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ON (f‘, g, Ucr, a(k))'STRUCTURES
By U-HANG KiI, JIN SUK PAK AND HYUN BAE SuH

§0. Introduction.

Yano and Okumura [6] have studied hypersurfaces of a manifold with
(f, g, u, v, A)-structure. These submanifolds admit under certain conditions what
we call an (f, g, U, @)-structure. In particular, a hypersurface of an even-
dimensional sphere carries an (f, g, Uy, &w)-Structure (see also Blair, Ludden
and Okumura [2]). Submanifolds of codimension 2 in an almost contact metric
manifold also admit the same kind of structure (see Yano and Ishihara [5]).

The main purpose of the present paper is to study the (f, g, Uy, Xw)-
structure and hypersurfaces of an even-dimensional sphere. In §1, we define
and discuss (f, U, Uy, @wy)-structure and (f, g, U, apy)-structure. In § 2, we
recall the definition of (f, g, %, v, A)-structure and give examples of the manifold
with (f, &, Uy, ®uy)-structure. In § 3, we study non-invariant hypersurfaces of a
manifold with normal (f, g, u, v, A)-structure. In the last section, we study hyper-
surfaces of an even-dimensional sphere S?" under certain conditions by using of
the following theorem proved by Ishihara and one of the present authors [3]:

THEOREM A. Let (M, g) be a complete and connected hypersurface immersed
in a sphere S™'(1) with induced metric g;; and assume that there is in (M, g)
an almost product structure P of rank p such that V;P,*=0. If the second
Sfundamental tensor H;; of the hypersurface (M, g) has the form H,,=aP;;+bQ;,
a and b being non-zero constants, where P;=P/g, and Q;=g;—Fj, and, if
m—1=p=1, then the hypersurface (M, g) 1s congruent to the hypersurface S*(r,)
X S™2(r,) naturally embedded in S™'(1), where 1/r®=1+4a* and 1/r,*=1+0b%

§1. (f, U, Uew, acp-structure.

Let M be an m-dimensional differentiable manifold of class C*. We assume
there exist on M a tensor field f type (1,1), vector fields U, V and W, 1-forms
u, v and w, functions «, B and 7 satisfying the conditions (1.1)~(1.7):

(L1) [ X=—X4u(X)U+v(X)V+w( X)W

for any vector field X,
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(1.2) fU=—yV+BW, uof=yv—puw,
1.3) fV=yU+aW, vof=—yu—aw,
1.4) fW=—BU—aV, wof=putav,

where 1l-forms uof, vof and wof are respectively defined by
(o N(X)=u(fX), (@oNN(X)=v(fX), (o) X)=w(fX)

for any vector field X, and

(1.5) w(U)=1—p%—7?, wV)y=—ap, u(W)=—ar,
(1.6) v(U)=—ap, vW(V)=1—a’—7*, v(W)=pr,
1.7 w(U)=—ar, w(V)=8r, w(W)=1—a*—p*.

In this case, we say that the manifold M has an (f, Uy, U, Qc)-Structure.
We first prove

LEMMA 1.1. In a manifold with (f, Uauy, Uy, Qc)-Structure, the vectors U, V
and W (or the covectors u, v and w) are linearly dependent if and only if

a’+ B+ ri=1.
Proof. If there are three numbers a, b and ¢ such that
aU+bV+cW=0,
then, using (1.5), (1.6) and (1.7), we obtain
1—-p—7rHa—apfb—ayc=0,
—afat+(1—a’—7r*)b+Byrc=0,

—aya+Brb+(1—a*—p*)c=0.
Since we obtain

1-g*—r* —af —ay
(1.8) det| —af l—a*—y* Py =1—a’—f—72)?,
—ay Br l1—a*—p
we can immediately derive our result.

