M. EGUCHI AND Y. KIJIMA KODAI MATH. SEM. REP. **26** (1975), 109–112

A NOTE ON SEMIGROUPS OF MARKOV OPERATORS ON C(X)

By Masayoshi Eguchi and Yōichi Kijima

1. Introduction.

Let X be a compact Hausdorff space, and let C(X) be the commutative C*algebra of all continuous complex functions on X. A bounded linear operator T of C(X) into itself is called a Markov operator it $T \ge 0$, ||T||=1, and T1=1.

Let Σ be a semigroup of Markov operators. For each $f \in C(X)$, $\overline{\operatorname{co}}\{Tf: T \in \Sigma\}$ denotes the closed convex hull of $\{Tf: T \in \Sigma\}$. $g \in C(X)$ is called a Σ -invariant function if Tg=g for all $T \in \Sigma$.

In ergodic theory the following conditions on Σ are interesting: (I) Each $\overline{\operatorname{co}}\{Tf: T \in \Sigma\}$ contains exactly one Σ -invariant function. (II) Each $\overline{\operatorname{co}}\{Tf: T \in \Sigma\}$ contains at least one Σ -invariant function. In Theorem 1, we shall give some necessary and sufficient conditions that (I) holds.

Let $C(X)^*$ be the dual Banach space of C(X). $\mu \in C(X)^*$ is called a state if $\mu \ge 0$ and $\|\mu\| = \mu(1) = 1$. If T is a Markov operator and if μ is a state, then $T^*\mu$ is also a state where T^* denotes the adjoint operator of T. A state μ is called a Σ -invariant state if $T^*\mu = \mu$ for all $T \in \Sigma$.

Let K_{Σ} be the set of all Σ -invariant states. Then K_{Σ} is a weak*-compact convex subset of $C(X)^*$. $\mu \in K_{\Sigma}$ is called an extremal Σ -invariant state if μ is an extreme point of K_{Σ} .

A proper closed ideal I of C(X) is called a Σ -invariant ideal if $T(I) \subset I$ for all $T \in \Sigma$. There exists at least one maximal Σ -invariant ideal, and each Σ invariant ideal is contained in some maximal Σ -invariant ideal. If μ is a Σ invariant state, then $I_{\mu} = \{f \in C(X) : \mu(|f|) = 0\}$ is a Σ -invariant ideal.

In Theorem 2, we shall show that if (I) holds, then $\mu \rightarrow I_{\mu}$ is a bijection of the set of all extremal Σ -invariant states onto the family of all maximal Σ -invariant ideals.

Our discussion is much due to Deleeuw and Glicksberg [1], Schaefer [2], Sine [3], and Takahashi [4].

2. Theorems.

co Σ denotes the set of all finite convex linear combinations of operators in Σ . co Σ is also a semigroup of Markov operators. We note that $\overline{co} \{Tf:$

Received May 17, 1973.

 $T \in \Sigma$ = { $Af : A \in co \Sigma$ }. \tilde{f} denotes the unique Σ -invariant function in \overline{co} { $Tf : T \in \Sigma$ } whenever (I) holds.

LEMMA 1. If (I) holds, then for any $\varepsilon > 0$ and $f_i \in C(X)$ $(i=1, 2, \dots, n)$, there exists an $A \in \operatorname{co} \Sigma$ such that $\|\tilde{f}_i - Af_i\| \leq \varepsilon$ $(i=1, 2, \dots, n)$.

Proof. It is easy to see that $\widetilde{Af} = \tilde{f}$ for all $f \in C(X)$ and $A \in \operatorname{co} \Sigma$. First we choose an $A_1 \in \operatorname{co} \Sigma$ such that $\|\tilde{f}_1 - A_1 f_1\| \leq \varepsilon$. Next we choose an $A_2 \in \operatorname{co} \Sigma$ such that $\|\tilde{f}_1 - A_2 (A_1 f_2)\| \leq \varepsilon$. Let $A = A_2 A_1$. Then $A \in \operatorname{co} \Sigma$ and $\|\tilde{f}_i - A f_i\| \leq \varepsilon$ (i=1, 2). An induction argument completes the proof.

