ON QUATERNION KÄHLERIAN MANIFOLES ADMITTING THE AXIOM OF PLANES

By Shōichi Funabashi and Yoshiya Takemura

§ 0. Introduction.

A Riemannian manifold satisfies, as is well known, the axiom of planes if and only if it is of constant curvature (See Cartan [3]). In 1953, Yano and Mogi [8] proved that a Kählerian manifold is of constant holomorphic sectional curvature if and only if it admits the axiom of holomorphic planes. Thereafter Ogiue [7] proved in 1964 that a Sasakian manifold is of constant C-holomorphic sectional curvature if and only if it admits the axiom of C-holomorphic planes or C-holomorphic free mobility.

Recently, quaternion Kählerian manifolds have been studied by several authors [1], [2], [4], [5], [6] and interesting results have been obtained. In a recent paper [5], Ishihara have determined the form of the curvature tensor of a quaternion Kählerian manifold with constant Q-sectional curvature (See the formula (1.8)). The purpose of the present paper is to prove

Theorem. A quaternion Kählerıan manıfold M admıts the axiom of Q planes if and only if it is of constant Q-sectional curvature, provided that $\operatorname{dim} M \geqq 8$.

Corollary. A quaternıon Kählerian manıfold M of dimension $4 m$ admits the axiom of Q-planes of order $p(1 \leqq p \leqq m)$ if and only if it is of constant Q sectional curvature, provided $\operatorname{dim} M \geqq 8$.

The authors wish to express their sincere gratitude to Professor S. Ishihara who gave them valuable suggestions.

§ 1. Preriminaries.

We now recall definitions and some formulas in quaternion Kählerian manifolds (See [5]). Consider a Riemannian manifold (M, g) which admits 3-dimensional vector bundle V consisting of tensors of type $(1,1)$ over M. The triple (M, g, V) is called a quaternion Kählerıan manıfold if M, g and V satisfy the following conditions (a) and (b):

Received July 23, 1973.
(a) In any coordinate neighborhood U of M, there is a local base $\{F, G, H\}$ of the bundle V, such that F, G and H are tensor fields of type $(1,1)$ in U satisfying

$$
\begin{gather*}
F^{2}=G^{2}=H^{2}=-I, \tag{1.1}\\
G H=-H G=F, \quad H F=-F H=G, \quad F G=-G F=H,
\end{gather*}
$$

I being the identity tensor fields of type (1,1) in M, and each of F, G and H forms an almost Hermitian structure together with g. Such a local base $\{F, G, H\}$ of V is called a canonical local base of the bundle V in U.
(b) If φ is a cross section of the bundle V, then $\nabla_{X} \varphi$ is also a cross section of V for any vector field X in M, where ∇ denotes the Riemannian connection of M.

We call (g, V) a quaternıon Kählerian structure. From now on, we denote a quaternion Kählerian manifold (M, g, V) simply by (M, g) or more simply by M, for the sake of simplicity.

Any quaternion Kählerian manifold (M, g) is of dimension $4 m(m \geqq 1)$ and is an Einstein space, that is, the Ricci tensor has the components $K_{j i}$ of the form

$$
\begin{equation*}
K_{\jmath i}=4(m+2) a g_{j i}, \tag{1.2}
\end{equation*}
$$

$g_{j i}$ being components of g (See [5]), where the indicies h, i, j, k and l run over the range $\{1,2, \cdots, 4 m\}$ and the summation convention will be used with respect to these indices.