In the next place, we prove that a manifold with (f, U, Uk, @)-Structure
is odd-dimensional. Let P be a point of M at which a®48*+y°#1. Then the
vectors U, V and W are linearly independent at this point P by virture of
Lemma 1.1. Thus we can choose m linearly independent vectors X,=U, X,=V,
X,=W, X,,---, Xn which span the tangent space T,(M) of M at P and such
that w(X,)=0, v(X,)=0 and w(X,)=0, for i=4, ---, m. Consequently, we have
from (1.1)
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f2Xi:_Xt’ 1’24: e, m,

which shows that f is an almost complex structure in the subspace V, of T,(M)
at P spanned by X,, -+, X, and that V, is even-dimensional. Thus T,(M) is

odd-dimensional.
Next, let P be a point of M at which «’+3°+y*=1. Then %, v and w are
linearly dependent at this point by virtue of Lemma 1.1. Let say,

(1.9) u=av+bw,

where a and b are numbers. Then, from (1.2), (1.3), (1.4) and uof=avof+bwof,
we have
rv—Bw=—ay(av+bw)—aaw+bB(av+bdw)+bav ,

or,

(1.10) 0=(—y—a*r+abf+ba)v+(f—aby—aa+b’Blw.
Moreover, from (1.9), we get u(W)=av(W)+bw(W), or, using (L.7),

(1.11) _ar:a‘@r_’_brz

by virtue of y*=1—a’—p%
If y(P)+#0, then, from (1.10) and (1.11), we find

0=—1+a*+*)rv+1+a*+6*)pw.

This means that any two of covectors #, v and w are also linearly dependent at
this point. Since w+0 at P, we can choose m linearly independent covectors
Wy=W, W,, Wy, -+, W, which span the cotangent space ‘T,(M) of M at P. We
denote the dual basis by (X, ---, X,). Then we have

fZX’i:_X7.7 Z=2y 37 e, M,

which shows that f is an almost complex structure in the subspace V, of T,(M)
which is spanned by X,, -+, X, and that dim V,=even, and consequently T,(M)
is of odd-dimensional.

If 7(P)=0, then B(P)+0 because of a*=—aaf—bay and a*+ B*+y*=1. More-
over, from —afB=af’+b8y and (1.10), we have 0=(abB-+ba)v+4(1+a*+b*)Bw.

On the other hand, two covectors # and v are not zero at the same time.
Thus we can get the same result as above in this case.

The cases left to examine are in which

v=a,u+bw, w=a,u-+b,v,

where a,’s and b;s (=1, 2) are numbers. But, in these cases, we can also prove
the same results as above by the similar method. Thus we have

THEOREM 1.2. A differentiable manifold with (f, Uuy, Uy, Qcny)-Structure is
odd-dimensional.
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Suppose that (2n—1)-dimensional manifold M has an (f, Uy, Uy, Qy)-Struc-
ture. Now, we consider the product manifold MX R®, R® being a 3-dimensional
Euclidean space. We define in M X R® a tensor field F of type (1, 1) with local
components Fz4 given by

fcb Ua Va Wa

_uc 0 —
(1.12) (Fpt)= rop
—v, 7 0 a

—w, —pB —a 0

in {NxR? x*}, {N, x*} being a coordiante neighborhood of M and xI, x% x°
Cartesian coordiantes in R®, where f.%, U% V% W% u,, v, and w, are respectively
local components of f, U, V, W, u, v and w in {N, x*}. (The indices A4, B, C, --
run over the range {1, 2, -+, 2n+2} and q, b, ¢, d, ¢ run over the range {1, 2, -,
2n—1}. We denote 2n, 2141, 22+2 by 1, 2 and 3 respectively.) Then, taking
account of (1.1)~(1.7), we can easily check that F*=—1I holds in MX R®., Thus
we have

PROPOSITION 1.3, If there is given an (f, U, Uy, Qcry)-Structure in M, then
the tensor field F defined by (1.12) 1s an almost complex structure in MX R®,

Denoting 0/0x4 by d,, then Nijenhuis tensor [F, F] of F has local com-
ponents
(1~13) SCBAZFcEaEFBA"FBEaEFcA—(acFBE—aBFcE)FEA

A

in Mx R®. Thus, using (1.12), we can write down Scz* as follows;