Let $B(\Sigma)$ be the commutative C^* -algebra of all bounded complex functions on Σ . For each $f \in C(X)$ and $\nu \in C(X)^*$, we define $f \otimes \nu \in B(\Sigma)$ by $(f \otimes \nu)(T) =$ $\nu(Tf)$. Let $L(\Sigma)$ be the linear span of $\{f \otimes \nu : f \in C(X), \nu \in C(X)^*\}$ in $B(\Sigma)$. We note that $1 \in L(\Sigma)$ and $\varphi^* \in L(\Sigma)$ if $\varphi \in L(\Sigma)$ where φ^* denotes the complex conjugate function of φ , and that φ_s (or $_s \varphi) \in L(\Sigma)$ if $S \in \Sigma$ and $\varphi \in L(\Sigma)$ where φ_s (or $_s \varphi)$ denotes the right (or left) translation of φ by S. $m \in L(\Sigma)^*$ is called a right (or left) invariant mean on $L(\Sigma)$ if $m(\varphi) \ge 0$ whenever $\varphi \ge 0$, ||m|| = m(1) = 1, and $m(\varphi_s)$ (or $m(_s \varphi)) = m(\varphi)$ for all $S \in \Sigma$ and $\varphi \in L(\Sigma)$. A right and left invariant mean m on $L(\Sigma)$ is called a two-sided invariant mean on $L(\Sigma)$. If m is a right invariant mean on $L(\Sigma)$, then for each state μ we can define $\tilde{\mu} \in K_{\Sigma}$ by $\tilde{\mu}(f) =$ $m(f \otimes \mu)$. In the following theorem, M_{Σ} denotes the set of all Σ -invariant functions in C(X).

THEOREM 1. The following conditions are equivalent.

- (1) (I) holds.
- (2) There exists a two-sided invariant mean on $L(\Sigma)$, and M_{Σ} separates K_{Σ} .
- (3) There exists a right invariant mean on $L(\Sigma)$, and M_{Σ} separates K_{Σ} .
- (4) There exists a right invariant mean on $L(\Sigma)$, and (II) holds.

Proof. (1) implies (2): If μ_1 and μ_2 are distinct Σ -invariant states, then $\mu_1(f) \neq \mu_2(f)$ for some $f \in C(X)$. This implies that $\mu_1(\tilde{f}) = \mu_1(f) \neq \mu_2(f) = \mu_2(\tilde{f})$. Thus M_{Σ} separates K_{Σ} . For each $\varphi = \sum_{i=1}^n f_i \otimes \nu_i \in L(\Sigma)$, we define $m(\varphi) = \sum_{i=1}^n \nu_i(\tilde{f}_i)$. We shall show that $m(\varphi)$ is independent of the particular representation of φ and that m is a two-sided invariant mean on $L(\Sigma)$. Suppose $\sum_{i=1}^n f_i \otimes \nu_i$ is identically zero. By Lemma 1, for any $\varepsilon > 0$ there exists an $A \in \operatorname{co} \Sigma$ such that $\|\tilde{f}_i - Af_i\| \leq \varepsilon$ $(i=1, 2, \cdots, n)$. Then we have

$$|\sum_{i=1}^n \nu_i(\tilde{f}_i)| \leq |\sum_{i=1}^n \nu_i(\tilde{f}_i - Af_i)| + |\sum_{i=1}^n \nu_i(Af_i)| \leq (\sum_{i=1}^n \|\nu_i\|)\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, $\sum_{i=1}^{n} \nu_i(\tilde{f}_i) = 0$. Thus we may unambiguously define $m(\varphi)$. It is easy to see that m is linear and m(1)=1. We shall show that ||m||=1. Since m(1)=1, it suffices to show that $||m|| \leq 1$. Suppose $\varphi = \sum_{i=1}^{n} f_i \otimes \nu_i$. Again by Lemma 1, for any $\varepsilon > 0$ there exists an $A \in \operatorname{co} \Sigma$ such that $||\tilde{f}_i - Af_i|| \leq \varepsilon$ $(i=1, 2, \dots, n)$. Then we have