We assume that M is of dimension $4 m \geqq 8$. We denote by $F_{\imath}{ }^{h}, G_{\imath}{ }^{h}$ and $H_{\imath}{ }^{h}$ respectively components of F, G and H, and by $K_{k j i}{ }^{h}$ components of the curvature tensor of (M, g). In terms of these notations, the following formulas were established in [5]:

$$
\begin{gather*}
K_{k t s h} F^{t s}=-\frac{m}{m+2} K_{k s} F_{h}{ }^{s}, \quad K_{k t s h} G^{t s}=-\frac{m}{m+2} K_{k s} G_{h}{ }^{s}, \tag{1.3}\\
K_{k t s h} H^{t s}=-\frac{m}{m+2} K_{k s} H_{h}{ }^{s}, \\
K_{t s} F_{k}{ }^{t} F_{\jmath}^{s}=K_{t s} G_{k}{ }^{t} G_{j}^{s}=K_{t s} H_{k}{ }^{t} H_{j}^{s}=K_{k j}, \tag{1.4}\\
-K_{k j s s} F_{\imath}{ }^{t} F_{h}{ }^{s}+K_{k j i h}=-4 a\left(G_{k j} G_{i h}+H_{k j} H_{i n}\right), \tag{1.5}\\
K_{t \jmath s h} F_{k}{ }^{t} F_{\imath}{ }^{s}-K_{t, s \imath \imath} F_{k}{ }^{t} F_{h}{ }^{s}=-4 a\left(G_{k j} G_{i n}+H_{k j} H_{i h}\right), \tag{1.6}
\end{gather*}
$$

a being a real constant appearing in (1.2), where we have put $F_{k j}=F_{k}{ }^{t} g_{t j}, F^{j i}$ $=g^{j t} F_{t}{ }^{2}$ and so on.

Using the first Bianchi identity, (1.5) and (1.6), we get easily

$$
\begin{align*}
& K_{t \jmath s h} F_{k}{ }^{t} F_{\imath}{ }^{s}-K_{t \imath s h} F_{k}{ }^{t} F_{j}^{s} \tag{1.7}\\
& \quad=K_{j i k h}+4 a\left(G_{j i} G_{k h}+G_{k i} G_{j h}+G_{k j} G_{i n}+H_{j i} H_{k h}+H_{k \imath} H_{j h}+H_{k j} H_{i n}\right)
\end{align*}
$$

Taking a point x of a quaternion Kählerian manifold M, and a tangent vector
X at x, we put

$$
Q(X)=\{Y \mid Y=a X+b F X+c G X+d H X\},
$$

where a, b, c and d are arbitary real numbers, and we call $Q(X)$ the Q-section determined by X, which is a 4 -dimensional subspace in the tangent space $T_{x}(M)$ of M at x. If the sectional curvature for any two vectors belonging to $Q(X)$ is a constant $c(X)$ depending only upon the vector X at x, then the constant $c(X)$ is called the Q-sectional curvature with respect to X at x. If the Q-sectional curvature $c(X)$ is a constant c independent of the choice of X and x, then the manifold M is a quaternion Kählerian manifold of constant Q-sectional curvature c. This definition leads us to the following result ([5]). That is, a quaternion Kählerian manifold of dimension $4 m \geqq 8$ is of constant Q-sectional curvature c if and only if its curvature tensor has the components of the form

$$
\begin{align*}
K_{k j i h}= & \frac{c}{4}\left(g_{k h} g_{j i}-g_{j h} g_{k i}+F_{k h} F_{j i}-F_{j h} F_{k i}-2 F_{k j} F_{i n}\right. \tag{1.8}\\
& \left.+G_{k h} G_{j i}-G_{j h} G_{k i}-2 G_{k j} G_{i h}+H_{k h} H_{j i}-H_{j h} H_{k i}-2 H_{k j} H_{i n}\right) .
\end{align*}
$$

