ON THE TOTAL CURVATURE OF NONCOMPACT RIEMANNIAN MANIFOLDS

By Masao Maeda

Let M be a 2-dimensional complete connected noncompact Riemannian manifold with positive Gaussian curvature K. Then Cohn-Vossen proved in [2] that M is diffeomorphic to a 2-dimensional Euclidean spase E^{2} and its total curvature satisfies

$$
\begin{equation*}
\iint_{M} K d v \leqq 2 \pi \tag{}
\end{equation*}
$$

where $d v$ is the area element of M. The purpose of this paper is to show the inequality (*) is still true for manifolds of nonnegative Gaussian curvature. That is,

Theorem. Let M be a 2-dimensional complete connected noncompact Riemannian manifold with nonnegative Gaussian curvature K. Then

$$
\iint_{M} K d v \leqq 2 \pi
$$

The auther dose not know whether this Theorem had been proved by anyone or not.

Throughout this paper, let M be a complete connected Riemannian manifold and every geodesic parametrized with respect to arc length. A geodesic $c:[0, \infty) \rightarrow M($ or $(-\infty, \infty))$ is called a ray (or a line) if each segment of c is minimal. d denotes the metric distance of M. A subset A of M will be called totally convex if for any $p, q \in A$ and any geodesic $c:[0, s] \rightarrow M$ from p to q, we have $c([0, s]) \subset A$. Let C be a non-empty closed totally convex subset of M. Then C is an imbedded topological submanifold of M with totally geodesic interior and possibly nonsmooth boundary ∂C, which might be empty, see [1]. Let M be a noncompact manifold of nonnegative sectional curvature. Then the following facts were also proved in [1]. Let C be a closed totally convex subset of M. If $\partial C \neq \phi$, we set

$$
\begin{aligned}
& C^{a}:=\{p \in C: d(p, \partial C) \geqq a\}, \\
& C^{\max }=\bigcap_{C \neq \phi} C^{a} .
\end{aligned}
$$

Received May 10, 1973.

Then for any $a \geqq 0, C^{a}$ is totally convex and therefore $C^{\max }$ is totally convex and $\operatorname{dim} C^{\max }<\operatorname{dim} C$. For any $p \in M$, there exists a family of compact totally convex subsets $C_{t}, t \geqq 0$ of M such that

1) $t_{1} \leqq t_{2}$ implies $C_{t_{1}} \subset C_{t_{2}}$ and $C_{t_{1}}=\left\{q \in C_{t_{2}} ; d\left(q, \partial C_{t_{2}}\right) \geqq t_{2}-t_{1}\right\}$, in particular, $\partial C_{t_{1}}=\left\{q \in C_{t_{2}}: d\left(q, \partial C_{t_{2}}\right)=t_{2}-t_{1}\right\}$,
2) $\bigcup_{t \geqq 0} C_{t}=M$,
3) $p \in C_{0}$ and if $\partial C_{0} \neq \phi$, then $p \in \partial C_{0}$.

We set $C_{0}=: C(0)$ and if $\partial C(0) \neq \phi$, we set $C(1):=C(0)^{\max }$. Inductively we set $C(i+1):=C(i)^{\max }$ if $\partial C(i) \neq \phi$. Then there exists an integer $k \geqq 0$ such that $\partial C(k)$ $=\phi . \quad C(k)$ will be called a soul of M and denoted by S.

Lemma 1. Let M be a noncompact Riemannian manifold with nonnegative sectoonal curvature and S be a soul of M. Then for any point $q_{0} \in S$, there exist at least two rays starting from q_{0}.

