A COEFFICIENT INEQUALITY FOR CERTAIN MEROMORPHIC UNIVALENT FUNCTIONS

By Yoshinisa Kubota

1. Let Σ_{0} denote the class of functions $g(z)$ univalent in $|z|>1$, regular apart from a simple pole at the point at infinity and having the expansion at that point

$$
\begin{equation*}
g(z)=z+\sum_{n=1}^{\infty} b_{n} z^{-n} \tag{1}
\end{equation*}
$$

Garabedian and Schiffer [1] obtained the sharp estimate $\left|b_{3}\right| \leqq\left(1+2 e^{-6}\right) / 2$ and at the same time they remarked that if all the coefficients b_{n} of $g(z)$ are real then $b_{3} \leqq 1 / 2$. Further Jenkins [5] proved that if $b_{j}=0$ for $j<n$ then $\left|b_{2 n+1}\right| \leqq$ $(n+1)^{-1}[1+2 \exp \{-(2 n+4) / n\}]$ and that if $b_{j}=0$ for $j \leqq(n-1) / 2$ then $\left|b_{n}\right| \leqq$ $2 /(n+1)$.

In this paper we shall be concerned with the coefficient b_{5} and we shall prove

THEOREM. If all the coefficients b_{n} of $g(z)$ are real, then

$$
b_{5} \leqq \frac{1}{3}+\frac{4}{507}
$$

with equality holding only for the functıon $\tilde{g}(z)$ which satisfies the algebraic equation

$$
\left(w^{2}+\frac{12}{13}\right)^{3}=\left(z^{3}+\frac{6}{13}-z+\frac{6}{13} z^{-1}+z^{-3}\right)^{2}, \quad w=\tilde{g}(z)
$$

The expansion of $\tilde{g}(z)$ at the point at infinity begins

$$
z-\frac{4}{13} z^{-1}+\frac{16}{169} z^{-3}+\left(\frac{1}{3}+\frac{4}{507}\right) z^{-5}+\cdots
$$

Our proof is due to Jenkins' General Coefficient Theorem.
2. Firstly we give several lemmas which will be used later on.

Lemma A. Let $Q(w) d w^{2}=\alpha\left(w^{4}+\beta_{1} w^{3}+\beta_{2} w^{2}+\beta_{3} w+\beta_{4}\right) d w^{2}$ be a quadratic differential on the w-sphere and let

Received May 8, 1973

$$
g^{*}(z)=z+\sum_{n=1}^{\infty} b_{n}^{*} z^{-n}
$$

be a function of class Σ_{0} which maps $|z|>1$ onto a domain D admissible with respect to $Q(w) d w^{2}$. Let $g(z)$ be a function of class Σ_{0} having the expansion at the point at infinity

$$
g(z)=z+\sum_{n=1}^{\infty} b_{n} z^{-n}
$$

where $b_{1}=b_{1}^{*}$. Then

$$
\begin{aligned}
& \mathscr{R} \alpha\left\{b_{5}-b_{5}^{*}+\beta_{1}\left(b_{4}-b_{4}^{*}\right)+\left(\beta_{2}+3 b_{1}^{*}\right)\left(b_{3}-b_{3}^{*}\right)\right. \\
& \left.\quad+\left(\beta_{3}+2 \beta_{1} b_{1}^{*}+2 b_{2}^{*}\right)\left(b_{2}-b_{2}^{*}\right)+\left(b_{2}-b_{2}^{*}\right)^{2}\right\} \leqq 0 .
\end{aligned}
$$

In the case $b_{j}=b_{j}^{*}, j=1,2$ equality occurs only for $g(z) \equiv g^{*}(z)$.
Proof. Let $\phi(w)$ be the inverse of $g^{*}(z)$ defined in D. Then we apply the General Coefficient Theorem in its extended form [6] with \mathcal{R} the w-sphere, $Q(z) d z^{2}$ being $\alpha\left(w^{4}+\beta_{1} w^{3}+\beta_{2} w^{2}+\beta_{3} w+\beta_{4}\right) d w^{2}$, the admissible domain D and the admissible function $g(\phi(w))$. The function $g(\phi(w))$ has the expansion at the point at infinity

$$
w+\sum_{n=2}^{\infty} a_{n} w^{-n}
$$

where

$$
\begin{aligned}
& a_{2}=b_{2}-b_{2}^{*} \\
& a_{3}=b_{3}-b_{3}^{*} \\
& a_{4}=b_{4}-b_{4}^{*}+2 b_{1}^{*}\left(b_{2}-b_{2}^{*}\right), \\
& a_{5}=b_{5}-b_{5}^{*}+3 b_{1}^{*}\left(b_{3}-b_{3}^{*}\right)+2 b_{2}^{*}\left(b_{2}-b_{2}^{*}\right) .
\end{aligned}
$$

Hence we have the desired inequality. The equality statement follows at once from the general equality conditions in the General Coefficient Theorem.