We now introduce the notion of the axiom of Q-planes and that of Q-planes of order p. Let M be a $4 m$-dimensional quaternion Kählerian manifold with a quaternion Kählerian structure V. A quaternion Kählerian manifold is said to admit the axiom of Q-planes if there exists a 4 -dimensional totally geodesic submanifold tangent to any Q-section at each point. Next we take a point x in M, and linearly independent vectors $X_{(q)}(q=1, \cdots, p, 1 \leqq q \leqq m)$ at x such that $X_{(q)}$, $F X_{(q)}, G X_{(q)}, H X_{(q)}(q=1, \cdots, p)$ are also linearly independent. The $4 p$-dimensional vector subspace

$$
Q\left(X_{(1)}, \cdots, X_{(p)}\right)=\left\{Y \mid Y=\sum_{q=1}^{p}\left(a_{q} X_{(q)}+b_{q} F X_{(q)}+c_{q} G X_{(q)}+d_{q} H X_{(q)}\right)\right\},
$$

a_{q}, b_{q}, c_{q} and d_{q} being arbitary real numbers, in the tangent space $T_{x}(M)$ is called a Q-planes of order p determined by $X_{(1)}, \cdots, X_{(p)}$. If a quaternion Kählerian manifold admits a $4 p$-dimensional totally geodesic submanifold tangent to any Q-planes of order p at each point, we say that the manifold admits the axiom of Q-planes of order p. Thus a Q-plane of order 1 is nothing but a Q section. The axiom of Q-planes of order 1 coincides with the axiom of Q-planes. As a consequence of (1.8), a quaternian Kählerian manifold of dimension $4 m$ admits the axiom of Q-planes of order $p(1 \leqq p \leqq m)$ if it is of constant Q-sectional curvature. Therefore, the theorem stated in $\S 0$ implies immediately the corollary stated in § 0 .

§ 2. Proof of the theorem.

We are now going to prove our theorem stated in § 0. Assume that a quaternion Kählerian manifold (M, g) of dimension $4 m \geqq 8$ admits the axiom of Q planes. We take an arbitrary point x in M and Q-section $Q(X)$ determined by
an arbitrary unit tangent vector X at x. Denote by N the totally geodesic submanifold of dimension 4 passing through x and being tangent to $Q(X)$ at x. If the submanifold N is assumed to be expressed by parametric equations $x^{h}=$ $x^{h}\left(v^{\lambda}\right)$, where x^{h} and v^{λ} are local coordinates in M and N respectively. Then, since N is totally geodesic, the equations

$$
\frac{\partial^{2} x^{h}}{\partial v^{\nu} \partial v^{\mu}}+\left\{\begin{array}{ll}
h & \imath \\
, & \imath
\end{array}\right\} \frac{\partial x^{\jmath}}{\partial v^{\nu}}-\frac{\partial x^{2}}{\partial v^{\mu}}-\frac{\partial x^{h}}{\partial v^{\lambda}}\left\{\begin{array}{l}
\lambda \\
\nu
\end{array}\right\}=0
$$

are established, $\left\{\begin{array}{ll}h_{j} & { }_{2}\end{array}\right\}$ and $\left\{\begin{array}{cc}\lambda \\ \nu & \mu\end{array}\right\}$ being Christoffel symbols formed respectively with $g_{j i}$ and the induced metric $g_{\nu \mu}$ of N, where the indices κ, λ, μ and ν run over the range $\{1,2,3,4\}$ and the summation convention will be used with respect to these indices. Since the integrability conditions of these differential equations above are given by the equation of Gauss, we have

$$
\begin{equation*}
K_{\nu \mu \lambda}{ }^{\kappa} B_{\kappa}{ }^{h}=K_{k j i}{ }^{h} B_{\nu}{ }^{k} B_{\mu}{ }^{3} B_{\lambda}{ }^{2}, \tag{2.1}
\end{equation*}
$$

where $B_{\nu}{ }^{2}=\partial x^{2} / \partial \nu^{\nu}$, and $K_{\nu \mu \lambda^{\kappa}}$ are components of the curvature tensor of N. If $\{F, G, H\}$ is a canonical local base of V around the point x of M, then each of $B_{\mu}{ }^{h}$, for a fixed index μ, is at x linear combination of $X^{h}, F_{\imath}{ }^{h} X^{\imath}, G_{i}{ }^{h} X^{\imath}$ and $H_{2}{ }^{h} X^{2}$ where X^{h} are components of X, because the submanifold N is tangent to the Q-section $Q(X)$. Conversely, each of $X^{h}, F_{\imath}{ }^{h} X^{\imath}, G_{\imath}{ }^{h} X^{\imath}$ and $H_{2}{ }^{h} X^{\imath}$ is a linear combination of $B_{1}{ }^{h}, B_{2}{ }^{h}, B_{3}{ }^{h}$ and $B_{4}{ }^{h}$. Thus, taking account of (2.1), we have

