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ON COMPLEX CONFORMAL CONNECTIONS

Dedicated to Professor Ytsaku Komatu on his sixtieth birthday
By KENTARO YANO

§0. Introduction.

Let M be an n-dimensional differentiable manifold in which a system of
paths is given by
d2$h

ooy 487 dE' _
e ()2 =0.

dt dt

A change of I'%(=I"%) which does not change the system of paths is given by
ry=r+0"pi+otp,,

where p; is an arbitrary covector fleld, and is called a projective change of I'.
If there exists a covector fleld p; such that the curvature tensor of I'% vanishes,
the manifold is said to be projectively flat.

It is well known (Weyl [6]) that the so-called Weyl projective curvature
tensor

ijtthkjih—l_aZPJi—a? Pki_(PkJ—ij)a’LL

is invariant under a projective change of I', where R,;;" is the curvature tensor
of I’ and

Pji:— nzn_l Rj12+ nzl—l R”, Rjithj'Lt:

and a necessary and sufficient condition for M to be projectively flat is that
ijih:() fOI‘ n>2
VkPji-—VJP,”:O fOI‘ n:2,

and

V, denoting the operator of covariant differentiation with respect to .

If a Riemannian manifold is projectively flat, then it is of constant sectional
curvature.

A complex analogue of the above is the following. In an almost complex
manifold with structure tensor F,”, an affine connection I  is called an F-con-
nection if the almost complex structure tensor F is covariantly constant with
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respect to this connection.
In a complex manifold with a symmetric F-connection, we consider a curve
&™(t) satisfying differential equations

dz h 7 1 d h d t
AT G L =) G RO

where «(t) and S(t) are certain functions of the parameter . We call such a
curve a holomorphically planar curve. If two symmetric F-connections I" and
T have all the holomorphically planar curves in common, they are said to be
H-projectively related to each other.

It is known (Ishihara [3], [4]) that two symmetric F-connections I” and I
are H-projectively related to each other when and only when

F?1=F?i+5?pz+5?p1+F1hqz+F1hQJ
holds for a certain covector fleld p;, where
gi=—p.F'.

We call such a change of I" an H-projective change of symmetric F-connections.
If there exists a covector fleld p; such that the curvature tensor of I’ vanishes,
the complex manifold with symmetric F-connection is said to be H-projectively
flat.

It is also known that the H-projective curvature tensor of a symmetric F-
connection I" deflned by

Phyi" =Ry ;i + 0% Pj;— 0% Pyi—(Prj— P,,)0%
+FQ5i—F " Qui—(Qr,— Q) F

is invariant under an H-projective change of symmetric F-connections, where

1 2 s
sz:—n—_i_‘Z—{Rjrf-m ffi(st‘i'Rst)} ,

Ot =—5-(353—F 'F,")

jS:_szth

and

and a necessary and sufficient condition for M (n=4) with a symmetric F-con-
nection to be H-projectively flat is that

ijih=0 .

If a Kéhler manifold is H-projectively flat, then it is of constant holomorphic
sectional curvature.

Let M be an n-dimensional Riemannian manifold with metric tensor gj;.
The change of the metric
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g Ji—_—ezl)g jis

where p is a certain scalar function, does not change the angle between two
vectors at a point and so is called a conformal change of the metric.

If there exists a function » such that the Riemannian manifold with the
metric tensor e?”g;; is locally Euclidean, the Riemannian manifold is said to be
conformally flat.

It is well known (Weyl [6]) that the so-called Weyl conformal curvature
tensor

Cryi" =Ky ;" +04Cji— 0" Coi+Ci"gji—C," Gha

is invariant under a conformal change of g, where K,;" is the Riemann-Christo-
ffel curvature tensor of M and

1

_ 1
Crv=—m—g Kt gz K&

Cl'=Cng", K;=K,;', K=g'‘K;
and a necessary and sufficient condition for M to be conformally flat is that
Cpsi"=0  for n>3
VeCji—V,;Ch=0 for n=3,

and

V. denoting the operator of covariant differentiation with respect to Christoffel
symbols formed with g.

A complex analogue of the above is not yet known. The main purpose of
the present paper is to try to flnd the complex analogue of the above. It seems
to the author that in the complex analogue a curvature tensor introduced by
Bochner (Bochner [1], Tachibana [5], Yano and Bochner [8]) in a Kdhler mani-
fold plays the rdle of the Weyl conformal curvature tensor in a Riemannian
manifold.