(1-14) Scbazfceaefba'—fbeaefca_(acfbe_abfce)fea
+(0cup—05u) U+(0.05—0,v,) V®
+(acwb—abwc)Wa ’

(1.15) Seot=—fc ety [o0etho+Ue(0c fo'— 05 f %)
— 1@ vy—0,v,)+ B0, wy—0pw,) ,
(1.16) Seo?=—fc0cVp+ [0V +Ve(0c f5°— 05 f %)
+7(0.uy— 0yt )+ (0, wp—0pw,) ,
(1.17) Ser’=—Ff 20wy f5°0,W+1w,(0, [o:—0p f.5)
— B0, uy—0yu.)— a(0,v,—0pv,) ,
(1.18) Se®=f0.U*—U0.f*—(0.U)f*—(@.7)V*°

+(aC.B)Wa ’
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(1.19) Ses*=fe0.V =V 0, f,*— (0, VO f.L2+@.7)U*
+ (0. a)W*,

(1.20) Sa =10 W =W 0, f,*— (0. W*)f*—(@.8)U"
—(0.a)V e,

Specially, if S.,*=0, then we say that the (f, Uy, U, @y)-Structure is normal.
We assume that, in M with (f, Uu,y, Uy, @,)-Structure, there exists a positive
definite Riemannian metric g such that

(1.21) g(U, X)=uw(X), gV, X)=v(X), gW,X)=w(X)
and
(1.22) g(fX, fY)=g(X, Y)—u(X)u(Y)—v(X)v(Y)—w(X)w(Y)

for any vector fields X and Y of M. We call such a structure a metric (f, Uy,
Uy, Qey)-Structure and denote it by (f, g, U, Aw)-
Finally, we define a tensor field of type (0, 2) of M by

(1.23) 0(X, Y)=g(fX,Y)
for any vector fields X and Y of M. Then we can easily verify that
(1.24) (X, Y)=—0(Y, X)

because of (1.1)~(1.4) and (1.21)~(1.23).

§2. Examples.

Let M be a 2n-dimensional differentiable manifold with (f, g %, v, 2)-structure,
that is, a Riemannian manifold admitting a tensor field f,* of type (1, 1), Rie-
mannian metric g;;, two 1-forms u, and v, (or two vector fields u"=u;g"* and
v*=v,g") and a function 4 which satisfy

h — h h h
fift=—0, uut v,

t —
f; fzsgts—gji"’ujui—vjvi ’

(2.1) ffuw=w,, fv=—21u,,
uft=—nt, V=",
wut=vw'=1-2*,  uw'=0,

where (g79)=(g;;)™!, here and in the sequel the indices A, j, i, - running over
the range {1, 2, -, 2n}.
If we put f;;=f,'g.., we can easily see that f;; is skew-symmetric.
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We put
(2.2) S;i=Lf, 1"+ (Y ju—Vu,)u+(V v,— V0, o,
[f, f1;" denoting the Nijenhuis tensor formed with f,* and V, the operator of
covariant differentiation with respect to the Christoffel symbols {Z} formed

with g;;. If S;;* vanishes, it is said that the (f, g, u, v, A)-structure is normal
C7D.
The following theorem is well known (cf. [4], [8]):

THEOREM 2.1. Let M be a manifold with normal (f, g, u, v, A)-structure
satisfying Vjv,—Nv,;=2f;; (or equivalently V u,+Nu;=—228;). If the function
A(1—2%) does not vanish almost everywhere, then we have

(23) V]fzh:gji(¢uh—vh)—'ajh(gbui_vz) ’
(2.4) vjur:—’Zgji_quji y Vjvi:—¢2gji+fji ,
(2.5) leZ:u]+¢v] ’

¢ being constant. Moreover, if M s complete and dim Jg>2, then M is isometric
with an even-dimensional sphere.

An even-dimensional sphere S?" induces a normal (f, g, 4, v, 1)-structure and
satisfies differential equations (2.3)~(2.5) with ¢=0 (cf. [1]).