$$
K_{k j i}{ }^{h} F_{s}{ }^{k} X^{s} X^{\jmath} X^{\imath}=\alpha X^{h}+\beta F_{\imath}{ }^{h} X^{\imath}+\gamma G_{\imath}{ }^{h} X^{\imath}+\delta H_{\imath}{ }^{h} X^{\imath}
$$

where α, β, γ and δ are local functions in M. Since X is a vector, the equation above is equivalent to the following equation:

$$
\begin{equation*}
K_{k j i}{ }^{h} F_{s}{ }^{k} X^{s} X^{\jmath} X^{\imath}=\left(\alpha \delta_{i}^{h} g_{\jmath s}+\beta F_{\imath}{ }^{h} g_{\jmath s}+\gamma G_{\imath}{ }^{h} G_{\jmath s}+\delta H_{2}{ }^{h} g_{\jmath s}\right) X^{\imath} X^{\jmath} X^{s} . \tag{2.2}
\end{equation*}
$$

Since X can be arbitrarily taken, we have from (2.2)

$$
\begin{align*}
& K_{k j i}{ }^{h} F_{s}{ }^{k}+K_{k \imath s}{ }^{h} F_{\jmath}{ }^{k}+K_{k s \jmath}{ }^{h} F_{\imath}{ }^{k}+K_{k \jmath s}{ }^{h} F_{\imath}{ }^{k}+K_{k \imath \jmath}{ }^{h} F_{s}{ }^{k}+K_{k s \imath}{ }^{h} F_{\jmath}{ }^{k} \tag{2.3}\\
& = \\
& =2 \alpha\left(\delta_{i}{ }^{h} g_{\jmath s}+\delta_{s}^{h} g_{\imath \jmath}+\delta_{\jmath}^{h} g_{s \imath}\right)+2 \beta\left(F_{\imath}{ }^{h} g_{\jmath s}+F_{s}{ }^{h} g_{\imath \jmath}+F_{\jmath}{ }^{h} g_{s \imath}\right) \\
& \quad+2 \gamma\left(G_{\imath}{ }^{h} g_{\jmath s}+G_{s}{ }^{h} g_{\imath \jmath}+G_{\jmath}{ }^{h} g_{s \imath}\right)+2 \delta\left(H_{\imath}{ }^{h} g_{\jmath s}+H_{s}{ }^{h} g_{\imath \jmath}+H_{\jmath}{ }^{h} g_{s \imath}\right) .
\end{align*}
$$

Transvecting the equation above with F_{t}^{s} and taking the skew-symmetric parts of the both sides with respect to the indicies t and j, we have

$$
\begin{align*}
& -K_{t j i}{ }^{h}-K_{t j i}{ }^{n}+K_{j t \imath}{ }^{n}+K_{j i t} \tag{2.4}\\
& +K_{k \imath s}{ }^{h} F_{j}{ }^{k} F_{t}{ }^{s}-K_{k \imath s}{ }^{h} F_{t}{ }^{k} F_{j}{ }^{s}+K_{k s}{ }^{h} F_{\imath}{ }^{k} F_{t}{ }^{s}-K_{k s t}{ }^{h} F_{\imath}{ }^{k} F_{j}{ }^{s} \\
& +K_{k j s}{ }^{h} F_{\imath}{ }^{k} F_{t}{ }^{s}-K_{k t s}{ }^{h} F_{2}{ }^{k} F_{j}{ }^{s}+K_{k s \imath}{ }^{h} F_{j}{ }^{k} F_{t}{ }^{s}-K_{k s \imath}{ }^{h} F_{t}{ }^{k} F_{j}{ }^{s} \\
& =2 \alpha\left(2 \delta_{i}^{h} F_{t}+F_{t}{ }^{h} g_{\imath j}-F_{\jmath}{ }^{h} g_{i t}+\delta_{j}^{h} F_{t i}-\delta_{t}^{h} F_{j i}\right)
\end{align*}
$$

