Lichnerowicz [6], Sato [7], Yano [9, 11]). For a vector field vh

on a compact onentable Riemannian manifold (M, g), we have

(3.1)

Proof. By a straightforward computation, we have

and consequently, integrating over M, we have (3.1).

REMARK. If a vector field vh defines an infinitesimal conformal transform-
ation, then we have

LΌgji=2pgji,

that is,

From this, we can deduce

(3.2)

Formula (3.1) shows that this is not only necessary but also sufficient in order
that the vector field vh defines an infinitesimal conformal transformation in a
compact orientable Riemannian manifold.

LEMMA 2 (Yano [10]). For a function u on a compact orientable Riemannian
manifold (M, g), we have



26 KENTARO YANO AND HITOSI HIRAMATU

(3.3) J ( ^ ^ Γ / < t t Λ ?

and

(3.4)

where ut=^P\u, uh=utg
ih and Au=gjiPjPiu.

Proof. Putting vh=uh in (3.1) and using Γ V = Γ V , we obtain (3.3). (3.4)
follows from (3.3) because of

Γ (PhΔu)uhdV=-[ (Ju)2dV.

LEMMA 3 (Yano [10]). For a function u on a Riemannian manifold (M, g),
we have

(3.5) FhΛu=gjΨ/iu
h-Kι

huι,

that is,

(3.6)

Proof We have

from which (3.5) follows.

LEMMA 4. For α function u on a compact orientable Riemannian manifold
(M, ^r), î

(3.7)

and

(3.8)
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Proof. Substituting (3.6) into (3.3), we have (3.7), and substituting (3.6) into
(3.4), we have (3.8).

LEMMA 5. // a compact orientable Riemannian manifold (M, g) of dimension
n^>2 admits a conformal change of metric g*=e2pg, then, for any real number
p, we have

(3.9) f u'^GjiUWdV
J M

-2)f u*-\FjU%)u>u%dV+-ik-{ (u*-2LduK*-upLduK)dV
j M ' in J M

(3.10) Γ u^Knu'uHV

__p±n^r uP-χJuγdv_ (p-lXP+n-2) C uv-t t
n JM n JM

+ f
and

(3.11) f u^KjtuWdV

+ P+n~2 f uv-1uΨi{Δu)dV+ J~\s f u'-%u'KdV
n JM n\n — i ; JM

- 2n(n-l) SM^v-2

In particular, if p=—n-\~2 then

(3.12) f w^GjiUWdV

Δn

and if p—1 then

(3.13) f KHuJuιdV——— f (du)

and

(3.14) f Kjiu^ux
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Proof. We first have

+up-1Kjiu
Juι-\-up-1uiF

i(Ju),

where we have used (3.6), that is,

and consequently, integrating over M, we have

(3.15) f up~\F>J(F >

+ f up-1uiF
i(

J M

Similarly, computing F%{μp~xu%Δu) and integrating over M, we have

(3.16) ( ί - l ) f up-2utu
ιΔudV-\-[ up~\Δu)2dV

j M J M

+ f u^uΨtiΔiOdV^.
J M

By using (2.18), (3.15) and (3.16), we get

(3.17) f up^PHP^dY=\ up-\F5u^{FW)dY—^f up-\ΔufdV
J M J M U J M

= -{p-l)[ up-\F>ui)ujuidV-[ up'λKHu3uιdV

vP-HV\{Δu)dV.+
n J M

On the other hand, from (2.12), we have

(3.18) Δu=or} .
Δ\ΎL—1

from which

(3.19) FlΔu)=- 2 ( n j _ 1 } (u-2

^ ψ i U t ) u l .

Substituting (3.18) and (3.19) into (3.17) and using
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we have (3.9).
Substituting

which can be obtained from (3.18) into

f vP-HWlΔuYV^A up-\FjUt)uJuιdV
j M J M

ί (dM
which follows from (3.19), we have

f M^VF\(Δu)dV
J M

p-\Vsu%)uJuxdV-[ up-2utu
ιΔudV

f
M

and consequently, by using

(up-2LduK*-upLduK)dV,

(3.20) f vPΉιVΊΔu)dV=-(p-\)\ up-2utu
ιΔudV-{ up~\Δu)2dV

which is equivalent to (3.16), we obtain

(3.21) f up-2(ΓjUt)u>uιdV=—^λ-[ up-2utu
ιΔudV

Substituting (3.20) and (3.21) into (3.17), we get (3.10). From (3.16) and (3.20),
we have (3.11) immediately.