Proof. Since M is noncompact there exists a ray $\sigma:[0, \infty) \rightarrow M$ starting from q_{0}. We set $v:=-\dot{\sigma}(0)$. Let $\left\{C_{t}\right\}_{t_{0} \geq 0}$ be the family of compact totally convex sets from which S was constructed as above. Choose an $s_{0}>0$. Let $c:[0, L] \rightarrow M$ be the geodesic such that $L<s_{0}$ i. e. $c([0, L]) \subset \operatorname{int} C_{s_{0}}$ and $\dot{c}(0)=v$. Let $\left\{t_{i}\right\}$ be a sequence such that $t_{i} \in(0, L]$ and $t_{i} \rightarrow 0$ and $\left\{s_{i}\right\}$ be a seqence such that $s_{i} \rightarrow \infty$ and $s_{i} \geqq s_{0}$. Let $q_{i} \in \partial C_{s_{i}}$ be a point such that $d\left(c\left(t_{2}\right), q_{2}\right)=d\left(c\left(t_{2}\right), \partial C_{s i}\right)$ and $c_{\imath} ;\left[0, d\left(c\left(t_{2}\right), q_{2}\right)\right] \rightarrow M$ be a minimal geodesic from $c\left(t_{2}\right)$ to q_{2}. Then for all i

$$
\Varangle\left(\dot{c}\left(t_{2}\right), \dot{c}_{i}(0)\right) \leqq \frac{\pi}{2},
$$

where $\Varangle\left(\dot{c}\left(t_{i}\right), \dot{c}_{i}(0)\right)$ is the angle between $\dot{c}\left(t_{2}\right)$ and $\dot{c}_{i}(0)$. To see this, we use the fact that the function $\psi:[0, L] \rightarrow R$ defined by $\psi(s):=d\left(c(s), \partial C_{s_{i}}\right)$ is concave i. e.

$$
\psi\left(a t_{1}+b t_{2}\right) \geqq a \psi\left(t_{1}\right)+b \psi\left(t_{2}\right)
$$

where $a, b \geqq 0, a+b=1$, see Theorem 1.10 in [1]. Since $q=c(0) \in S, \psi$ takes a maximum at 0 and hence ψ is monotone decreasing. But if $\Varangle\left(\dot{c}\left(t_{2}\right), \dot{c}_{i}(0)\right)>\frac{\pi}{2}$, then we can find $t_{i}^{\prime}<t_{2}$ such that $d\left(c\left(t_{2}^{\prime}\right), q_{2}\right)<d\left(c\left(t_{2}\right), q_{2}\right)$. Hence $\psi\left(t_{2}^{\prime}\right) \leqq d\left(c\left(t_{2}^{\prime}\right), q_{2}\right)$ $<d\left(c\left(t_{2}\right), q_{2}\right) \leqq \psi\left(t_{2}\right)$. This is a contradiction. We choose a convergent subsequence $\left\{\dot{c}_{\imath_{j}}(0)\right\}$ of $\left\{\dot{c}_{i}(0)\right\}$ such that $\dot{c}_{\imath_{j}}(0) \rightarrow w$. By the construction, the geodesic $\tau:[0, \infty)$ $\rightarrow M$ such that $\dot{t}(0)=w$ is a ray which satisfies

$$
\Varangle(v, \dot{\tau}(0)) \leqq \frac{\pi}{2} .
$$

Proof of Theorem. By the Classification Theorem in [1], M must be isometric to a cylinder or a Möbius band or a P_{2} which is diffeomorphic to E^{2}. So we may assume that M is diffeomorphic to E^{2} and not flat. Let S be a soul of M and $\left\{C_{t}\right\}_{t \geqq 0}$ the family of compact totally convex subsets of M which
determines S. For a fixed point $q_{0} \in S$, by Lemma 1 , there exist two rays $\sigma, \tau:[0, \infty) \rightarrow M$ starting from q_{0} and $\dot{\sigma}(0) \neq \dot{\tau}(0)$. Since M is diffeomorphic to E^{2}, by the broken geodesic $\tau^{-1} \circ \sigma:(-\infty, \infty) \rightarrow M$ defined by

$$
\tau^{-1} \circ \sigma(t):=\left\{\begin{array}{lll}
\tau(-t) & \text { if } & t \leqq 0 \\
\sigma(t) & \text { if } & t \geqq 0,
\end{array}\right.
$$

