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ON HYPERSURFACES IN EVEN DIMENSIONAL
CONTACT RIEMANNIAN MANIFOLDS

By ISUKE SATO

Introduction. An even dimensional differentiable manifold M is called an
even dimengional contact manifold, if it admits a 1-form 7 such that (dp)"=+0,
where dim M=2n. Then there exists naturally an almost Kdhlerian structure
on M. Such a manifold was recently studied from the differential geometric
point of view by K. Yano and Y. Mutd [8], [9], T. Nagano [1] and S. Sasaki
31

In the present paper we study hypersurfaces of an even dimensional contact
Riemannian manifold. In §1 we recall first of all the definition of even dimen-
sional contact Riemannian manifolds and some identities which hold in such
manifolds and after some preliminaries, § 2 contains some identities which hold
for hypersurfaces in an even dimensional contact Riemannian manifold. In §3
we prove that if the hypersurface satisfies certain condition, it admits a contact
structure. In §4 an integral formula is obtained for closed hypersurfaces with
constant mean curvature and applying the integral formula we prove that, under
certain conditions, the hypersurface in question is totally umbilical. Finally in
§5 we consider an even dimensional contact Riemannian manifold in which the
structure vector field & is contravariant almost analytic and study a hyper-
surface in this manifold.

1. Even dimensiongl contact Riemannian manifolds. A 2n-dimensional
differentiable manifold M is said to have an even dimensional contact structure
and called an even dimensionalNCOntact manifold if there exists a 1-form 7, to
be called the contact form, on M such that

(L.1) (dp)+0

everywhere on A7I, where d7 is the exterior derivative of 7.
In terms of local coordinate {y*} of M the contact form 7 and its exterior
derivative are expressed as
n=ndy",

(1.2)
dr;:F;,‘dyl/\dy“ ,
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where 4, ¢ run through the range 1,2, -+, 2n and we have put
(13) F/zlu:aﬂ?#—aﬂﬂl , E)x:a/ayl .

Then F,, is a skNew-symmetric covariant tensor field on M and has rank 2n
everywhere over M. Therefore, there exists uniquely a skew-symmetric contra-
variant tensor field F** over M such that

FuFrr=—g,r.
We put
g =n F,
then &% is a contravariant vector field over M which vanishes on 1\710, denoting
the set of zero points of 1 by M,. Itis well-known that there exists a Rieman-
nian metric G, and an almost complex structure

Fﬂl :F‘quul

such that (F,%, Gy is an almost Hermitian structure over M (Sasaki [3]). We
call M with such tensor fields an even dimensional contact Riemannian manifold
and (7., F.% G,) its structure tensors. (F,% G,) is an almost Kéhlerian struc-
ture.

If we put

£u=Gué*, n*=n,G",
we can easily verify the following relations:

Guu&'n*=0,

Fﬂl&p___ _771 ) Fﬂ/zv,u:&-z ,

Flé=n,, Fn‘m:—fﬂ-

2. Hypersurfaces. Let M be a (2n—1)-dimensional oriented differentiable
manifold and i be an immersion of M into a 2n-dimensional contact Riemannian
manifold M with the structure (9w F,, Gu). We assume throughout the paper
that the sets M and M, has no intersection. In terms of local coordinates
(x, -+, x™ 1) of M and (3, --+, ¥**) of M the immersion 1 is locally expressed by

yE:.y‘(xly Tt x2n-1) .

If we put B,A=0;y%, 9,=08/0x", then B/ are (2n—1) local vector fields in M
spanning the tengent space at each point of M. A Riemannian metric & on M
ishnaturally induced from the Riemannian metric G on M by the immersion in
such a way that

(2.1) gji’:'GﬂZBj#Btl .