LEMMA 6. // a compact orientable Riemannian manifold (M, g) admits a
conformal change of metric g*=e2pg, then, for any real number p,

(3.22) I (

+2{n-2)p\ up-1GjiuWdV+ {n~2Y f upLduKdV
J M n J M

-(n-2)2f u
J M
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In particular, if p=—n+2 then

(3.23) J (u-^G+jiGV-tr^GjiG^dV

-2(tt-2)2f u-n+1Gjiu>uιdV+ ( n ~ 2 ) 2 f u-
n+2LduKdV

— (?2—2)2f u'

and i/ />=0 fλen

(3.24)

1 ( n ~ 2 ) 2 f L d u / f d 7 - ( n - 2 ) 8 f uPJt

Proof. Using (2.20) and (2.23), we have

(3.25) J (w2?-3G*<7iG* ji-wί)+1Gί7 ί G
J ' ί ) ^ ^

=2(n-2)f M p G ^ t t * d 7 + ( n - 2 ) 2 f u*+1PjtP
JidV.

On the other hand, calculating V3{upGjiU
i) and using

^ ^ i i — 2n ι '

we have

and consequently, integrating over M, we have

(3.26) f uvG5iV>uidV=-p\ u^GjiU^dV-^—
JM JM Δn

Substituting this into (3.25), we have (3.22) to be proved.

LEMMA 7. // a compact orientable Riemannian manifold (M, g) of dimension
n^2 admits a conformal change of metric g*=e2pg, then

(3.27) J (u'^G

+ ( 7 Z~2 ) 2 f u-nLduK*dV+(n-2)2[ u-
n JM JM

Proof Adding (3.12) x2(n-2) 2 and (3.23), we have (3.27).

LEMMA 8. If a compact orientable Riemannian manifold (M,g) of dimension
n^2 admits a conformal change of metric g*=e2f>g, then, for any real number p,
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(3.28) l^Z^kjihZ^ίh-u^ZkjihZ
k^)dV

+8/>f up-1Gjiu>uιdV+ 4 ( n ~ 2 ) f upLduKdV

-4(n-2)J u^PjtP^dV^O.

In particular, if p=—n+2 then

(3.29) f (u-n'1Z*kJihZ*^ih-u-n+iZkjihZ
kJih)dV

" M

-8(n-2)f u-n+1Gjiu'utdV+ 4 ^ ~ " 2 ) f u~n+2LduKdV

-4(n-2) f u-^PjtP^dV^Q,

and if p—0 then

(3.30) yM{u-*Z*kmZ*k*ih-uZkmZkiih)dV

+ 4 ( n~ 2 )
~ 2 ) ί id«A"d7-4(n-2)f M
n JM JM

Proof. Using (2.21) and (2.23), we have

(3.31)

Substituting (3.26) into (3.31), we have (3.28).

LEMMA 9. // a compact orientable Riemannian manifold (M, g) of dimension
n^2 admits a conformal change of metric g*=e2pg, then

(3.32) f {u-^Z*hmZ*^-u-^ZkjilιZ
k

J M

+ 4 ( n ~ 2 ) f u-nLduK*dV+i(n-2){ u-n+*PJtP"dV=0.
n JM J M

Proof. (3.32) follows from (3.12) and (3.29).

LEMMA 10. // a compact orientable Riemannian manifold (M, g) of dimen-
sion n^2 admits a conformal change of metric g*=e2pg, then, for any real
number p,

(3.33) f (up-sW*kjihW*kjih-up+1WkjihW
kjih)dV

JM

+8{a+(n-2)b}2p{ u^G^uWdV
J M



32 KENTARO YANO AND HITOSI HIRAMATU

+ 4 ( V 2 ) {a+{n-2)b}Λ u"LduKdV
n j M

-4(n-2){a+(n-2)b}2[ up+1PjiP
jidV=0.