We consider a (2n—1)-dimensional manifold M covered by a system of
coordinate neighborhoods {U; x°%}, where here and throughout the paper the
indices a, b, ¢, d, e, -+ Tun over the range {1, 2, -, 2n—1}. We assume that the
manifold ~M is immersed in M by the immersion ©© M—M as a hypersurface
1(M) of M and that the equations of (M) in M are

Pr=y"(x%).
If we put B,"=0,y"(0,=0/0x"), then the Riemannian metric induced on (M)

from that of M is given by g,=g;B.’By’. We identify (M) with M itself.
Moreover, if we choose a unit vector N* of M normgl to M in such a way

that 2n vectors By, N* give the positive orientation of M, then the transforms

f.'By* of By by f,® can be expressed as linear combinations of B,* and N*,

that is,
(2.6) F"By'=fo"B*+w,N",

where f,° is a tensor field of type (1,1) and w, is a 1-form on M. Similarly,
the transform f,®2N* of N* by f;* and vectors «*, v® can be written as

(2.7) fINi=—w*B.*,
(2.8) ut=u’B,+BN",
2.9 v"=v*Br+aN",
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where w*=w,g®, u® and v° are vectors, « and 8 are functions on M.
Transvecting (2.6) with f4’ and taking account of (2.1), (2.6) itself and (2.7),
we find
(_51]'1'uiu]+vivj)Bht=fbe(feaBaJ+ weNj)‘l"wb(_waBaj) ’
or, using (2.8) and (2.9),
— By’ +uy(u*By’+ BN?)+ vy (v® B+ aN7)

=fbe(feaBa,J + weNj) + wb(_' waBa.j) ’

from which,
(2.10) fbefe“‘———5ba+ubu"+vbv“+wbw“ ,
(2.11) fbew,,:‘Bub-}-avb .

Transvecting (2.7) with f,’ and making use of (2.1), (2.6), (2.8) and (2.9), we
have

(2.12) ww=1—a’—p*.
Transvecting (2.8) and (2.9) with f’ and using (2.1), (2.6) and (2.7), we get
(2.13) Sfut=— v+ Buw®,
(2.14) [l =2u+aw®,
(2.15) UM'=—ad, VW=PA.

Similarly, transvecting (2.8) and (2.9) with #* and v*, we obtain
(2.16) uu=1—p"—22, vt=1—a’—2*, urt=—apf.

On the other hand we find, from the second equation of (2.1) and (2.6),
(2.17) 8eal S = Geo— UUp—Velp—W W .

Therefore, equations (2.10)~(2.17) mean that M admits an (f, g, Uc, ®)-
structure. If we put fo;=/c"Ze, then fg, is skew-symmetric because f;; is skew-
symmetric. _

NeXt, we assume that M be a (2rn+1)-dimensional almost contact metric
manifold covered by a system of coordinate neighborhoods {U; y%}, i.e.,

(2.18) Jufat=—0+v",
(2.19) fivt=0, wvpt=1,
(220) ngf/.:xflv‘_—gyl—vyvl y

where f,* is a tensor field of type (1, 1), g, is the Riemannian metric of M, v,
is a 1-form and v*=v,g*, the indices 4, g, v, -~ running over the range {1, 2, -,
2n+1} in this section.
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Let M be a (2n—1)-dimensional manifold covered by a system of coordinate
neighborhoods {U; x%}, which is differentiably immersed in M as a submanifold
of codimension 2 by the equations y*=y"(x%. If we put B,*=0,y", 0,=0/0x°,
then B,* are 2n—1 linearly independent local vector fields of M tangent to M,
and the Riemannian metric induced on M from that of M is given by g.,=
gumBBy*. 1f we choose two unit vectors C* and D* of M normal to M in such

a way that 2n-+1 vectors B,*, C*, D* give the positive orientation of M, then
we can write equations of the form

(2.21) lecBb/I: beBeK'i_ waIc_l_ubch ’
(222) f)ﬁczz _weBe:c_l_‘BD»: , f;ﬁDl= _ueBe:c_‘BC/c ,

where u*=u,g%, w'=w,g%, f»* is a global tensor field of type (1,1), u, and w,
are 1-forms and B is a function in M. We can easily see that 8 is independent
of the choice of C and D. The vector field v* has the form

(2.23) v*=v°B+aC*+yD*,

where v° defines vector field in M and «, y are functions of M.
In this case, we also verify that a submanifold M of codimension 2 in an
almost contact metric manifold admits an (f, &, U, Qw)-structure (cf. [4]).

