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ON THE TOTAL CURVATURE OF NONCOMPACT

RIEMANNIAN MANIFOLDS

BY MASAO MAEDA

Let M be a 2-dimensional complete connected noncompact Riemannian
manifold with positive Gaussian curvature K. Then Cohn-Vossen proved in
[2] that M is diffeomorphic to a 2-dimensional Euclidean spase E2 and its total
curvature satisfies

(*) if Kdv^2π,
JJM

where dv is the area element of M. The purpose of this paper is to show the
inequality (*) is still true for manifolds of nonnegative Gaussian curvature.
That is,

THEOREM. Let M be a 2-dimensional complete connected noncompact Rieman-
nian manifold with nonnegative Gaussian curvature K. Then

Kdv<2π.
j j M —

The auther dose not know whether this Theorem had been proved by
anyone or not.

Throughout this paper, let M be a complete connected Riemannian mani-
fold and every geodesic parametrized with respect to arc length. A geodesic
c: [0, oo)-^M (or (—00, 00)) is called a ray (or a line) if each segment of c is
minimal, d denotes the metric distance of M. A subset A of M will be called
totally convex if for any p,q^A and any geodesic c: [0, sΊ->M from p to q,
we have c([0, s])cA Let C be a non-empty closed totally convex subset of
M. Then C is an imbedded topological submanifold of M with totally geodesic
interior and possibly nonsmooth boundary 9C, which might be empty, see [1].
Let M be a noncompact manifold of nonnegative sectional curvature. Then the
following facts were also proved in [1]. Let C be a closed totally convex
subset of M. If dCφφ, we set

Ca: ={p£ΞC

C m a x = Γ\ Ca.
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Then for any α^O, Cα is totally convex and therefore C m a x is totally convex
and d i m C m a x < d i m C . For any £ e M , there exists a family of compact totally
convex subsets Ct, t^O of M such that

1) tx^t2 implies CtlcCt2 and C t l = { # e C ί 2 ; d(#, 9Cί2)Ξ>£2—ία}, in particular,

2) \j Ct=M,

3) p^C0 and if dC0Φψ, then
We set Co= : C(0) and if dC(0)Φφ, we set C(l): =C(0) m a x . Inductively we set

C(i+1): =C(z) m a x if dC(i)Φφ. Then there exists an integer β^O such that dC(k)
=φ. C(k) will be called a soul of M and denoted by 5.

LEMMA 1. Let M be a noncompact Riemannian manifold with nonnegative
sectional curvature and S be a soul of M. Then for any point qQ^S, there exist
at least two rays starting from q0.

Proof. Since M is noncompact there exists a ray σ: [0, oo)->M starting
from qQ. We set v\—— σ(0). Let {C£}ί0^0 be the family of compact totally
convex sets from which 5 was constructed as above. Choose an so>0. Let
c: [0, L~\-*M be the geodesic such that L<s0 i.e. c([0, L])cint Cso and c(0)=v.
Let {ti} be a sequence such that ^e(0, L ] and ίt—>0 and {sj be a seqence such
that Si-^oo and s t^s 0 . Let qι^dCH be a point such that d(c(tt), qι)=d(c(tt\ dCsi)
and cx [0, d(c{tx)y qx)~]-*M be a minimal geodesic from c(tt) to ^ . Then for all i

where <(c(ίί), ̂ (0)) is the angle between c(tt) and ct(0). To see this, we use
the fact that the function ψ : [0, L}-*R defined by ψ(s): =rf(c(s), 9CSi) is concave
i. e.

where α, 6^0, α+^=l, see Theorem 1.10 in [1]. Since ^=c(0)eS, ^ takes a

maximum at 0 and hence φ is monotone decreasing. But if <(c(O, Ci(0))>-?-,

then we can find tί<tt such that d(c(Q, qt)<d(c(tt), qt). Hence ψ(t't)^d(c(t'%), qt)
<d(c(tt), qι)Sψ{tι). This is a contradiction. We choose a convergent subsequence
{cv(0)} of {Ci(0)l such that cιy(0)—>u;. By the construction, the geodesic τ : [0, oo)
->M such that τ(0)=w is a ray which satisfies

y . q.e.d.

<9/ Theorem. By the Classification Theorem in [1], M must be iso-
metric to a cylinder or a Mδbius band or a P 2 which is diffeomorphic to E2.
So we may assume that M is diffeomorphic to E2 and not flat. Let S be a soul
of M and {CJ^o the family of compact totally convex subsets of M which
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determines S. For a fixed point qo^S, by Lemma 1, there exist two rays
σ, τ : [0, oo)-^M starting from q0 and (J(O)^f(O). Since M is diffeomorphic to
£ 2 , by the broken geodesic τ~1oσ :(—&>, oo)^M defined by

τ(-t) if

σ(t) if ί^O,

M is decomposed into two domains Du D2 such that D1r\D2=φ, D1

[JD2=M and
dDί—dD2—τ~1oσ. For each f>0, 3Q is homeomorphic to a circle and σ (or τ)
meets 3Ct uniquely at σt (or r t). For each t>0 and z=l, 2, we set