In particular, if p= — n+2 then

(3.34)

-8(n-2){a+(n-2)b}2( u-n+1

J M

and if p=0 then

(3.35) f (u-sW*kJihW*k>ίh-uWkjihW
kJih)dV

+ 4 ( V 2 )

/. Using (2.22) and (2.23), we have

(3.36) f (u*-*W*kjihW*kJih-up+1WkmWkiih)dV
J M

uvGHV3uxdV
M

Substituting (3.26) into (3.36), we have (3.33).

LEMMA 11. // a compact orientable Riemanman manifold (M, g) of dimen-
sion n ^ 2 admits a conformal change of metric g*=e2pg, then

(3.37) J (u^n-1W*kJihW*kJih-u'n+sWkJihW
kJih)dV

u~nLduK*dV

f
M

Proof (3.37) follows from (3.12) and (3.34).



CONFORMAL CHANGES OF RIEMANNIAN METRICS 33

LEMMA 12. Suppose that a Riemannian manifold (M, g) of dimension n^>2
admits a conformal change of metric g*=e2pg and f and / * are non-negative
functions on M such that

(3.38) u»f= {u*+(ur-l)φ}f*,

where p is a real number such that p^i, q and r non-negative numbers and φ a
non-negative function on M. Then

(3.39) (M-n-1/*-M-n+8/)-(M-8/*

Proof. We have

We can easily prove that

and consequently that (3.39) holds.

§ 4. Propositions.

PROPOSITION 1. // a compact Riemannian manifold (M, g) of dimension
^.2 admits a non-constant function u on M, then

(4.1) (Γ,M,)(F'«<)Sϊ-±-(JιOi'

equality holding if and only if (M,g) is conformal to a sphere. If moreover
LduK=0 or K=constant, then the equality holds if and only if (M,g) is isometric
to a sphere.

Proof. (4.1) is equivalent to

and consequently equality in (4.1) holds if and only if

that is, by Theorem O, if and only if (M, g) is conformal to a sphere. The
latter part of this proposition follows from Theorem P.
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PROPOSITION 2. // a compact orientable Riemannian manifold (M, g) of
dimension n^2 admits a non-constant function u on M such that

(4.2) Kι

huι+^~^VhΔu=0,
n

then (M, g) is conformal to a sphere. If moreover LduK=Q or K= constant, then
(M, g) is isometric to a sphere.

Proof. From (3.5), we have

gjψjP\uh-Kι

huι-VhΔu={).

Adding (4.2) X 2 and this relation, we have

Thus, by the Remark to Lemma 1, we see that the vector field uh on M defines
an infinitesimal conformal transformation and consequently that

Thus, by Theorem 0, (M, g) is conformal to a sphere. The latter part of the
proposition follows from Theorem P.

PROPOSITION 3. // a compact orientable Riemannian manifold (M,g) of
dimension ?zΞ>2 admits a non-homothetic conformal change of metric g*=e2pg
such that

then (M, g) is conformal to a sphere. If moreover LduK=0 or K= constant, then
(M,g) is isometric to a sphere.

Proof. This is an immediate consequence of Proposition 2. But, an another
proof is as follows. From (3.14) and (4.2), we have Pji=O, that is,

Γjtii—\-Δugji={),

and consequently, by Theorem O, (M, g) is conformal to a sphere. The latter
part of the proposition follows from Theorem P.

PROPOSITION 4. // a compact orientable Riemannian manifold (M, g) of
dimension ri^fl admits a non-constant function u on M such that

(4.3) f KJtu>u%dV^-2=^{ (Ju)2dV,

then (M, g) is conformal to a sphere. If moreover LduK=0 or K= constant, then
(M, g) is isometric to a sphere.
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Proof. From (3.8) and (4.3), we have

and consequently, by Theorem O, (M,g) is conformal to a sphere. The latter
part of the proposition follows from Theorem P.

PROPOSITION 5. // a compact onentable Riemannian manifold (M,g) of
dimension n ^ 2 admits a non-homothetic conformal change of metric g*=e2pg
such that

j M n J M

then (M,g) is conformal to a sphere. If moreover LduK=0 or K— constant, then
(M, g) is isometric to a sphere.