$$
\begin{aligned}
& +2 \beta\left(2 F_{\imath}{ }^{h} F_{t j}-\delta_{t}^{h} g_{\imath \jmath}+\delta_{\jmath}^{h} g_{i t}+F_{\jmath}{ }^{h} F_{t i}-F_{t}{ }^{h} F_{j i}\right) \\
& +2 \gamma\left(2 G_{i}{ }^{h} F_{t j}-H_{t}{ }^{h} g_{\imath \jmath}+H_{\jmath}{ }^{h} g_{i t}+G_{\jmath}{ }^{h} F_{t i}-G_{t}{ }^{h} F_{j i}\right) \\
& +2 \delta\left(2 H_{\imath}{ }^{h} F_{t \jmath}+G_{t}{ }^{h} g_{\imath \jmath}-G_{\jmath}{ }^{h} g_{i t}+H_{\jmath}{ }^{h} F_{t i}-H_{t}{ }^{h} F_{j i}\right) .
\end{aligned}
$$

We are now going to determine the coefficients α, γ and δ. First of all, α vanishes identically. In fact, contracting (2.4) with respect to i and h and taking account of (1.3) and (1.4), we obtain

$$
(8 m+4) \alpha F_{t j}=0,
$$

which implies $\alpha=0$.
Next, both of γ and δ are also vanishing identically. In fact, by transvecting (2.3) with $F_{t}{ }^{2}$, we get

$$
\begin{aligned}
& K_{k j i h} F_{s}{ }^{k} F_{t}{ }^{2}+K_{k \imath s h} F_{\jmath}{ }^{k} F_{t}{ }^{2}+K_{k s j n} F_{\imath}{ }^{k} F_{t}{ }^{2}+K_{k \jmath s h} F_{\imath}{ }^{k} F_{t}{ }^{2} \\
& \quad+K_{k \imath j h} F_{s}{ }^{k} F_{t}{ }^{2}+K_{k s i h} F_{\jmath}{ }^{k} F_{t}{ }^{2} \\
&= 2 \beta\left(-g_{t h} g_{\jmath s}+F_{s h} F_{t j}+F_{j h} F_{t s}\right)+2 \gamma\left(-H_{t h} g_{\jmath s}+G_{s h} F_{t \jmath}+G_{j h} F_{t s}\right) \\
&+2 \delta\left(G_{t h} g_{\jmath s}+H_{s h} F_{t \jmath}+H_{j h} F_{t s}\right) .
\end{aligned}
$$

If we take skew-symmetric parts of the both side in the equation above with respect to the indices t and h, then we have, using (1.5) and (1.6),

$$
\begin{aligned}
& 2 \gamma\left(2 H_{h t} g_{j s}+G_{s h} F_{t j}+G_{j h} F_{t s}-G_{s t} F_{h j}-G_{j t} F_{h s}\right) \\
& \quad+2 \delta\left(2 G_{t h} g_{j s}+H_{s h} F_{t j}+H_{j h} F_{t s}-H_{s t} F_{h j}-H_{j t} F_{h s}\right)=0
\end{aligned}
$$

from which, transvecting with $g^{j s}$,

$$
2 \gamma(8 m+4) H_{n t}+2 \delta(8 m+4) G_{t h}=0
$$

Therefore we obtain $\gamma=\delta=0$. Thus (2.4) reduces to the following equation:

$$
\begin{align*}
& -3 K_{t \jmath i h}+K_{k s s h} F_{\jmath}{ }^{k} F_{t}{ }^{s}-K_{k 2 s h} F_{t}{ }^{k} F_{j}{ }^{s} \tag{2.5}\\
& +K_{k s j h} F_{\imath}{ }^{k} F_{t}{ }^{s}-K_{k s t h} F_{\imath}{ }^{k} F_{\jmath}{ }^{s}+K_{k j s h} F_{\imath}{ }^{k} F_{t}{ }^{s}-K_{k t s h} F_{\imath}{ }^{k} F_{\jmath}{ }^{s} \\
& +K_{k s i h} F_{\jmath}{ }^{k} F_{t}{ }^{s}-K_{k s i h} F_{t}{ }^{k} F_{\jmath}{ }^{s} \\
= & 2 \beta\left(2 F_{i h} F_{t \jmath}-g_{t h} g_{\imath \jmath}+g_{j h} g_{i t}+F_{j h} F_{t i}-F_{t h} F_{j i}\right) .
\end{align*}
$$

On the other hand, using the first Bianchi identity and (1.5), we have

$$
K_{k \imath s h} F_{j}{ }^{k} F_{t}{ }^{s}-K_{k l s h} F_{t}{ }^{k} F_{j}{ }^{s}=-K_{t j i h}-4 a\left(G_{t j} G_{i h}+H_{t j} H_{i h}\right) .
$$

By similar divices, we have also

$$
\begin{aligned}
& K_{k s j h} F_{\imath}{ }^{k} F_{t}{ }^{s}-K_{k s t h} F_{\imath}{ }^{k} F_{\jmath}{ }^{s} \\
& \quad=-K_{t j i h}+4 a\left(G_{j h} G_{i t}+H_{j h} H_{i t}\right)-4 a\left(G_{t h} G_{i j}+H_{t h} H_{\imath \jmath}\right) .
\end{aligned}
$$

Substituting these two equations into (2.5) and using (1.5) and (1.7), we have

$$
\begin{align*}
K_{t j i n}= & \frac{\beta}{4}\left(g_{t h} g_{j i}-g_{j h} g_{t i}+F_{t h} F_{j i}-F_{j h} F_{t i}-2 F_{t j} F_{i n}\right) \tag{2.6}\\
& +a\left(G_{t h} G_{j i}-G_{j h} G_{t i}-2 G_{t j} G_{i h}+H_{t h} H_{j i}-H_{j h} H_{t i}-2 H_{t j} H_{i h}\right) .
\end{align*}
$$

Next, transvecting (2.6) with $g^{t h}$, we have $\beta=4 a$ as a consequence of (1.2). Thus the Riemannian manifold (M, g) has the curvature tensor of the form (1.8) with a function c. However, in such a case, the function c is necessarily a constant (See [5]). Therefore, (M, g, V) is a quaternion Kählerian manifold of constant Q-sectional curvature. Thus our theorem has been completely proved.

Bibliography

[1] Alekseevskif, D. V., Riemannian spaces with exceptional holonomy groups, Funktsional'nyi Analiz i Ego Prilozhenyia, 2 (1968), 1-10.
[2] Alekseevskii, D. V., Compact quaternion spaces, Funktsıonal'nyi Analiz i Ego Prilozhenyia, 2 (1968), 11-20.
[3] Cartan, E., Leçons sur la géometrié des espaces de Riemann, Paris (1951).
[4] Gray, A., A note on manifolds whose holonomy group is a subgroup of $S_{p}(n) \cdot S_{p}(1)$, Michigan Math. J., 16 (1969), 125-128.
[5] Ishihara, S., Quaternion Kählerian manifolds, J. Diff. Geom. 9 (1974), 483500.
[6] Kraines, V.Y., Topology of quaternionic manifolds, Trans. Amer. Math. Soc., 122 (1966), 357-367.
[7] Ogiue, K., On almost contact manifolds admitting axiom of planes or axiom of free mobility, Kōdai Math. Sem. Rep., 16 (1964), 223-232.
[8] Yano, K. and I. Mogi, On real representations of Kählerıan manifolds, Ann. of Math., 61 (1955), 170-189.