In §1, we state some of fundamental formulas in Riemannian and Kédhlerian
manifolds to flx our notations and in §2 we study the curvature tensor intro-
duced by Bochner in a Kédhler manifold.

In §3, we introduce what we call complex conformal connections and in §4
we study the condition for a Kihler manifold to admit a complex conformal
connection whose curvature tensor vanishes.

§1. Preliminaries.

We consider an n-dimensional Kdhler manifold M covered by a system of
coordinate neighborhoods {U; &"}, where here and in the sequel the indices
h,i,j,--- run over the range {1,2,---,n} (n=4), and denote by g;; and F,* the
components of the Hermitian metric tensor and those of the complex struc-
ture tensor of M respectively.
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We denote by V, the operator of covariant differentiation with respect to

the Christoffel symbols {]hl} formed with g;;, then we have

(1Y) ngji=0, V.F=0, Viji:O’

where F;;=F,'g,, and consequently F;;=—F,,.
We denote by

12 Kus =0 o} =0 g b+ e G = H e b

where 0,=0d/0¢%, the components of the Riemann-Christoffel curvature tensor
of M.
It is well known that K,;;" and K,;;:n=K,;'g:n satisfy

(1.3) Kijin=—Kjnn, Kiin=—Kijn,
(1.4 Kyjin=Kine; »

(1.5) Kyjint K+ Kipn=0

and

(1.6) ViKY K"V, Kyt =0,
%)) Vo Kji' =V K;;—V, K.,

(1.8) 2V, Kl =Y,K,

where

K;=K,;=K,;;/ and K=g'K;

are the Ricci tensor and the scalar curvature of M respectively.
In the Ké&hler manifold M, from the Ricci identity

Vkv]Flh——V,VkF,hZKkﬂhFlt—KkhtFth y
we have (see, Yano [7], Chapter IV)

1.9 K, "F—K,;,'F*=0,
(1.10) K, ;i"+ Ky ' FF" =0,
or

(1.11) Ko — K Fr' =0,
(1.12) Kyjin— Ky P F'=0
and

(1.13) K\ F—KMF =0,



COMPLEX CONFORMAL CONNECTIONS 141

(1.14) KM K!F F"=0,
or

(1.15) K, F'+K,F'=0,
(1.16) K;;—K,F'F’=0,

where K]t:Kjigu.
If we deflne H,” by

(1.17) ZHIhZ—Kkjthk] ’

where F¥=g*FJ (in Yano [7], the H,* here is denoted by —H,*), then H;,=
H\!g, is given by

(1.18) 2Hy=—KsinF=— Ky o F*°
From (1.5) and (1.18), we flnd

(1.19) Hyy=KinsF* .
We also have, from (1.12) and (1.19),

(1.20) K=H,FS,

(1.21) H;;=—K,F,},

(1.22) H, ,F*=K.

From (1.6) and (1.18), we have
(1.23) N, Hin+V, Hyj+ Vo Hy; =0
and from (1.8) and (1.21)
(1.24) 2V, H'=(N,K)F,t.

If the Kédhler manifold M has a constant holomorphic sectional curvature %
at each point of the manifold, then we have (Yano [7], Chapter IV)

(1.25) ijih—_—'Kkjih_‘i_(azgji_a?gki +F"Fj;—F "Fy—2F ;F,")=0
and consequently

k
(1.26) ijihzKkjih—T(gkhgji'—gjhgki—l’FkhFji_thFki_2ijFih):0 ,

where k is an absolute constant. A Ké&hler manifold of constant holomorphic
sectional curvature is an Einstein space:

(1.27) Kjiz_njl-_zkgji .
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§2. Bochner curvature tensor.