We take the unit normal C*~ to M in such a way that B, B4 -+, By,_,%, C* give
the positive orientation of M.
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Let H,, be the second fundamental tensor of the immersion :. Then the
equations of Gauss and those of Weingarten are written as

(2.2) V;B*=H;C*,
(23) Vicz——‘—Hiijz ’
where V, is the so-called van der Waerden-Bortolotti covariant differentiation,
where V;B; and V;C are defined respectively by
A— 2 h 2 7 v
7Bé=0,B—1{" } Bt +{ p BB,
T\ g e
V,.cx_—_ajc2+{# B C,

{ th} and {/f’)} being the Christoffel’s symbols of M and M respectively.

The transform F,’B# of the tangent vector field B;# by F,* can be repre-
sented as a sum of its tangential part and its normal part, that is,

(2.4) FBi#*=f"By*+f,C*,
By the similar way, we can easily see that
(2.5) FfCr=—f'B*, (f'=f,8").

~

On the other hand, »* being tangent to M is expressed as a linear com-
bination of B;* and C*. Hence we can put

(2.6) P*=u"By*+rC*,

which implies

2.7 w=nBs,  r=9.C*.
Moreover we have

(2.8) g =F  pr=u'f,—rf?)B, +u'f,C*.

It is well-known that an orientable hypersurface in an almost Hermitian mani-
fold have an almost contact metric structure (Tashiro [5]). In our case, we find
that (f.*, f., £;:) is an almost contact Riemannian structure and so the following
relations:

fi]f]n:_aih+fth ’ fijfj:()r

(2.9) ) )
fif9=0, ffi=1
hold good.
From (2.4) we have
(2.10) f*=F,,B’Btg",  f;=CF/B;".

Differentiating (2.7), covariantly and making use of (2.2), (2.7),, we have
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Vjuiz(ﬁ,‘y;l)B,/‘B,*—l-rHﬂ
or
(2.11) (V ip)B#BA=V ju,—rH;;
where we denote by 7 » the operator of covariant differentiation with respect to

{,/,} substicuting (13) into (2.10) we have
fzh:(ﬁuﬁp_ﬁ,uyiv)Biij#gjh

=V u,;—V ju,)g™ (using (2.11)),
or

(2.12) fji=l7jui—l71~uj .

from which we see that the 2-form f=f;dx’Adx" is closed.

L3 Contact hypersurfuces. We consider an orientable hypersurface M in
M. We assume in this section that the unit normal C* of M is represented as
a linear combination of the vector fields »* and &* and that 7% is not perpendi-
cular to M. Then C? can be expressed as

(3.1) Cr=an'+p&*,

where « and 8 are some scalar functions. By means of (2.6) and (2.8), we have
C*={aw'+puf—rf)} B, +(ar+pu'f,)C*,

from which, by assumption, we have

(3.2) auw’+ Buf, —rfi)=0,

(3.3) ar+putf;=1.

Suppose that =0 at some point of M. In that case, from (3.2) we have u’=0,
because of a#0. Hence by virtue of (2.7) »* is perpendicular to M, which is a

contradiction for our assumption. Consequently we see that 8+0 at each point
of M.

Transvecting (3.2) with f, and using (2.9), we have
(3.4) aw’f;—Br=0.
From (3.3) and (3.4), we have
(3.5) r=a/(a®+p%, ufi=Pp/(a*+p%).
Transvecting (3.2) with f,* and making use of (2.9) and (3.5),, we have
(3.6) aw’f,F—put+(B/(a*+ B =0.

Again transvecting (3.6) with f,* we have
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au*—ouw’f,fi+ pulf =0,
or making use of (3.5),
3.7) aut—(af/(a’+p*)f*+pu’f,*=0.
From (3.6) and (3.7) we have
ut=(B/(a’+pHr".
Now if we define 1-form f and 2-form ¢ on M by
f=rfidx*, ¢=fdxdx*,
then (f, ¢) is an almost cosymplectic structure (Okumura [2]), that is,
SN0,
Moreover if we define a 1-form u by u=u;dx*, we have
uNG"'=(B/(a’+ B NP #0,

which together with (2.12) shows that 1-form # is a contact 1-form on M and
then M is a contact hypersurface. Summing up the result above, we have the

following :

THEOREM 3.1. Let M be an orientable hypersurface in an even dimensional
contact Riemannian manifold. If the unit normal of M is represented as a linear
conbination of the two vectors n and & and n is not prependicular to M, then the
hypersurface admits a contact structure.