110

$$|m(\varphi)| \leq |\sum_{i=1}^{n} \nu_{i}(\tilde{f}_{i} - Af_{i})| + |\sum_{i=1}^{n} \nu_{i}(Af_{i})| \leq (\sum_{i=1}^{n} \|\nu_{i}\|)\varepsilon + \|\varphi\|.$$

Since $\varepsilon > 0$ is arbitrary, $|m(\varphi)| \le ||\varphi||$. It is easy to see that $m(\varphi^*) = \overline{m(\varphi)}$. Suppose $\varphi = \sum_{i=1}^n f_i \otimes \nu_i \ge 0$. Then $m(\varphi)$ is real. We assume that $\alpha = m(\varphi) < 0$. Let ε be a number such that $0 < \varepsilon < -\alpha$. By Lemma 1, we can choose an $A \in \operatorname{co} \Sigma$ such that $\|\tilde{f}_i - Af_i\| \le \varepsilon / \sum_{i=1}^n \|\nu_i\|$ $(i=1, 2, \dots, n)$. Let $\beta = \sum_{i=1}^n \nu_i (Af_i)$. Then $\beta \ge 0$ and $|\alpha - \beta| < \varepsilon$, so we have $0 \le \beta = |\alpha - \beta| + \alpha \le \varepsilon + \alpha < 0$. This is a contradiction. Thus $m(\varphi) > 0$. If $\varphi = \sum_{i=1}^n f_i \otimes \nu_i$, then $\varphi_s = \sum_{i=1}^n Sf_i \otimes \nu_i$ and ${}_s \varphi = \sum_{i=1}^n f_i \otimes S^* \nu_i$. It is easy to see that $m(\varphi_s) = m(\varphi)$.

(2) implies (3): Evident.

(3) implies (4): Let *m* be a right invariant mean on $L(\Sigma)$, and let δ_x be the point measure at $x \in X$. For each $f \in C(X)$, we can define $Pf \in C(X)$ by $(Pf)(x)=m(f\otimes\delta_x)$ (see [3] and [4]). Then *P* is a Markov operator such that PT=P for all $T\in\Sigma$ and Pg=g for all $g\in M_{\Sigma}$. We shall show that Pf is a Σ invariant function in $\overline{\operatorname{co}} \{Tf: T\in\Sigma\}$. Let μ be a state. Then $P^*T^*\mu$, $P^*\mu$ and $\tilde{\mu}$ are Σ -invariant states. If *g* is a Σ -invariant function, then $(P^*T^*\mu)(g)=$ $\mu(TPg)=\mu(Tg)=\mu(g), (P^*\mu)(g)=\mu(Pg)=\mu(g), \text{ and } \tilde{\mu}(g)=m(g\otimes\mu)=\mu(g)$. Since M_{Σ} separates K_{Σ} , we have $P^*T^*\mu=P^*\mu=\tilde{\mu}$, which implies that TP=P for all $T\in\Sigma$ and $\nu(Pf)=m(f\otimes\nu)$ for all $f\in C(X)$ and $\nu\in C(X)^*$. Thus Pf is a Σ invariant function. If Pf is not contained in $\overline{\operatorname{co}} \{Tf: T\in\Sigma\}$, there exists a $\nu\in C(X)^*$ such that $\sup\{\Re:\nu(Tf): T\in\Sigma\} < \Re e \nu(Pf)$, but $\Re e \nu(Pf)=\Re e m(f\otimes\nu)=$ $m(\Re e (f\otimes\nu)) \leq \sup\{\Re e \nu(Tf): T\in\Sigma\}$. This is a contradiction.

(4) implies (1): The proof is similar to [4].