We now consider the so-called Bochner curvature tensor (Bochner [1],
Tachibana [5], Yano and Bochner [8]) deflned by

2.1) By =K+ 02 L;;— 0% L+ Li"gj— L, g,
+F M —F "M+ M F j3— M Fy,
—2M; Fr+Fy M),

where

(22) Ly=— n—}—4 Kyt 2(n+2)1(n+4) Kgji,

(2.3) My=—L,F',

that is,

24 M= = ot geaymray K

and

(2.5) Lr=L, g™, MpP=M, g .

From (2.2) and (2.4), we have, using (1.22),

i _ 1
(2.6) &L=y K
and

i _ 1
7 FI'M ==y K

respectivelly. It will be easily seen that B,;" and
(2.3) Bijin=Bu;i'&n
=Kijint+8unLji— &Lyt Lin€ji—Lin&r,
+F M ji— F Myt M Fjo— M Fy,

—2Mp;Fin+FipiMi)
satisfy
(2.9 Byjin=—Bjin, Bijin=—Bgjm ,
(2.10) B, jin=Binz, »
(2.11) By jint BjigntBirjn=0,
(2.12) B.;i'=0,

(2.13) B, ;"F.!—B,;'F,*=0,
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(2.14) By, "+ By, F F* =0,
or

(2.15) Byjn B\t —BrjiFat=0,
(2.16) Bjin—BrjsF.)LF =0
and

(2.17) BysF*=0, B, F*=0.

From (2.2), we have

(2.18) VL=V, L == 737 (Vs K=, Kun)

1
+m[(ka)gji—(vJK)gkzj ’

from which, using (1.8) and (2.6),

t___ n+1
(219) KOs CE VAR
From (2.4), we have
(2.20) VM=V, My=—— L (T, Hy— Y, H)

1
oty LV HOF = (7, KO P,

from which, using (1.24),

_ n+1
(2.21) V. M,!= T TA) (V. K)F,}t.

On the other hand, we have, from (2.4),

1 1
vthz— n+4v H;z+ 2(n+2)(n+4) (vtK)Fjir
from which,
1 1 ¢
chvthl +4Fkv H;1,+ 2(n+2)(n+4)Fk (vtK)Fjiy

or, using
V.H;=—(N,H;,—V . Hy,)
obtained from (1.23),

FyV My =—— F(V, Hy—Y, H, F(V,K)Fy,

1
+4 ) T ey,

or using (1.20),
1 1
(2.22) F!N. M, =m(vj Ki—V, Kjk)_}‘m];‘kt(vt K)Fj;.
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We now compute V,B,;;‘!. From (2.1), we have, using (2.19) and (2.21),
(2-23) Vchzt=vc Kkjit'l'viji—v]th

e LT K8 (T, K )gn I+ Fa Vo My F, ¥, My,

+1 : ,
~ gt Ta LV P = (VK F P

2 OMo) P =gy P THOR].

But, using (2.22), we have
FiN M;—F N My—2(V M) F,!

_ 1 __ 1
b n+4 (VJ Kik szjk)‘l_ 2(n+2)(n+4) Fkt(vtK)Fji

o (VK= K~ F XY K)F,,

1
2(n+2)(n+4)

— R (K=, K~ FAY.EK)F,,,

1
(n+2)(n+4)
that is,

(2.24)  F¢V.M;;—F,'V,M,,—2(N,M,)F}

=S (K=Y, Ko

1
+'2‘(n—+m[Fkt(Vc K)F;—F, N K)Fy—2F,;(N,K)F,'].
Consequently, (2.23) can be written as
Vt Bkjit =Vt Kkat+vk Lji"vf Lln
— S (K= VLK)

+1
St oy LV )2 (7, K )zl

STy LV EOF (Ve KOF,Foy—2F, (V. KF.']

or, by (1.7)
(2.25) V.Bist=—n] V4L;i—V, Ly,

+ o a P FP Fu—2F P (1K) |

(Tachibana [5]).



COMPLEX CONFORMAL CONNECTIONS 145

§3. Complex conformal connections.

We consider an affine connection in a Kihler manifold M and denote by
I'%, the components of the connection and by D, the operator of covariant dif-
ferentiation with respect to I'%.