As a special case of Theorem 3.1, we have

THEOREM 3.2. A (2n—1)-dimensional sphere in a 2n-dimensional Euclidean
space 1s a contact hypersurface.

Proof. We put in a 2n-dimensional Euclidean space E**

7]: él(xn-"adxa_xa(i\x"-*—a)/z

where x!, ---, x®* are Cartesian coordinates. Then we see that
1 n+a 1 [24 1 a 1 n+a
7],u:<7x e, ——‘z—x ), §X=<—2—'x » o X + ):
i (0 — 05" 1_ (08 0
Fi=(oe o° ) =% 5.

By virtue of these equations we can easily see that E*" admits an even dimen-
sional contact Riemannian structure (Sasaki [3]).
Now, we consider a (2n—1)-dimensional sphere S in E?":
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2n
xE (x%)?=4.
=1

Then ¢ is a unit normal to S and y is a tangent to S. Consequently our asser-
tion follows immediately from Theorem 3.1.

4. Closed hypersurfaces in which covariant differential of § is proportional
to the displacement along the hypersurfaces. We consider a closed orientable
hypersurface M immersed in M. We always assumed in this section that the
covariant differential of the vector field £ is proportional to the displacement
along M and that the mean curvature is a constant. By assumption, we have

(4'1) Vtgi':pBlz ’

o being a scalar function on M.
In (2.8) putting
v]=uzf1.]_rfj ’ S=ulf1, ’
we have
Vz‘fZ:Vi(va;z"l‘SC'z)

:(Vivl_SHij)B]X"}'(ijlj"‘st)Cl .
By assumption we find
(42) Vivj:szJ+SHzJ ’
(4.3) H,;v'+V ,s=0.

From (4.2) we have
Vw=(02n—1)p+sH,".
Integrating over M, we find

(4.4) { [@n—D)p+sH, 1V =0,
where dV denotes the volume element of M.
We now compute V,(H,v’):
V.(Hw)=pH+sH"H;+WV H, v’ .
But, from the equation of Codazzi:
R,2B*B#By*C*=V ;H;,—V ;Hjp,

R, being the curvature tensor of M, we have, making use of B;”B,’g"
=GH—CHCA,

R,.B,’C*=—V H}
and consequently we have

V(H,"v))=pH,'+sH;H"—R,.B,"v'C* .
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Thus, integrating over M, we have
(45) fMRMB,”fo dv= jM[sz +sH;;H"]dV .

If H'=0, M is totally geodesic and consequently totally umbilical. In the case
where H,'#0, forming (4.5)—(4.4)x(1/(2n—1))H,*, we have
[ R.BviCrdv=| SHIH;—(1/@n—1)HH )V,
M
or

46) [ RuBviCraV={ s(H'——ploH.og")(Hy— g i, )dV .

Suppose that

j‘MR,,EBJ”vJC"dVgo (resp. =0), s>0 (resp. <0),
then we have

Hji 271 1 Hb g;z—o

that is, the hypersurface under consideration is totally umbilical. From (2.7),
and (2.10), we have s=u'f;=C;%. Thus we have

THEOREM 4.1. Let M be a closed orientable hypersurface of an even dimen-
stonal contact manifold and assume that the covariant differential of the structure
vector field & is proposional to the displacement along M. If

(i) the mean curvature is constant,

(ii) jMRWB,vchxdvg (=0),

(iii) the scalar product C;&* does not change the sign (and 1s not =0), then
the hypersurface 1s totally umbilical.

N.B. (i) If the ambient manifold M is a Kéhler-Einstein manifold, then
R,.B,>v’C*=0 holds and consequently the second condition of Theorem 4.1 is
automatically satisfied.

(ii) In a sphere S appeared at the last section, the vector field & satisfies
the equation (4.1) together with p=1/2.