§3. Hypersurfaces of a manifold with normal (f, g, u, v, 1)-structure.

Let M be a manifold with normal (f, g, u, v, 4)-structure such that the func-
tion A(1—A4%) is non-zero almost everywhere and satisfies V,v,—V,;v,=2f;; (or
equivalently V,u;+V;u;=—22g;;). In this section we consider a differentiable
manifold M which is a hypersurface immersed in such a manifold M.

Denoting by V. the operator of covariant differentiation with respect to the

Christoffel symbols { Ca b} formed with g., then the equations of Gauss and

Weingarten for M are given by

(31) chbhzhchh ’ Vc]\/'hz—hceBeh ’

where A2=hg%, VcBb":apBb"—{—{jhi}Bchb‘—{cab}Ba" is the so-called van der

Waerden-Borbtolotti covariant derivative of By* and h., the second fundamental
tensor.
Differentiating (2.6) covariantly along M and using (2.3) and (3.1), we find

{g;i(pu"— o) —5;h(¢ui— V)} BBy +(f."N Dhey

:(chbe)Beh+(hcefbe)Nh'l"(vcwb)Nh_wbhceBeh y
form which,
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Zoo(puBr+ BN —ve B — aN*)— 8,4 pup—vy) Be*— Aoy w*Be"
=V fo*—wph ) B+ (N wy+heo 15 )N*
by virtue of (2.7)~(2.9) and consequently
(3.2) V. ot =g co(@u*—v*)— 0, Pup—vy)— heyw*+ b wy ,
(3.3) YV wy=($B—a)geo—heefr" -

Differentiating also (2.8) and (2.9) covariantly and taking account of (2.4),
(2.6) and (3.1), we obtain

(3.4) Veuy=—28co+Bhes—Dfcs

(3.5) Vep=—0Ag0p+ahep+ [,

(3.6) Vea=—h v +w,, V. =—hu*—ow,.
Transvecting (2.5) with B,’ and using (2.8) and (2.9), we have

3.7 Ved=u,+¢v,.

In section 1, we introduced several tensors on M determined by the Nijenhuis
tensor [F, F] of the complex structure tensor F on MX R®%, Substituting (3.2)~
(3.7) into (1.14)~(1.20), -+ we have respectively

(3.8 Seo"=(fe’he"— " feYwo— (Fo*he"— hy*fe)we

(3.9 Seot=(heett®Ywp— (Mot we+ (UeVp—UpV,) ,

(3.10) Sep2=(Reev®)Wp— (Rpev® )W+ P(Uvpy—Upv,) ,

(38.11) Seo? = (R eeW®) Wy — (hpeW®) W — (VoW — vy W)+ G(UeWy—UpW,) ,
(3.12) Ser=B(fhe"—he*fe") — (v v+ ww®) —we(h u)—veu®
(3.13) Ses®=a(ffhe®—htfe®)+(uu*—w w*)—w (hev%)+ du v,
(3.14) Sg?=—heaf e [*"+he"—we(he" W)+ (Puc—ve)w",

We now prove

LEMMA 3.1. Let M be a hypersurface of 2n-dimensional manifold M with
normal (f, &, u, v, A)-structure such that the function A(1—2%) is not zero almost
everywhere on M and satisfies V v;—V,v;=2f,, (or equivalently ¥ ju;+Vu;=—21g;,).
Then

(3.15) a4 22=1,
if and only if A is constant, where a, B are defined on (2.8) and (2.9).
Proof. Suppose that a®+§°44*=1. Then we know in Lemma 1.1 that u,, v,
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and w, are linearly dependent. Thus we can put
(3.16) U,=av,+bw,,

where a and b are numbers.
Transvecting (3.16) with f»° and using (2.11), (2.13), (2.14) and (3.16) itself,
we find

3.17) (A+a*2—abB—ba)v,—(B+b*B—aa—abA)w,=0.

