ON AN ISOMETRY OF RIEMANNIAN MANIFOLDS OF NEGATIVE CURVATURE

By Ryousuke Ichida

Let M be an $n(\geqq 2)$-dimensional connected complete Riemannian manifold. We say that a continuous function $f: M \rightarrow R$ is convex if its restriction to any geodesic of M is convex and a nonempty subset A of M is totally convex if it contains every geodesic segment of M whose endpoints are in A. The following facts were proved by Bishop and O'Neill [1].

Fact 1. Let f be a convex function on M. Then, for each number c, the set $M^{c}=\{m \in M ; f(m) \leqq c\}$ is totally convex.

Fact 2. Supposing that M is simply connected and of nonpositive sectional curvature, let φ be a fixed-point-free isometry of M. Then $d(p, \varphi(p)), p \in M$, is a convex function on M and it has no minimum if and only if no geodesic of M is translated by φ, where d is the distance function of M.

In this note we will obtain another condition that $d(p, \varphi(p)), p \in M$, has no minimum when $\operatorname{dim} M=2$. In the following, let M be an $n(\geqq 2)$-dimensional simply connected complete Riemannian manifold of nonpositive sectronal curvature.

As is well known, for any two points p, q of M there exists a unique geodesic segment from p to q. Let $\sigma:[0,1] \rightarrow M$ be the geodesic segment such that $\sigma(0)=p$ and $\sigma(1)=q$, which we denote by $\overline{p, q}$. First of all, we shall show the following

Proposition 1. Let φ be a fixed-point-free isometry of M. Then, for any positive integer $k, \varphi^{k}=\underbrace{\varphi \circ \cdots \circ \varphi}_{k}$ is also fixed-point-free.

Proof. Suppose that φ^{2} has a fixed point $p \in M$. Then φ must fix the middle point of the geodesic segment $\overline{p, \varphi(p)}$ but this contradicts the assumption for φ. Hence φ^{2} is fixed-point-free. Now, suppose that $k \geqq 3$ and $\varphi^{2}, 1 \leqq \imath \leqq k-1$, is fixed-point-free and φ^{k} has a fixed point $p \in M$. We consider a closed ball $B=B(p, r)=\{q \in M ; d(p, q) \leqq r\}$ such that B contains the set $\left\{p, \varphi(p), \cdots, \varphi^{k-1}(p)\right\}$. Then $d(p, q), q \in M$, is a convex function on M [1]. By virtue of Fact 1 the closed ball B is totally convex, so that geodesic segments $\overline{\varphi^{i}(p), \varphi^{2+1}(p)}$, $1 \leqq i \leqq k-1$, are contained in B. Now we consider the subset $K:=\left\{q \in B ; \varphi^{j}(q) \in B\right.$, $j=1,2, \cdots\}$ of B. Then we see that K is nonempty and compact and for each point $q \in K, \overline{q, \varphi(q)} \subset K$. Restricting $f(q)=d(q, \varphi(q)), q \in M$, to K, it attains
its minimum at a point $q_{0} \in K$. Since φ^{2} is a fixed-point-free, $\overline{q_{0}, \varphi\left(q_{0}\right)}$ and $\overline{\varphi\left(q_{0}\right), \varphi^{2}\left(q_{0}\right)}$ do not overlap each other. Now we shall show that the angle between $\overline{\varphi\left(q_{0}\right), q_{0}}$ and $\overline{\varphi\left(q_{0}\right), \varphi^{2}\left(q_{0}\right)}$ is π. In fact, suppose that it is less than π. Let q_{1} is an interior point of $\overline{q_{0}, \varphi\left(q_{0}\right)}$, then $q_{1} \in K$ and we have

$$
\begin{aligned}
d\left(q_{1}, \varphi\left(q_{1}\right)\right) & <d\left(q_{1}, \varphi\left(q_{0}\right)\right)+d\left(\varphi\left(q_{0}\right), \varphi\left(q_{1}\right)\right) \\
& =d\left(q_{1}, \varphi\left(q_{0}\right)\right)+d\left(q_{0}, q_{1}\right)=d\left(q_{0}, \varphi\left(q_{0}\right),\right.
\end{aligned}
$$

which contradicts the supposition that $f \mid K$ takes its minimum at q_{0}. Thus three points $q_{0}, \varphi\left(q_{0}\right), \varphi^{2}\left(q_{0}\right)$, in this order, are on the geodesic σ passing through q_{0} and $\varphi\left(q_{0}\right)$, so that φ translates σ. Since any geodesic ray of M diverges, $\varphi^{j}\left(q_{0}\right) \in M-B$ for a sufficiently large positive integer j. This is a contradiction since $q_{0} \in K$. Therefore, by the induction, φ^{k} must be fixed-point-free.

