J. E. D'ATRI KODAI MATH. SEM. REP. 26 (1975), 201-203

GEODESIC CONFORMAL TRANSFORMATIONS AND SYMMETRIC SPACES

BY J.E. D'ATRI

Introduction. In [3]. S. Tachibana introduced the notion of a (local) geodesic conformal transformation around a point in a Riemannian manifold M and showed that when M has constant scalar curvature and possesses around each point a non-homothetic geodesic conformal transformation, then M is harmonic (see [2] for the theory of harmonic spaces in this sense). In this note, we show that these conditions also imply that M is locally symmetric (and so the universal covering space of M is symmetric). This is of interest for two reasons: (1) There is a conjecture, still unresolved to the author's knowledge, that a harmonic Riemannian space (Riemannian always means positive-definite metric) is locally symmetric (see [2], p. 231). (2) The harmonic Riemannian spaces which are decomposable are locally flat and the indecomposable harmonic symmetric Riemannian spaces are precisely the rank one symmetric spaces which are completely classified (see [2], pp. 235, 230; for the theory of Riemannian symmetric and locally symmetric spaces, see [1]). In particular, it should now be easy to determine which of these spaces actually possess local geodesic conformal transformations but we shall not pursue this.

Derivation of results. Let M be an n(>2) dimensional connected C^{∞} Riemannian manifold with a normal coordinate (x^1, \dots, x^n) with origin at the point 0 and orthonormal at 0. Let g_{ij} , Γ_{ij}^k be the components of the metric tensor and the Christoffel symbols in this coordinate system. We have

(1)
$$g_{ij}x^{j} = g_{ij}(0)x^{j} = x^{i}$$

from which we get

(2)
$$\sum_{i} x^{i} g^{ik} = x^{k}.$$

Differentiating (1) with respect to x^k gives

(3)
$$\frac{\partial g_{ij}}{\partial x^k} x^j + g_{ik} = \delta_{ik}.$$

Of course

(4)
$$\Gamma_{ij}^{k} = \frac{1}{2} g^{kh} \Big(\frac{\partial g_{ih}}{\partial x^{j}} - \frac{\partial g_{ij}}{\partial x^{h}} + \frac{\partial g_{jh}}{\partial x^{i}} \Big).$$

Combining these, we get

J. E. D'ATRI

(5)
$$\sum_{k} \Gamma_{ij}^{k} x^{k} = \delta_{ij} - g_{ij} - \frac{1}{2} x^{k} \frac{\partial g_{ij}}{\partial x^{h}}.$$

Now introduce the function

(6)
$$s = (\sum_{i} (x^{i})^{2})^{1/2}$$

and note

(7)
$$\frac{\partial s}{\partial x^i} = \frac{x^i}{s}$$
 for $s > 0$.

Now Tachibana considers a function ϕ defined in a punctured neighborhood of 0 and of the form $\phi: x^i \rightarrow \rho(s)x^i$. The given Riemannian metric on M is pulled back via ϕ to give a new Riemannian metric g_{ij}^* on this punctured neighborhood. It is assumed that g_{ij}^* is conformally related to g_{ij} by

where σ is shown to be a function of s alone. This is what is meant by saying that ϕ is a geodesic conformal transformation and the further condition that ϕ is non-homothetic means that σ' is nowhere zero in some interval $(0, \varepsilon)$.

Assume from now on that M has constant scalar curvature n(n-1)k and possesses a non-homothetic geodesic conformal transformation around each point. Then Tachibana derives the formulas

(9)
$$\tau_{ij} = \frac{1}{n} \tau_h^h g_{ij}$$

(10)
$$\frac{1}{n}\tau_h^h = \sigma'' - \frac{1}{2}{\sigma'}^2$$

where essentially τ_{ij} and τ_{h}^{h} are defined by

(11)
$$\tau_{ij} = \frac{\partial \sigma}{\partial x^i \partial x^j} - \Gamma^k_{ij} \frac{\partial \sigma}{\partial x^k} - \frac{\partial \sigma}{\partial x^i} \frac{\partial \sigma}{\partial x^j} + \frac{1}{2} \sigma'^2 g_{ij}$$

(12)
$$\tau_h^h = g^{ij} \tau_{ij}$$

We also have, using (7),

(13)
$$\frac{\partial \sigma}{\partial x^{j}} = \sigma' \frac{x^{j}}{s}$$

(14)
$$\frac{\partial \sigma}{\partial x^{i} \partial x^{j}} = \sigma'' \frac{x^{i}}{s} \frac{x^{j}}{s} + \frac{\sigma'}{s} \delta_{ij} - \frac{\sigma'}{s} \frac{x^{i}}{s} \frac{x^{j}}{s}.$$

Using (9), (10), (11), (13) and (14) gives

(15)
$$\left(\sigma'' - \sigma'^2 - \frac{\sigma'}{s}\right) - \frac{x^i}{s} - \frac{x^j}{s} - \frac{\sigma'}{s} \sum_k \Gamma^k_{ij} x^k + \frac{\sigma'}{s} \delta_{ij}$$
$$= (\sigma'' - \sigma'^2) g_{ij} .$$

202

Using (4) in (15) gives

(16)
$$\left(\sigma'' - \sigma'^2 - \frac{\sigma'}{s}\right) \frac{x^i}{s} \frac{x^j}{s} + \frac{1}{2}\sigma' \frac{x^h}{s} \frac{\partial g_{ij}}{\partial x^h}$$
$$= \left(\sigma'' - \sigma'^2 - \frac{\sigma'}{s}\right) g_{ij}.$$

Now Tachibana also derives the formula

(17)
$$\frac{1}{2} (\log g)' = (n-1)(\sigma''/\sigma' - \sigma' - 1/s)$$

where $g = \det(g_{ij})$ is a function of *s* alone, since *M* is harmonic. Let $X = a^i \frac{\partial}{\partial x^i} \Big|_0^{\delta}$ be a unit tangent vector at 0 and let γ be the geodesic emanating from 0 with velocity vector *X*. Then *s* can be taken as the arclength parameter along γ and γ has the equations $x^i = a^i s$. If we restrict equation (16) to the geodesic γ (treating $g_{ij}(s) \equiv g_{ij}(\gamma(s))$) as a function of *s* along γ) and use (17), we get

(18)
$$a^{i}a^{j}(\log g)' + (n+1)\frac{d}{ds}g_{ij} = (\log g)'g_{ij}$$

for s>0 and by continuity also for s=0. Then, given the function g(s) and the constants a^{i} , the function $g_{ij}(s)$ is completely determined by the first order differential equation (18) and the initial condition

If we do the same for the geodesic corresponding to -X, we must replace each a^i by $-a^i$ but we get the same differential equation (18) and the same initial conditions (19). This shows that $g_{ij}(x)=g_{ij}(-x)$ for x sufficiently close to 0 and hence the geodesic symmetry map $x \rightarrow -x$ is an isometry at each point 0. This is of course equivalent to saying M is locally symmetric.

References

- [1] S. HELGASON, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [2] H.S. RUSE, A.G. WALKER AND T.J. WILLMORE, Harmonic spaces, Edizioni Cremonese, Roma, 1961.
- [3] S. TACHIBANA, On Riemannian spaces admitting geodesic conformal transformations, Tensor, N.S., 25 (1972), 323-331.

RUTGERS, THE STATE UNIVERSITY NEW BRUNSWICK, N. J., U. S. A.