On the other hand, transvecting (3.16) with %%, v and w® and using (2.12),
(2.15), (2.16) and (3.15), we get

ala+af+b)=p(a+taf+bA)=Aa+af+b2)=0,
or, using (3.15),
(3.18) a+af+b2=0.
Substituting this into (3.17), we have
(14a®+b%)(Avy— Pw,)=0,

from which,
(3.19) Avp—Pw,=0.

Comparing (3.19) with (3.16) and taking account of (3.18), we obtain
(3.20) Buy+av,=0, Aup+aw,=0.

Differentiating the first equation of (3.20) covariantly along M and using
(3.4), (3.5) and (3.6) we get

(321) 0:_(hceueub+hcevevb)+wc(vb—¢ub)
—A(pa+p)ger+(a+ Bt (a—Pp)f e,

from which, multiplying this equation by «® and making use of (3.20) in the
equation obtained,

0=—(a’+ B hoeuup+A(Pa+ Bu iy
—a*Apa+p)go+a’(a’+ )+ a*(a—pB)f e,
or, taking the skew-symmetric part with respect to ¢ and b,
(3.22) —(a®+ B (heeuup— hoeutu.)+2a*(a— ¢ B)fer=0.
Transvecting (3.22) with u® and using (2.13) and (3.15), we get
—(a? 4B {a’hoeu’— (hequu®)u, .} +2a*(a— ¢ 8)(Av,— pw.)=0,

or, using (3.19),
(a4 B2){@heoti*— (heatu®)uc} =0 .
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Substituting last equation into (3.22), we have
a'(a—¢B)f=0,

from which, transvecting f°® and using (3.15), a*(a—¢B)=0, which implies

(3.23) a*(a—¢pB)=0.
Similarly, from (3.21), we can prove that
(3.24) Bla—9p)=0, A(a—¢p)=0

by virtue of (3.15), (3.19) and (3.20).
Adding (3.23) to (3.24) and making use of (3.15), we find

(3.25) a—¢B=0.
Differentiating (3.15) covariantly and taking account of (3.6), we obtain

2“(_ heeV*+ wc)"'zﬁ(_hceue‘— ¢wc)+vc(22):0 s
or,
—hee(av*+Bu)+(a— g w.+1/2 V. (4*)=0

and consequently V.(4)=0 by virtue of (3.20) and (3.25). Thus A=const. on M.
Conversely, if we suppose A=const., then we have from (3.7)

(3.26) U=—0¢v,,

which means that #% v* and w® are linearly dependent vectors.
According to Lemma 1.1, we see

al4- B2 =1.
This completes the proof of Lemma 3.1.

LEMMA 3.2. Under the same assumptions as those in Lemma 3.1, the four
conditions S,;1=0, S,1°=0, (3.15) and A=const. are equivalent to each other.

Proof. Assume that S.,I1=0, that is,
(3.27) (heett®)wp— (hpet)w o+ (U vp—uyv,)=0.
Transvecting (3.27) with w®, we find
(3.28) (1—a?— ) hut=—PAu,— alv,+ (heuw*Hw, ,
from which, combining (3.28) and (3.27),
(3.29) 0=1—a?— B2 (U vp—UpV.)— @AV Wp— VW) + BAW Uy—Wilk) ,
or, transvecting (3.29) with f°* and using (2.11)~(2.15),

A(1—a*—p—2%)=0.
If we put Ny={P:(1—a’—p*—2*)(P)+0}, then A=0, i.e., A=const. on N,,
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which means 1—a®—f*—2°=0 on N, by virtue of Lemma 3.1. Therefore we find
(3.15) on M.