5. The case where ¢ is almost analytic. In this section we consider a 2n-
dimensional contact Riemannian manifold M in which the vector field Eisa
contravariant almost analytic one with respect to the almost complex structure
F (Yano [7]). In an even dimensional Euclidean space appeared in §3 the
vector & is just contravariant almost analytic.

By assumption

(.1) L(&)F,2=0
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holds good, denoting Lie derivation with respect to & by -L(£). A vector field &
is called to be homothetic Killing if £(§)G,;=2¢G,; c=constant and ¢ to be
homothetic constant. The following theorems are known:

THEOREM 5.1 (Sasaki [4]). In a 2n-dimensional contact Riemannian mani-
fold, the vector field & 1s contravariant almost analytic 1f and only 1f & is homo-
thetic Killing with the homothetic constant 1/2.

THEOREM 5.2 (Yano [6], [11]). Let M be an n-dimensional orientable Rie-
mannian manifold and M a closed hypersurface in M whose first mean curvature
is constant. We suppose that M admits a 1-parameter group of homothetic trans-
formations such that the winner product of the genervating vector & and the normal
C to the hypersurface has constant sign on M, and the Ricci curvature R(C, C)
with respect to the normal C 1s non-negatiwve on M. Then every point of M is
umbilical and R(C, C)=0 on M.

From the last two theorems we have the following :

THEOREM 5.3. Let M be a 2n-dimensional contact Riemannian manifold in
which the vector field & 1s contravariant almost analytic and M a closed hyper-
surface in M whose first mean curvature is constant. We suppose that the inner
product of the vector & and the normal C to the hypersurface has constant sign
on M, and the Ricci curvature R(C,C) with respect to the normal C 1s non-
negative on M. Then every point of M is umbilical and R(C, C)=0 on M.

The vector fields & and 7 determine a 2-dimensional plane at each point of
M—M, We denote it by o-plane. Evidently the o-plane is invariant by the
almost complex structvre F. We cenote the distribution of o-planes by D.

PROPOSITION 5.4. In a 2n-dimensional contact Riemannian manifold with
contravariant almost analytic vector field &, the distribution D 1s involutive.

Proof. By assumption we have

L(EF,=0.
Then
(&, n =L (&)n*=L(E)(—F ')

=—(L(Fe—F"L(§)E"=0,

from which our assertion is proved.

By Proposition 5.4, we see that through each point of the hypersurface there
passes a unique integral submanifold of the distribution D. Therefore, we can
speak of this integral submanifold L. As the tangent space at each point of L
is holomorphic, L is an invariant submanifold. Moreover it is well-known that
in an almost Kidhlerian manifold, every invariant submanifold is always minimal
(Schouten and Yano [4]).

Let L be locally expressed as y*=y“(x!, x*). As L is invariant, we have
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prBiFZfijsz ,

from which we can easily see that (f,’) is an almost complex structure of L.
But, in general, an almost complex manifold of dimension 2 is necessarily com-
plex (Yano and Mutd [10]). So L admits a complex structure.

Now, »* being tangent to L, we can put as 7*=u'B;*, and then we have
u;=n;B;%. Differentiating the equation covariantly along L, we have

~ 2n ~
Vjui:(Vﬂ’ii)BJ#BiLl_ EsyilHAijicAl:(VﬂvZ)BjﬂBix ,

where C,* are 2n—2 orthonormals of L and H,j; the second fundamental tensors
with respect to L. Hence we have

(5.2) fji:Vjui“ViuJ .

If we put
o=rf;dx’dx*, u=u;dx*,

then from (1.1) and np=ndy*=u,dx'=u it follows that ¢=du+0. Consequently
L is a 2-dimensional contact Riemannian manifold. Thus we have the following :

PROPOSITION 55. In a 2n-dimensional contact Riemannian manifold with
contravariant almost analytic vector field &, the integral submanifold L of the
distribution D is a Riemannian surface and admits a 2-dimensional contact Rie-
mannian structure,
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