Proof. This is an immediate consequence of Proposition above. But, we
can give an another proof. From (3.13) and the above relation, we find P ^ = 0 ,
that is,

and consequently, by Theorem O, (M, g) is conformal to a sphere. The latter
part of the proposition follows from Theorem P.

(For Propositions 2~5, see Yano and Hiramatu [12].)

PROPOSITION 6. // a compact onentable Riemannian manifold (M, g) of
dimension n^2 admits a non-homothetic conformal change of metric g*=e2pg
such that

(4.4) f u-n+1GjiU

JuldV+-^-( (u-nLduK*-u-n+2LduK)dV^0,
j M Δn j M

then (M, g) is conformal to a sphere. If moreover LduK~0 or K= constant, then
(M, g) is isometric to a sphere.

Proof. By using (3.12) and (4.4), we have Pji=Of that is,

and consequently, by Theorem O, (M, g) is conformal to a sphere. We have the
latter part of the proposition by Theorem P.

The latter part of the proposition above is a generalization of Theorems A
and H.

PROPOSITION 7. // a compact onentable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e2pg
such that
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(4.5) f (u-*G*jiG*ji-uGjiG
jί)dV+ ( n ~ 2 ) 2 f Ldu

then (M, g) is conformal to a sphere. If moreover LduK=0 or K— constant, then
(M, g) is isometric to a sphere.

Proof. By using (3.24) and (4.5), we have Pji=Q1 that is,

and consequently, by Theorem O, (M, g) is conformal to a sphere. Using
Theoroem P, we can prove the latter part of the proposition.

The first part of Proposition 7 is a generalization of Theorem B because of

f (Δu)KdV=-[ LduKdV,
J M J M

and the latter part a generalization of Theorem C.

PROPOSITION 8. // a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e2pg
such that

(4.6) f (u-n-1G*JiG*Ji-u-n+*GjiG
Ji)dV+ ( n ~ 2 ) 2 f u - n L d u

then (M, g) is conformal to a sphere. If moreover LduK=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. This follows from (3.27) and Theorems O and P.

PROPOSITION 9. // a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e2pg
such that

(4.7) jM(u-'Z*kJihZ*k'th-uZkjihZ*>ih)dV+ 4 ( n ~ 2 ) jχLduKdV£ 0,

then (M, g) is conformal to a sphere. If moreover LduK=0 or K—constant, then
(M, g) is isometric to a sphere.

Proof. This follows from (3.30) and Theorems O and P.

The first part of this proposition is a generalization of Theorem D and the
latter part is a generalization of Theorem E.

PROPOSITION 10. // a compact orientable Riemannian manifold (M, g) of
dimension n > 2 admits a non-homothetic conformal change of metric g*=e2pg
such that

(4.8) jjiu'n-1Z*kJihZ*^ih-u'MZkJihZ^ih)dV+ 4 ( n ~ 2 )
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then (M, g) is conformal to a sphere. If moreover LduK=0 or K— constant, then
(M, g) is isometric to a sphere.

Proof. This follows from (3.32) and Theorems O and P.

PROPOSITION 11. // a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e2pg
such that

(4.9) J (u-*W*kjiJV*kJih-uWkJihW
kJih)dV

+ 4 ( n ~ 2 ) {a+(n-2)b}2( LduKdV^0,n J M

a+(n-2)bΦθ,

then (M, g) is conformal to a sphere. If moreover LduK=0 or K= constant, then
(M, g) is isometric to a sphere.

Proof This follows from (3.35) and Theorems O and P.
The first part of Proposition 11 generalizes Theorem F and the latter part

generalizes Theorem G.

PROPOSITION 12. // a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e2pg
such that

(4.10) j (u-n-'W*kjihW*kjih-u-n+3W'kjihW
kjih)dV

d u ,
M

a+(n-2)bΦ0,

then (M, g) is conformal to a sphere. If moreover LduK=0 or K= constant, then
(M, g) is isometric to a sphere.

Proof. This follows from (3.37) and Theorems O and P.