Conversely, suppose that (3.15) satisfies, then (3.20), (3.25) and (3.26) are
implied.

Differentiating (3.26) covariantly and making use of (3.4) and (3.5), we obtain

ﬁhcb"’chb:O .

On N,={P: B(P)=0}, «a=0 and A=0 as consequences of (3.25) and the above
equation, respectively. This is contradiction to (3.15). It follows that N, is
void. Thus B#0 on M. Therefore we have

(3.30) hcbz%gcb .

Substituting (3.20) and (3.30) into (3.9), we get S.'=0. Therefore, the two
conditions S.,1=0 and (3.15) are equivalent.
Next, hypothesize S.1*=0, that is,

‘B(fcehea']'faehec)— ¢(vcva+ wcwa)—' wc(heaue)_vcuazo )
from which, taking the skew-symmetric part,
We(Reau®)—Wo(Pect®) +vottg—u v, =0,

which is the same equation as (3.27).

Hence, by the same method, we can verify that the two conditions S,;*=0
and (3.15) are equivalent.

Therefore, combining these and Lemma 3.1, we obtain Lemma 3.2,

Now, if (3.15) holds, then, substituting (3.19), (3.20) and (3.30) into (3.8), (3.10),
(3.11), (3.13) and (3.14), we find S.,?=S.,"=S,,"=S,52=Sz%= --- =0. Thus we obtain

THEOREM 3.3. Let M be a hypersurface of 2n-dimensional manifold M with
normal (f, g u, v, A)-structure such that the function A(1—2%) is not zero almost
everywhere on M and satisfies V v;—N,v,;=2f;; (or equivalently N ju;+N u;=—24g;,).
Then

(3.31) O+ =1,
SeeI=0, Se1%=0 or  A=const.

implies Sep*=S,,2=S.,'=S5*=Sz"= -+ =0. If one equation of (3.31) satisfies, then
M is totally umbilical.

PROPOSITION 3.4. Let M be a hypersurface of 2n-dimensional manifold M
with normal (f, g, u, v, A)-structure such that the function A(1—A%) 1s not zero
almost everywhere on M and satisfies V v, —Nw,;=2f;; (or equivalently V u;+V,u,
=—24g;:). Then the necessary and sufficient condition that the induced (f, g, ucuw,
Ap)-Structure on M 1s normal is
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(3.32) fcehea_hcefea"_‘o .

Proof. The proof of the necessity is trivial.
Let (f, g, U, Ow)-structure be normal, that is, S.,*=0. Putting T.*=f.°h*—
htfe*, (3.12) becomes

(3.33) T.“wy—Ty*w,=0,
from which, contracting with respect to ¢ and b,
(3.34) T fw,=0.
Transvecting (3.33) with w® and using (3.34), we get
(1—a*—p5T.*=0.

On N,={PeM:TP)#0}, 1—a’—p*=0 from which w,=0. Thus it follows
that f.w.=pu,+av.,=0 on N,. Since the last equation means that u. and v, are
linearly dependent, we get (3.15). Hence, owing to (3.15) and 1—a*— $2=0, h,=0
holds on this set. Thus we find 7.°=0 on N, which implies 7.°=0 on M.
Therefore, the sufficiency is also proved.

§4. Hypersurfaces of an even-dimensional sphere.

In this section, we consider a manifold M admitting (f, g, %, @uy)-Structure
as a hypersurface of even-dimensional sphere S*".

According to the structure equations of S*" given in section 2, we can see
that M satisfies differential equations (3.2)~(3.7) with ¢=0 (cf. [2]), i.e,,

4.1) Ve o0 =—gp0*+ 0.V — heyw®+hwy ,
4.2) Vowy=—ageo—hee[3°,
(4.3) Veuy=—2g8s+Pher, Vs=ahy+f e,
(4.4) Vea=—h 4w, , V.f=—h.u°,
(4.5) VedA=u,.
Since we consider S®" as a space of constant curvature, M also satisfies
(4.6) Vohoo—Vohea=0.