M is decomposed into two domains D_{1}, D_{2} such that $D_{1} \cap D_{2}=\phi, \bar{D}_{1} \cup \bar{D}_{2}=M$ and $\partial \bar{D}_{1}=\partial \bar{D}_{2}=\tau^{-1} \circ \sigma$. For each $t>0, \partial C_{t}$ is homeomorphic to a circle and σ (or τ) meets ∂C_{t} uniquely at σ_{t} (or τ_{t}). For each $t>0$ and $\imath=1,2$, we set

$$
\begin{aligned}
& D_{t}^{\imath}:=D_{i} \cap C_{t}, \\
& E_{t}^{i}:=D_{i} \cap \partial C_{t},
\end{aligned}
$$

and

$$
B_{t}^{i}:=\left\{\begin{array}{c}
\tilde{q} \in E_{t}^{i}: \text { there exist minimal geodesics from } \sigma_{t} \text { to } \tilde{q} \text { and } \\
\text { from } \tau_{t} \text { to } \tilde{q} \text { which are contained in } \bar{D}_{t}^{2}
\end{array}\right\}
$$

B_{t}^{i} is nonempty subset of E_{t}^{i}. We show this for $i=1$. We set

$$
\begin{aligned}
& N_{\sigma}:=\left\{\begin{array}{ll}
\tilde{q} \in E_{t}^{1}: & \text { there exists a minimal geodesic from } \sigma_{t} \text { to } \tilde{q} \\
\text { which is contained in } \bar{D}_{t}^{1}
\end{array}\right\} \\
& N_{\tau}:= \begin{cases}\tilde{q} \in E_{t}^{1} & \text { there exists a minimal geodesic from } \tau_{t} \text { to } \tilde{q} \\
\text { which is contained in } \bar{D}_{t}^{1}\end{cases}
\end{aligned}
$$

Let $\tilde{q} \in E_{t}^{1}$. We will show if $\tilde{q} \notin N_{\tau}$, then $\tilde{q} \in N_{\sigma}$. By the assumption there exists no minimal geodesic from τ_{t} to \tilde{q} which is contained in \bar{D}_{t}^{1}. First of all, we note that any minimal geodesics from τ_{t} to \tilde{q} and σ_{t} to \tilde{q} are contained completely ∂C_{t} or do not interset ∂C_{t} except the end points. So we may assume that any minimal geodesic from τ_{t} to \tilde{q} is not contained in ∂C_{t}. Let $a_{t}:\left[0, d\left(\tau_{t}, \tilde{q}\right)\right]$ $\rightarrow M$ be a minimal geodesic from τ_{t} to \tilde{q}. Then a_{t} dose not meet $\tau \mid\left[0, d\left(\tau(0), \tau_{t}\right)\right)$. For, if it dose not so, then $a_{t}\left(\left[0, d\left(\tau(0), \tau_{t}\right)\right]\right)=\tau\left(\left[0, d\left(\tau(0), \tau_{t}\right)\right]\right)$, because τ is a minimal geodesic. From the assumption $a_{t} \in \bar{D}_{t}^{1}, a_{t}\left(\left[0, d\left(\tau_{t}, \tilde{q}\right)\right]\right) \cap D_{t}^{2} \neq \phi$. Hence a_{t} must meet σ at $\sigma\left(s_{0}\right), s_{0}>0$. So $a_{t}\left(\left[d\left(\tau(0), \tau_{t}\right), d\left(\tau_{t}, \tilde{q}\right)\right]\right) \subset \sigma([0, \infty))$, because σ is a minimal geodesic. This contradicts $\tilde{q} \notin \sigma([0, \infty))$. Let $\delta:=\min \left\{d\left(q_{0}, \tau_{t}\right)\right.$, $\left.d\left(\tilde{q}, \tau_{t}\right)\right\}$. Then $a_{t}([0, \delta]) \subset D_{t}^{1}$ or $a_{t}([0, \delta]) \subset D_{t}^{2}$. In the first case, we get the same contradiction by the analogous argument above. It $a_{t}([0, \delta]) \subset D_{t}^{2}$, then $a_{t}([0$, $\left.\left.d\left(\tau_{t}, \tilde{q}\right)\right]\right) \cup\left\{\right.$ restriction of E_{t}^{1} from τ_{t} to $\left.\tilde{q}\right\}$ is a Jordan curve and contains q_{0} in its interior, because τ and σ are rays. If $\tilde{q} \notin N_{\sigma}$, then by the same argument above, we see that if $b_{t}:\left[0, d\left(\sigma_{t}, \tilde{q}\right)\right] \rightarrow M$ be a minimal geodesic from σ_{t} to \tilde{q}, then $b_{t}\left(\left[0, d\left(\sigma_{t}, \tilde{q}\right)\right]\right) \cup\left\{\right.$ restriction of E_{t}^{1} from σ_{t} to $\left.\tilde{q}\right\}$ is a Jordan curve and contains q_{0} in its interior. Then by the topological consideration, we see that a_{t} must intersect b_{t} at $a_{t}\left(s^{\prime}\right), s^{\prime}>0$. So $a_{t}=b_{t}$ because a_{t} and b_{t} are minimal geodesics. This is a contradiction. So $\tilde{q} \in N_{\sigma}$. Similarly if $\tilde{q} \notin N_{\sigma}$, then $\tilde{q} \in N_{\tau}$.