PROPOSITION 13. // a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e2pg
such that

(4.11) u*GjiG'i={u*Hy>r

and

(4.12) f (μ-nLduK*-LduK)dV^09

where p is a real number such that p^4, q and r non-negative numbers and φ a
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non-negative function on M, then (M, g) is conformal to a sphere. If moreover
LduK=Q or K— constant, then (M, g) is isometric to a sphere.

Proof. Subtracting (3.24) from (3.27), we obtain

(4.13) I {(ίΓ^GV^-w'^G^

+ {n~2y f (u-nLduK*-LduK)dV
n J M

+(ft-2) 2 f (u-n+s+u)PHPjidV=0.
J M

By Lemma 12, from (4.11), (4.12) and (4.13), we have Pji=0, that is,

and consequently, by Theorem O, (M, g) is conformal to a sphere. By using
Theorem P, we can prove the latter part of this proposition.

The latter part of Proposition 13 is a generalization of Theorem L.

COROLLARY 1. // a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e2pg
such that

(4.14) GjiG^G*^'

and

f (w»LduK*-LduK)dV^0,
J M

then (M, g) is conformal to a sphere. If moreover LduK=0 or K= constant, then
(M, g) is isometric to a sphere.

Proof. Putting p—q—r—^) in (4.11), we have (4.14), and consequently this
corollary follows immediately from Proposition 13.

The latter part of this corollary is a generalization of Theorem I.

PROPOSITION 14. // a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e2pg
such that

(4.15) u*ZkJihZ
k>ih={u*+(ur--ϊ)φ}Z*kjihZ*k'ih

and

f (u-nLduK*-LduK)dV^0,
J M

where pf q, r and φ are the same as in Proposition 13, then (M, g) is conformal
to a sphere. If moreover LduK=0 or K= constant, then (M, g) is isometric to a
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sphere.

Proof. Subtracting (3.30) from (3.32), we have

(4.16)

+ 4 (W~2) f (u-»LduK*-LtuK)dV
n J M

+4(n-2)f (u-n+3+u)PjiP
jidV=0.

Using Lemma 12, (4.12), (4.15) and (4.16), we have P^=0, that is,

and consequently, by Theorem O, (M, g) is conformal to a sphere. By using
Theorem P, we can prove the latter part of the proposition.

The latter part of Proposition 14 is a generalization of Theorem M.

COROLLARY 2. / / a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e2pg
such that

(4.17) Z*kJ

and

f (u-nLduK*-LduK)dV^0,
J M

then (M, g) is conformal to a sphere. If moreover LduK=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. Putting p=q=r=0 in (4.15), we get (4.17), and consequently Corollary
2 follows immediately from Proposition 14.

The latter part of Corollary 2 generalizes Theorem J.

PROPOSITION 15. / / a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e2pg
such that

(4.18) u*WkJthW
kJih= {u« + (ur-

and
f (u-nLduK*-LduK)dV^0,

J M
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where p, q, r and ψ are the same as in Proposition 13, then (M, g) is conformal
ίo a sphere. If moreover LduK=0 or K—constant, then (M, g) is isometric to a
sphere.

Proof. Subtracting (3.35) from (3.37), we have

(4.19) ί {(u-n-ιW*kμhW*kjih-u-n+zWkjiJYktih)

-(u-3W*kjihW*kjίh-uWkjihW
kjίh)}dV

+4(n-2){a+(n-2)b}2j (u-^

By using Lemma 12, from (4.12), (4.18) and (4.19), we have Pji=01 that is,

and consequently, by Theorem O, (M, g) is conformal to a sphere. By using
Theorem P, we can prove the latter part of Proposition 15.

The latter part of Proposition 15 is a generalization of Theorem N.

COROLLARY 3. // a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e2pg
such that

(4.20) W*kj

and

f (u-nLduK*-LduK)dV^0,
J M

then (M, g) is conformal to a sphere. If moreover LduK=Q or K= constant, then
(M, g) is isometric to a sphere.

Proof. Putting p=q=r—0 in (4.18), we get (4.20), and consequently Corollary
3 follows immediately from Proposition 15.

The latter part of Corollary 3 is a generalization of Theorem K.
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