Remark. 1f we assume that A2=0, then u.=0 from (4.5), from which =1
by virtue of (1.5). Hence we find h,,=0 from (4.3). This means that M is
totally geodesic. Afterward we consider the case in which 2#0 almost every-
where.

Now, we suppose that S,,*=0 and S.,’=0, or equivalently,

(47) hcefbe‘l' hbefce':o ’
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and
(4.8 (heeW®)wp—(hpe®)w,— (v Wy —vywe)=0.
Transvecting (4.8) with v°, we have
(4.9) BARw=PBAv+ {(heav' W) —(1—a*— %)} w, .
Transvecting (4.9) with u°, we get
(4.10) 0=B(heatiw?)+ e heav*w®) — a(l—a®— B~ 27)

because of (1.5).
On the other hand, transvecting (4.7) with ww® and using (1.4), we also find

(4.11) Bheguw®)+ alhe v'w*)=0.
Comparing (4.10) and (4.11), we find
a(l—a*—p*—25)=0.

If we put M,={P:a(P)#0}CM, then a’+p*+A*=1 on M, It is easily
shown that a=0 on M, by the same method as that in the proof of Lemma 3.1.
Thus M, is void, that is, «=0 on M.

Using (1.7), (4.4) and the fact a=0, we have

(4.12) hetf=w,
and
(4.13) heev*wt=1—p2.

On M,={P: B(P)=0}, transvecting (4.8) with w’ and taking account of a=0,

we obtain
heeW=v,+ (heW WM w, ,
and consequently
heewf=1—2%

by virtue of (1.6).

Substituting this equation into (4.13), we find A=0 on M,. Thus M, is null,
i.e, B#0 on M.

On the other hand, substituting (4.13) into (4.9), we have

(4.14) BAhwt=BAv,—(B*—AH)w. .
Transvecting (4.7) with v* and using (1.3), (1.4) and (4.12), we find
(4.15) Aheut=—PBu,.
Differentiating (4.14) covariantly, we obtain
V(B (heew®)+ BAN phee) W+ BAR N yw°
=(Vo(BD))ve+ BAV,0,—2(BV, f— AV )w, — (B2 — AV, ,
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from which, using (4.2)~(4.5), (4.14) and (4.15), we also have
BA(Vphee)w— BARcehyo [ 4= BAS st (B2 — A7) hpe f° .

Taking the skew-symmetric part of this equation and making use of (4.6) and
4.7), we get

(4.16) BA(heeho 3+ fop) +(B2— A hee /=0
Transvecting (4.16) with f;°, we aftain
(417) ,B'thehed‘*'(ﬁ2_22)hcd_‘82gcd=0 .

On the other hand, owing to (4.4), (4.5) and (4.15), /8 is covariantly con-
stant, and consequently, A=pc for suitable non-zero constant c.
Thus, we can get, from (4.17),
hehea=—gg heatGea-
From this relation we can easily verify that eigenvalues of (,°) are ¢ and —1/c.
Now we define a (1, 1)-type tensor P,° as the form:

(4.18) Pyf= gty (f—cBy°).
Then we can easily see that

(4.19) P P,y=P,,

that is, P,° is an almost product structure, and
(4.20) VaPy=0

because of (4.6).
Moreover, from (4.15) we can classify our development in two cases;
1st case: M is totally umbilical:
2nd case: 1=rank of (P.)<2n—2.
In the 1st case, we find that M is a (2n—1)-dimensional sphere S?*7%,

In the 2nd case, taking account of hA,=—P./c+cQ., (4.18), (4.19) and (4.20),
where P,=P, 8s and Q.=gw»— P, we can apply the Theorem A to our dis-
cussion.

Summing up, we have

THEOREM 4.1. Let M be a complete and connected hypersurface of an even-
dimensional sphere S*. If the induced (f, g, Ua, Qup)-structure is normal, S,,=0
and the function 2 1s almost everywhere non-zero on M, then M 1s congruent to
S**-1 or the hypersurface S?XS* ' P naturally embedded in S*", where p is the
rank of (PJp).
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