That is, every point of E_{t}^{1} is contained in N_{σ} or N_{τ}. If $\tilde{q} \in E_{t}^{1}$ is contained in a convex neighborhood of σ_{t} (or τ_{t}), then $\tilde{q} \in N_{\sigma}$ (or N_{τ}). So N_{σ} and N_{τ} are nonempty. By considering limits of geodesics, we see N_{σ} and N_{τ} are closed subsets of E_{t}^{1}. Thus, if $N_{\sigma} \cap N_{\tau}=\phi$, then N_{σ} and N_{τ} are non-empty open and closed subsets of E_{t}^{1}. This is a contradiction. So there exists a point $q \in N_{\sigma} \cap N_{\tau} \subset B_{t}^{1}$.

We choose $q_{t}^{2} \in B_{t}^{2}$ and let $a_{t}^{2}:\left[0, m_{t}^{i}\right] \rightarrow M$ and $b_{t}^{2}:\left[0, n_{t}^{i}\right] \rightarrow M$ are minimal geodesics from τ_{t} to q_{t}^{2} and from σ_{t} to q_{t}^{2} such that $a_{t}^{i}\left(\left[0, m_{t}^{i}\right]\right), b_{t}^{i}\left(\left[0, n_{t}^{i}\right]\right) \subset \bar{D}_{t}^{2}, i=1,2$. We denote by Q_{t} the closed bounded domain with the boundary consisting of four geodesic segments $a_{t}^{1}, b_{t}^{1}, b_{t}^{2}$ and a_{t}^{2}.

Lemma 2. For any point $q \in M$, there exasts a positive number $t(q)$ such that for all $t \geqq t(q), q \in Q_{t}$.

Proof. We may assume that $q \in D_{1}$. We assume Lemma 2 dose not hold. Then there exists a sequence $\left\{t_{i}\right\}$ such that $\lim t_{i}=\infty$ and $q \notin Q_{t_{i}}$ for all i. Let $c:[0, b] \rightarrow M$ be a minimal geodesic from q_{0} to q. Then $c((0, b]) \subset D_{1}$. Since every Q_{t} contains q_{0}, $a_{t_{i}}^{1}$ or $b_{t_{i}}^{1}$ meets $c([0, b])$. Without loss of generality, we may assume $a_{t_{i}}^{1}$ meets $c([0, b])$ at $a_{t_{i}}^{1}\left(s_{t_{i}}\right)$. By the triangle inequality,