THEOREM 2. If (I) holds, then $\mu \rightarrow I_{\mu}$ is a bijection of the set of all extremal Σ -invariant states onto the family of all maximal Σ -invariant ideals.

Proof. Let I be a maximal Σ -invariant ideal. As well known, there exists an $x_0 \in X$ such that any function in I vanishes at x_0 . For each $f \in C(X)$ we define $\mu(f) = \tilde{f}(x_0)$, then μ is a Σ -invariant state which vanishes on I. The Schwarz inequality $\mu(|f|) \leq \sqrt{\mu(|f|^2)}$ implies that $I \subset I_{\mu}$ and therefore $I = I_{\mu}$. Let $K_{\Sigma,I} = \{\mu \in K_{\Sigma} : I = I_{\mu}\}$, then $K_{\Sigma,I}$ is a nonempty weak*-compact convex subset of $C(X)^*$. By the Krein-Milman theorem there exists an extreme point μ_0 of $K_{\Sigma,I}$. It is easy to see that μ_0 is also an extreme point of K_{Σ} .

Let μ be an extremal Σ -invariant state. If I_{μ} is not maximal, then there exists a maximal Σ -invariant ideal I containing I_{μ} . We can choose a Σ -invariant function g from $I-I_{\mu}$ such that $0 \leq g \leq 1$ and $0 < \mu(g) < 1$. Let $\mu_1(f) = \mu(\tilde{f}g)/\mu(g)$ and $\mu_2(f) = \mu(\tilde{f}(1-g))/\mu(1-g)$. Then μ_1 and μ_2 are Σ -invariant states, and $\mu = \alpha \mu_1 + (1-\alpha)\mu_2$ where $\alpha = \mu(g)$. Since μ is extremal, $\mu_1 = \mu_2$ and therefore $\mu_1(g) = \mu_2(g)$, which implies $\mu(g^2) = (\mu(g))^2$. It follows easily from the Schwarz inequality that $\mu(|g-\mu(g)1|)=0$. This shows that $g-\mu(g)1 \in I$ and therefore $1 \in I$. This is a contradiction.

Let μ_1 and μ_2 be distinct extremal Σ -invariant states. Then there exists a Σ -invariant function g such that $0 \leq g \leq 1$ and $\mu_1(g) \neq \mu_2(g)$. If $I_{\mu_1} = I_{\mu_2}$, then

112 MASAYOSHI EGUCHI AND YŌICHI KIJIMA

 $0 < \mu_1(g) < 1$. Let $\mu_3(f) = \mu_1(\tilde{f}g)/\mu_1(g)$ and $\mu_4(f) = \mu_1(\tilde{f}(1-g))/\mu_1(1-g)$. Then μ_3 and μ_4 are Σ -invariant states, and $\mu_1 = \alpha \mu_3 + (1-\alpha)\mu_4$ where $\alpha = \mu_1(g)$. Since μ_1 is extremal, $\mu_3 = \mu_4$. As in the above paragraph, it follows that $g - \mu_1(g) 1 \in I_{\mu_1}$ and therefore $g - \mu_1(g) 1 \in I_{\mu_2}$, which implies that $\mu_1(g) = \mu_2(g)$. This is a contradiction. Thus we conclude that I_{μ_1} and I_{μ_2} are distinct.

References

- [1] DELEEUW, K., AND I. GLICKSBERG, Applications of almost periodic compactifications. Acta Math. 105 (1961), 65-97.
- [2] SCHAEFER, H. H., Invariant ideals of positive operators in C(X). Illinois J. Math. 12 (1968), 525-538.
- [3] SINE, R., Geometric theory of a single Markov operator. Pacific J. Math. 27 (1968), 155-166.
- [4] TAKAHASHI, W., Invariant ideals for amenable semigroups of Markov operators. Kōdai Math. Sem. Rep. 23 (1971), 121-126.

CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY, AND TOKYO INSTITUTE OF TECHNOLOGY.