K. NIINO
KODAI MATH. SEM. REP
26 (1975), 289293

ON THE GROWTH RATE OF COMPOSITIONS OF
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1. Let f(z) be a meromorphic function and 7(7, f) its Nevanlinna charac-
teristic function. Gross-Yang [4] proposed the following open question:
Suppose that f,(z) and f,(z) are meromorphic functions, g,(z) and g.(z) are

entire functions and that

. T, f) _ . T(r,g) _
lim —rrry =0 and  lim—poe =0.

Then is it true that
3 T(Ty fl Ogl) — ?
11—»12 T(r, f308,) 0

In this paper, firstly, we shall give a negative answer to this question, that is,
THEOREM 1. There arve two meromorphic functions f,(z), f(z) and two entire
functions g,(z), g,(z) such that
. T(r, /1) . T(r, &) — T(r, /,°8,)
_4\F, :0 9y 1 — d 1 J1 1~: .
MOTr Y T M Tr gy 0 M T feg)

2. Let f(z) be an entire function and M(7, f) its maximum modulus on
|z|=7. In our previous paper [5] we discussed the asymptotic behavior of the
ratio log M(r, hog)/log M(r, hof), where h(z), g(z) and f(z) are entire functions.

Now we investigate the asymptotic behavior of the ratio log M(r, goh)
/log M(r, foh). We shall prove

THEOREM 2. Let g(z) and f(z) be entire functions such that

i log Mlar, g) _
@) M MG, 7y =

for some constant a>1., Then for any non-constant entire function h(z)

. log M(r, goh) _
Um oM foh) =0
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Clunie [2] found an entire function A(z) such that

(2.2) Wm0 M(r, expoh) —

Hence in Theorem 2 we can not replace inferior limit by superior limit. Theo-
rem 2, also, is not valid for a=1. In fact we put g(z)=expexpz, f(z)=
exp (—zexp (—z)) and h(z)=z°+2°. Then we have log M(r, g)=expr, log M(7, 1)
=rexp7r, log M(r, goh)=exp (r*+r? and log M(r, foh)Z(r*+r?) exp (r*+(1/2)r®
+0(r)) (r—oc). Hence we obtain

=00,

log M(r, g) . log M(r, goh)
lim jogm(r 7 =0 and Lm0y

Next we consider the asmptotic behavior of the ratio log M(r, fiog)/
log M(r, f;08,), where f, and g, are entire functions. By the same method used
in [5] and in the proof of Theorem 2 we can obtain the following :

THEOREM 3. Let fi(z) and gi(z) (J=1, 2) be non-constant entire functions.

— log M(r, f,) . log M(ar, g,) _
W e me fy < o I Tog e gy 0 (42D
imply

lim log M(r, f1081) =0.
re log M(7, f308,)

and  lim 108 M(r, 2) _

s Log M(r, )
w l < I “log M(7, 22) —

Lo log M(r, f,)
or

im log M(ar, f,) _ M( M, 8) >
lrtrg Tog M(r. 7,) =0 and hm DAl =B (a>pz=1)

imply

llm log M(T, flogl) —

e l0g M(7, f,085) '

It is clear from Theorem 4 in [5] and (2.2) that in (II) of Theorem 3 we
can not replace inferior limit by superior limit. Moreover we shall show

THEOREM 4. There are four entire functions f;(z) and g(z) (=1, 2) such
that

log M(r, 1) log M(r, g,) _ log M(r, fi0g,))
Hm Sog M(r, £~ 1M Tog M(r. gy —° i oo Mr frogy) =
3. Lemmas. In order to prove our theorems we need the following lemmas :
LEmMA 1 ([1, 2]). Let f(z) and h(z) be entire functions. Then
M(r, foh)ZzM((1+o(1))M(r, h), /)  as r—oo
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outside a set of v of finite logarithmic measure which depends, as does o(l), on
h(z).

Combing (2.7) and (2.8) in [5] with Theorem 1 in [3] we obtain the follow-
ing lemmas:

LEMMA 2. For any transcendental meromorphic function f(z), there is an
entire function g(z) such that

. N, 1/g) _ . N(r,1/g) _ . N(r,1/g)® _
lim =757 =L Im—pxpA =0 and  lim st =oo
LEMMA 3. For any transcendental entire function f(z), there is an entire
function g(z) such that

M(r, g)=g(r), 1imi8—§%——%%=0 and 1im%)6g§%(—&‘g?))2—_—_oo,

r—c0 r—00

4. Proof of Theorem 1. It follows from a slight modification of the proof
of Theorem 5 in [2] that we have a transcendental meromorphic function f,(z),
a transcendental entire function g,(z) and two sequences {R,}, {M,} such
that

lim R,=lim M,=co0, T(R,, fzogz)zMn(1+o(l>) (n—00)

n—oo n—o0

and
N(R,, fz)=M}log?2.

Let f,(z) be an entire function obtained by Lemma 2 for the given meromorphic
function f,(z). Then we have

i MO N R i N 1)
VAR iy AR (WAL

and consequently

— T, f) _— N 1/fD
lim -y Shm =iy = =0,

(I+0(W)T(Ry, f)=N(Ry, 1/f)ZN(R,, [)'*Z M, (log 2)"*  (n—0).

Hence

T L) 2 (1 o) log M, (o)

and so T £)
-_— v, J1 —
Um 7, Froge) —

Therefore, putting g,(z)=z, we obtain Theorem 1.

5. Proof of Theorem 2. It follows from Lemma 1 and (2.1) that there is
a set E of 7 of finite logarithmic measure and
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7 log M(r, goh) _+— log M(M(r, h), g)
lim oo M(r, foh) é,lg%‘ Tog M((1+o(L)M(r, A, F)

rEE T

- log M(M(r, h), g)  _
=1 Tog M(W/) M, 1), 77 0"

Hence we have
. _log M(r, goh) _
Um oo for) — 0

which gives Theorem 2.

6. Proof of Theorem 4. Let f,(z) be exp z, g,(2) an entire function satisfy-
ing (2.2) and g,(z) the entire function obtained by Lemma 3 for the given entire
function g.(z). Then we have

log M(7, g,)

(61 W2 Tog M7, frog — o °nd los M )=y
and

_ . log M(r, g,) _ . _(log M(r, g))* _
(6.2) M(r, g)=8(r), lim log M(r, g,) — and lim log M(r, glz) =

We denote by f,(z) an entire function such that
(6.3) M(r, f)=rf(r) and log M(r, f)~(logr)*  (r—o0).

The existence of f(z) is ensured by Theorem 1 in [3]. (6.1), (6.2) and (6.3)
yield

. log M(r, f1) _
Um Jog M(r, 7) 0

It also follows from (6.2) and (6.3) that
M(r, fiog)=rf.(g(r))=M(M(r, g,), f1)

. log M(r, g1) _
and ITLIB log M(r, g,) =0.

and so
log M(r, fi0g,)~(log M(r, g,))*  (r—o0).

Hence by (6.2) we have

: _EgMO':flogl) _
Um = og M, g

and consequently together with (6.1)

im log M(r, fi0g,) —
e log M(7, f504,)

oo,

Thus the proof of Theorem 4 is complete.
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