We notice flrst of all that an affine connection which is metric, that is,
which satisfles

(3.1) Dkgjizo

and whose torsion tensor is a given tensor

(3.2) A Iy-r=s,>

is uniquely determined and is given by

(3.9) Tho={ i }+Si 48"+ 5%,
where

(3.4) Shjizst]sgmgsz ,

(Hayden [2]).
We consider a conformal change of Hermitian metric

(3.5) g=e"g;;, Fr=F", Fji:e2pFJ’i ’

where p is a scalar function and we look for an affine connection such that
(3.6) D,g;;=0

and the torsion tensor S;* is given by

3.7 S;"=—F;q",

where ¢" are components of a vector fleld.
By the remark above, we have, for the components I'% of this affine con-

nection,

(38) Fi={ 2 }=Fug*—F* 0= F"q,,

where {J}i} are the Christoffel symbols formed with Z;;=¢’g;; and

thngFt; , 4:=4'8u.,

or
(3.9) ;Li:{;li }+ oy it 5;'ij_gjiph+ F;hQi+ thQj_Fjiqh ’

where
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ps=0:p, DP"=p.g".
We now compute D,F;; and find
D\F;;=D,e*"F
=e"[— g4 (P F\'+4.)+ e D F ) +4,)
+F(Pi— @ F)— Fri(P;— 4. F,")].
Thus, in order that D,F;;=0, we must have
=8 (P F' +4)+ 80 F ) +4,)+ Foi(0i— a0 F.')— Fri(p;— 9. F,)=0,

from which, transvecting with g*’, we find

(n—2)(p. F.'+4¢,)=0,
that is, since n=4,

(3.10) g=—p.F.}, pi=q,F}.
The converse being evident, we have

PROPOSITION 3.1. In a Kdhler mamifold with Hermitian metric tensor gj,
and complex structure tensor F,*, the affine connection which satisfies

Dkengﬁ=0, DkQZPFji:O,
and
I'y—I'ty=—2F;q",

where p is a scalar function and q" is a vector field, is given by
Fji:{]hi }+5$Lpi+5¥pj_gjiph+thqi+F1hqj—Fjiqh ,

where
pi=0,p, pr=p.g*, g, =—p.F.}', "=q.g".

We call such an affine connection a complex conformal connection.

§4. Curvature tensor of a complex conformal connection.

We consider a complex conformal connection
(4.1) F}li:{;'zi }+5§Lpi+5§°pj_gﬁph+F;th+thQj"Fjiqh ,

where p;=0,p, p*=p.g"", ¢;=—p.F," and ¢"=q,g""*, p being a scalar function, in
a Kihler manifold and compute the curvature tensor of [ :

4.2) Rkjihazk[’_’ili—ajrfl;i-i_I-"I:'t['tji_[’?z[‘lkzs
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By a straightforward computation, we find
(4.3) Ry ji" =Ky ji"—0k D jit0% pri—Di"855+0," G
—Fq;+F "~ Fji+4," Fra
+(Veq,—V,;q)F " —2F (0:4"—q.0") ,

where

(4.4) D=, 0= b, bt a0t DB

(45) 05=Y,0= 0,0~ 0, bt 5D D' F

consequently

(4.6) 9;;=—D;F.t, p;i=q;F.!

and

(4.7 P =png™,  G"=qu8™.
Thus if we assume that

(4.8) R.;"=0,

then we have

(4.9) Kyji"=000;:— 0% prit0:"85e— D, Gne

+F 05— F " qp4 0" F ji—q,"F,
+a,, F*+F,,B",

where

(4.10) ar;=—(Veq;—V;qs),

(4.11) B =2(p:q"—q.p")

and consequently

(4.12) Bin=B:'8n=2(P:qn—q.n) .
From (4.10) and (4.12), we have respectively

(4.13) a=F*ta,,=—2V,p",

and

(4.14) B=F"B,;=4p.p".
From (4.9), we have

(4.15) Kijin=8unDji—&mPritPin&si—Pin&r

+Fkthi—thq}zi_‘_QkhFji_'qthkz
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Fay, FintFyiBin.
From (1.4) and (4.15), using
(4.16) p;i—0i;=0,
we find
(4.17) Fen(@5i+4:5)— F in(qritdir)