E\: =D<
and

1\: there exist minimal geodesies from σt to q and

from τt to q which are contained in D\

B\ is nonempty subset of E\. We show this for z=l. We set

l\ there exists a minimal geodesic from σt to #

which is contained in D\

Λ -JL\ : there exists a minimal geodesic from τt to #
N * — \ —

which is contained in D\

Let q^E\. We will show if q&Nτ, then q^Na. By the assumption there exists
no minimal geodesic from τt to q which is contained in D\. First of all, we
note that any minimal geodesies from τt to q and σt to q are contained com-
pletely dCt or do not interset dCt except the end points. So we may assume
that any minimal geodesic from τt to q is not contained in dCt. Let at: [0, d{τt, q)l
-+M be a minimal geodesic from τt to q. Then at dose not meet τ |[0, d(τ(0), r t)).
For, if it dose not so, then αt([0, d(r(0), τί)])=_τ([0, rf(τ(0), r^]), because τ is a
minimal geodesic. From the assumption at&Dj, at(£0, d(τt, q)l)ΓλD2

tφφ. Hence
at must meet σ at σ(s0), so>O. So at([_d(τ(0), τt), d(τt, ί)])C(j([0, oo)), because σ
is a minimal geodesic. This contradicts ί$σ([0, oo)). Let δ : — min {d(q0, τt),
d(q, τt)}. Then α£([0, ^ ] ) c D | or α£([0, <5])cA2 In the first case, we get the same
contradiction by the analogous argument above. It α{([0, δJ)cD2, then αt([0,
d(τu q)~])[J {restriction of EJ from τt to }̂ is a Jordan curve and contains #o in
its interior, because τ and σ are rays. If q&Nσ, then by the same argument
above, we see that if bt: [0, d(σt, q)~\-*M be a minimal geodesic from σt to gy

then 6£([0, <i(σί, ^)])W {restriction of £ί from σt to }̂ is a Jordan curve and
contains q0 in its interior. Then by the topological consideration, we see that
at must intersect bt at αί(s/), s7>0. So at=bt because at and bt are minimal
geodesies. This is a contradiction. So q(=Nσ. Similarly if η&Nσ, then q^Nτ.
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That is, every point of E\ is contained in Nσ or Nτ. If g^Ej is contained in
a convex neighborhood of σt (or τt), then g^Nσ (or Nτ). So Nσ and -/VΓ are non-
empty. By considering limits of geodesies, we see Nσ and NT are closed sub-
sets of Ej. Thus, if Nσr^Nτ=φ, then Nσ and Nτ are non-empty open and closed
subsets of E\. This is a contradiction. So there exists a point q^NoΓ\NτaB\.

We choose q\^E\ and let αj: [0, mQ—>M and ^J: [0, nf]—>M are minimal geo-
desies from τt to $ and from σt to # such that a\([§, wQ), ^([0, n 3 ) c ΰ ί , ί = l , 2.
We denote by Qt the closed bounded domain with the boundary consisting of
four geodesic segments αj, 6J, b\ and αf.

LEMMA 2. For any point q^M, there exists a positive number t(q) such that
for all t^t(q), qς=Qt.

Proof. We may assume that q^Dλ. We assume Lemma 2 dose not hold.
Then there exists a sequence {ίj such that limίi=oo and tf^Q^ for all i. Let
£ [0, 6 ] ^ M be a minimal geodesic from q0 to #. Then c((0, 6])ci)i. Since
every Qt contains <7o, αJt or bι

H meets c([0, 6]). Without loss of generality, we
may assume a\t meets c([0, bj) at al^s^. By the triangle inequality,

d((ϊti(sti), q\t)^d{q\v qo)-d(qo, al

ti(sH))

^d(qj., qo)-d(qo, q)

)^d(τH, qo)-d(qo, αίt(st i))

^d(τti, qo)-d(qo, q)

since q0 is a point of the soul S which is made from the family of totally con-
vex sets {CJί^o. Hence \\md(a\i(sH),q\ι)=co and \\m d{a}ti{sH), τH)—oo. By the

compactness of c([0, 6]), we can choose a convergent subsequence of {ά}tί{sti)}.
Let f be its limit vector. Then the geodesic γ : (—oo, co)-^M such that /(0)=i;
is a line by the above fact. Then by the Toponogov's splitting Theorem (see
[1]), M must be isometric to E2. This is a contradiction. q. e. d.

Taking a positive number rlf for z=l, 2, •••, we set rι+1: =max U(#n), ^(^) , ^}
+ 1 . Then QridQri+v because qk

n^Qri+1 by Lemma 2 and α^, fc*if α*i+1, b*i+1 are
minimal geodesies, for k=l, 2. Since rt ί oo, for any point ? G M , by Lemma 2
there exists rx such that q^Qri. Hence {JQri=M. The vertical angles of Qri

are not larger than π, because Cri is totally convex. Hence applying the Gauss-
Bonnet's Theorem to Qrv we get
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The sequence {if Kdv\ are monotone increasing, so there exists the limit
UJQn J

value and

limff Kdυ=[\ Kdv^lπ

q. e. d.

The auther thanks Professor T. Otsuki for his valuable suggestions.
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