Using the same way as Proposition 1, we can prove the following.
Corollary. In Proposition 1, for each point $p \in M$, the sequence $\left\{d\left(p, \varphi^{k}(p)\right)\right\}$, $k \in N$, is unbounded.

For any geodesic segment σ of M, we denote by σ^{*} the geodesic extention of σ in the both sides.

Lemma 1. Under the same assumption as Proposition 1 , if φ does not translate any geodesic of M, then we have the following: For each point p of M,

$$
\begin{array}{llll}
p \notin \varphi \tau^{*}, & p \notin \varphi^{2} \sigma^{*}, & \varphi(p) \notin \tau^{*}, & \varphi(p) \notin \varphi^{2} \sigma^{*}, \\
\varphi^{2}(p) \notin \sigma^{*}, & \varphi^{2}(p) \notin \varphi \tau^{*}, & \varphi^{3}(p) \notin \sigma^{*}, & \varphi^{3}(p) \notin \tau^{*},
\end{array}
$$

where σ, τ are the geodesic segments $\overline{p, \varphi(p)}$ and $\overline{p, \varphi^{2}(p)}$, respectively.
Proof. We shall show $p \notin \varphi \tau^{*}$. Suppose that $p \in \varphi \tau^{*}$. Then we easly see that $\sigma=\overline{p, \varphi(p)}$ is contained in $\varphi \tau^{*}$. Hence exactly one of the following holds:

$$
\text { (1) } \varphi(p) \in \overline{p, \varphi^{3}(p)} \quad \text { (2) } \quad p \in \overline{\varphi(p), \varphi^{3}(p)} \quad \text { (3) } \quad \varphi^{3}(p) \in \overline{\varphi(p), p}
$$

In the case (1), considering the geodesic triangle $\Delta\left(p, \varphi^{2}(p), \varphi^{3}(p)\right)$, we have

$$
\begin{aligned}
d\left(p, \varphi^{3}(p)\right) & =d(p, \varphi(p))+d\left(\varphi(p), \varphi^{3}(p)\right) \\
& =d\left(\varphi^{2}(p), \varphi^{3}(p)\right)+d\left(p, \varphi^{2}(p)\right),
\end{aligned}
$$

which implies $\varphi^{2}(p) \in \overline{p, \varphi^{3}(p)}$. Then either $\varphi^{2}(p) \in \overline{p, \varphi(p)}$ or $\varphi^{2}(p) \in \overline{\varphi(p), \varphi^{3}(p)}$ holds. In the former case, it is clear that $\varphi^{2}(p)=p$ must hold. This contradicts Proposition 1. In the latter case, φ translates $\varphi \tau^{*}$, which contradicts the assumption for φ. Hence the case (1) never arise. We can also prove the cases (2), (3) never arise by the same way. Thus we have $p \notin \varphi \tau^{*}$. We can also prove the other facts similarly.

Proposition 2. In Proposition 1, if $\operatorname{dim} M=2$ and φ is orientation preserving, then the following conditions (a), (b) are equivalent:
(a) any geodesic of M is not translated by φ.
(b) for each point p of $M, \overline{p, \varphi^{2}(p)}$ and $\overline{\varphi(p), \varphi^{3}(p)}$ or $\overline{p, \varphi(p)}$ and $\overline{\varphi^{2}(p), \varphi^{3}(p)}$ intersect at an intervor point of these geodesic segments.

Proof. We shall deduce (b) from (a). Suppose that there exists a point p of M such that (b) does not hold for p. By Proposition 1, four points $p, \varphi(p)$, $\varphi^{2}(p)$, and $\varphi^{3}(p)$ are all distinct and by Lemma 1, above any three points are not on a same geodesic. Note that M is homeomorphic to R^{2}. Since φ is orientation preserving, the following two cases are possible:
(1) $\varphi^{3}(p)$ is in the geodesic triangle $\Delta\left(p, \varphi(p), \varphi^{2}(p)\right)$.
(2) p is in the geodesic triangle $\Delta\left(\varphi(p), \varphi^{2}(p), \varphi^{3}(p)\right)$.

Then $\varphi\left(\Delta\left(p, \varphi(p), \varphi^{2}(p)\right)=\Delta\left(\varphi(p), \varphi^{2}(p), \varphi^{3}(p)\right)\right.$. In the case (1) since $\Delta\left(\varphi(p), \varphi^{2}(p)\right.$, $\left.\varphi^{3}(p)\right) \subset \Delta\left(p, \varphi(p), \varphi^{2}(p)\right)$, it contradicts that φ is an isometry. In the case (2), we get also a contradiction. The converse is clear.

Remark. In Proposition 2, the curvature of M is not zero identically.
Finally, the author would like to express his thanks to Professor T. Otsuki for his kind guidance.

Reference

[1] R.L. Bishop and B. O' Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. vol. 145 (1969), 1-49.