+(an‘i‘Qhk)F;i“(an+4nJ)Fm
+(akj—ﬁkj)Fin_Fk;(“tn_ﬁin)zo .
Transvecting (4.17) with F**, we find

(n—2)(g3:+4.,)=0,
and consequently

(4.18) 2;1+4.,;=0,
which can also be written as

(4.19) puF.f+pu F,f=0,
from which

(4.20) TE Y A

From (4.17) and (4.18), we find
(akj_‘Bkj)Fih_ij(aih_"eih):():
from which, by transvection with F*/,

(a_‘B)Fih_ (@ —Bin)=0,
or

an—Pu=—(a—B)Fa,
or, using (4.13) and (4.14),

(4.21) am—ﬁm=—%(vzp’+ 200 ) Fan
On the other hand, from (4.5), (4.10) and (4.18), we flnd
(4.22) @;;=—29;+D.0'Fji,
from which, using
(4.23) Fitgu=F—puF.)=p/",
we have

(4.24) a=—=2p'+np,p*.
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From (4.21) and (4.22), we find
B :“_2qji+ptszji+%_(tht'i-zptpt)Fji

=2, [ 2V P p ]y,
from which, using
(4.25) pE=Nopt o pit",
we find
(4.26) Biv=—205ut 2D+ 20 0)F .
Now, from (1.5) and (4.15), we flnd, using (4.16) and (4.18),
(4.27) 2F it Findint Findrst Qe F it @n FirtdinFr,)

+FmautFpapt+Fanay,
+ B Fiit BinFont BinFry=0.
Substituting (4.22) and (4.26) into (4.27), we obtain

L2+ (n+ DD p I Fpn Fji+Fjn Fipt+FinFy,)=0,
from which

(4.28) 2p,'+(n+4)p.p*=0.

149

In (4.9), we contract with respect to 2 and %2 and use (4.6), then we obtain

Kj=np;+pi'gui—a;F'—BuF,,
from which, substituting (4.22) and (4.26),
Kji=np;it+0:'85—(— 245+ b5 D°F ) '
—[~2aut-2 (oo +2pt) P,
or, using (4.6),
K=+ 8p+ (2200 =125, 1)y,
or, using (4.28),

(4.29) K;i=(n+4)p;i+0./8i,
from which
(4.30) K=2(n+2)p,".

Substituting
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obtained from (4.30) into (4.29), we flnd

(4.31) pu=—Lji,

where Lj; is the tensor defined by (2.2). From (4.31), we find, using (4.6),
(4.32) 9;=—M;;,

where Mj; is the tensor defined by (2.4).
From (4.22) and (4.32), we find

ajiZZMjiJf'ptptFji ’
or, using (4.28),

(4.33) ajiZZMJ”—n__%_—IchFjiy
or, using (4.30),
K
(434) ajiZZMji——(mFﬁ .

From (4.26) and (4.32), we find
ﬁjiZZMji+_%_(ptt+2ptpt)Fji ’
or, using (4.28),

(4.35) ,BjiZZMji—i—ﬂgZpttFﬁ )
or, using (4.30),
K
(4.36) Bsi=2Mi+royay Foe-

Substituting (4.31), (4.32), (4.34) and (4.36) into (4.9), we find
Kkjih:_‘azLji_l_a"]L Lki—Lkhgji+Ljhgkl
—F "M+ F *"My— M *F j;+ M*Fy,

+2(Mkszh+ijMzh) ’
that is,

(4.37) Bkjihzo .
Thus, we have

THEOREM 4.1. If, in an n-dimensional Kidhler manifold (n=4), there exists
a scalar function p such that the complex conformal connection

F?zz{]}'li }+5?pi+51"ij_gjiph+F]h4i+F1th—Fjiqh ,
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where p;=0;p, P*=p,g**, q;=—p,F,' and q"=q,g"", is of zero curvature, then the
Bochner curvature tensor of the manifold vanishes.
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