$$
\begin{aligned}
d\left(a_{t_{i}}^{1}\left(s_{t_{i}}\right), q_{t_{i}}^{1}\right) & \geqq d\left(q_{t_{i}}^{1}, q_{0}\right)-d\left(q_{0}, a_{t_{i}}^{1}\left(s_{t_{i}}\right)\right) \\
& \geqq d\left(q_{t_{i}}^{1}, q_{0}\right)-d\left(q_{0}, q\right) \\
& \geqq t_{i}-d\left(q_{0}, q\right), \\
d\left(a_{t_{i}}^{1}\left(s_{t_{i}}\right), \tau_{t_{i}}\right) & \geqq d\left(\tau_{t_{i}}, q_{0}\right)-d\left(q_{0}, a_{t_{i}}^{1}\left(s_{t_{i}}\right)\right) \\
& \geqq d\left(\tau_{t_{i}}, q_{0}\right)-d\left(q_{0}, q\right) \\
& \geqq t_{\imath}-d\left(q_{0}, q\right),
\end{aligned}
$$

since q_{0} is a point of the soul S which is made from the family of totally convex sets $\left\{C_{t}\right\}_{t \geq 0}$. Hence $\lim _{i \rightarrow \infty} d\left(a_{t_{i}}^{1}\left(s_{t_{i}}\right), q_{t_{i}}^{1}\right)=\infty$ and $\lim _{\imath \rightarrow \infty} d\left(a_{t_{i}}^{1}\left(s_{t_{i}}\right), \tau_{t_{i}}\right)=\infty$. By the compactness of $c([0, b])$, we can choose a convergent subsequence of $\left\{\dot{a}_{t_{i}}^{1}\left(s_{t_{i}}\right)\right\}$. Let v be its limit vector. Then the geodesic $\gamma:(-\infty, \infty) \rightarrow M$ such that $\dot{j}(0)=v$ is a line by the above fact. Then by the Toponogov's splitting Theorem (see [1]), M must be isometric to E^{2}. This is a contradiction. q. e. d.

Taking a positive number r_{1}, for $\imath=1,2, \cdots$, we set $r_{\imath+1}:=\max \left\{t\left(q_{r_{i}}^{1}\right), t\left(q_{r_{i}}^{2}\right), r_{i}\right\}$ +1 . Then $Q_{r_{2}} \subset Q_{r_{2+1}}$, because $q_{r_{i}}^{k} \in Q_{r_{i+1}}$ by Lemma 2 and $a_{r_{i}}^{k}, b_{r_{i}}^{k}, a_{r_{i+1}}^{k}, b_{r_{i+1}}^{k}$ are minimal geodesics, for $k=1,2$. Since $r_{2} \uparrow \infty$, for any point $q \in M$, by Lemma 2 there exists r_{2} such that $q \in Q_{r_{i}}$. Hence $\bigcup_{\imath} Q_{r_{i}}=M$. The vertical angles of $Q_{r_{i}}$ are not larger than π, because $C_{r_{i}}$ is totally convex. Hence applying the GaussBonnet's Theorem to $Q_{r_{i}}$, we get

$$
\iint_{Q_{r i}} K d v \leqq 2 \pi
$$

The sequence $\left\{\iint_{Q_{r i}} K d v\right\}$ are monotone increasing, so there exists the limit value and

$$
\lim \iint_{Q_{r_{i}}} K d v=\iint_{M} K d v \leqq 2 \pi
$$

q. e. d.

The auther thanks Professor T. Otsuki for his valuable suggestions.

References

[1] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972), 413-443.
[2] S. Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, Comp. Math. 2 (1935), 69-133.
[3] D. Gromoll and W. Meyer, On complete manifolds of positive curvature, Ann. of Math. 90 (1969), 75-90.

Department of Mathematics, Tokyo Institute of Technology.