Lemma B. Let $g(z)$ be a function of class Σ_{0} having the expansion (1) at the point at infinity. Then

$$
\left|b_{5}+b_{1} b_{3}+b_{2}^{2}+\frac{1}{3} b_{1}^{3}\right| \leqq \frac{1}{3} .
$$

Proof. Let $G_{\mu}(w)$ be the μ-th Faber polynomial which is defined by

$$
G_{\mu}(g(z))=z^{\mu}+\sum_{\nu=1}^{\infty} b_{\mu \nu} z^{-\nu} .
$$

Then Grunsky's inequality [2] has the form

$$
\left|\sum_{\mu \nu \nu=1}^{m} \nu b_{\mu \nu} x_{\mu} x_{\nu}\right| \leqq \sum_{\nu=1}^{m} \nu\left|x_{\nu}\right|^{2} .
$$

Putting $m=3, x_{1}=x_{2}=0$ and $x_{3}=1$ we have the desired inequality.
The following lemma is a simple consequence of the area theorem.
Lemma C. Let $g(z)$ be a function of class Σ_{0} having the expansion (1) at the point at infinity. Then

$$
\left|b_{1}\right|^{2}+3\left|b_{3}\right|^{2}+5\left|b_{5}\right|^{2} \leqq 1
$$

3. Next we give certain functions which play the role of extremal functions.

Lemma 1. Let $Q^{*}(w ; X) d w^{2}$ be the quadratic differentral $\left(w^{4}-2 X w^{2}+X^{2}\right) d w^{2}$, $(0 \leqq X \leqq 4)$. Let Y be a real number satisfying the condition

$$
\begin{equation*}
2 Y-X+2 \geqq 0, \quad 6 Y-X^{3 / 2}+2 \leqq 0 \tag{2}
\end{equation*}
$$

Then there is a function $g^{*}(z ; X, Y) \in \Sigma_{0}$ which satisfies the algebraic equation

$$
\begin{equation*}
w^{3}-3 X w=z^{3}-(6 Y+3) z-(6 Y+3) z^{-1}+z^{-3} \tag{3}
\end{equation*}
$$

and which maps $|z|>1$ onto a domain admıssible with respect to $Q^{*}(w ; X) d w^{2}$. The expansion of $g^{*}(z ; X, Y)$ at the point at infinity begins

$$
z+(X-2 Y-1) z^{-1}+\left(2 X Y-4 Y^{2}+X-6 Y-2\right) z^{-3}+\left(\frac{1}{3}+\Phi(X, Y)\right) z^{-5}+\cdots
$$

where

$$
\Phi(X, Y)=-\frac{1}{3} X^{3}+8 X Y^{2}-\frac{40}{3} Y^{3}+10 X Y-28 Y^{2}+3 X-18 Y-\frac{11}{3} .
$$

Proof. There are three end domains $\mathcal{E}_{1}^{*}, \mathcal{E}_{2}^{*}, \mathcal{\varepsilon}_{3}^{*}$ in the trajectory structure of $Q^{*}(w ; X) d w^{2}$ on the upper half w-plane. For a suitable choice of determination the function

$$
\zeta=\int\left(w^{2}-X\right) d w
$$

maps $\mathcal{E}_{1}^{*}, \mathcal{E}_{2}^{*}, \mathcal{E}_{3}^{*}$ respectively onto an upper half-plane, a lower half-plane and an upper half-plane, the points $X^{1 / 2},-X^{1 / 2}$ corresponding to the points $-2 X^{3 / 2} / 3$, $2 X^{3 / 2} / 3$ respectively.

On the other hand there are three end domains $\mathcal{E}_{1}, \mathcal{E}_{2}, \mathcal{E}_{3}$ in the trajectory structure of the quadratic differential

$$
z^{-8}(z-1)^{2}(z+1)^{2}\left(z-e^{i \theta}\right)^{2}\left(z+e^{i \theta}\right)^{2}\left(z-e^{-i \theta}\right)^{2}\left(z+e^{-i \theta}\right)^{2} d z^{2}, \quad 0 \leqq \theta \leqq \frac{\pi}{2}
$$

on the domain $|z|>1, \Im z>0$. For a suitable choice of determination the function

$$
\begin{equation*}
\zeta=\int z^{-4}(z-1)(z+1)\left(z-e^{i \theta}\right)\left(z+e^{i \theta}\right)\left(z-e^{-i \theta}\right)\left(z+e^{-i \theta}\right) d z \tag{4}
\end{equation*}
$$

maps $\mathcal{E}_{1}, \mathcal{E}_{2}, \mathcal{E}_{3}$ respectively onto an upper half-plane, a lower half-plane and
an upper half-plane, the points $1, e^{2 \theta},-e^{-i \theta},-1$ corresponding to the points $-(12 \cos 2 \theta+4) / 3,-16 \cos ^{3} \theta / 3,16 \cos ^{3} \theta / 3,(12 \cos 2 \theta+4) / 3$ respectively.

If X and θ satisfy the condition

$$
\begin{equation*}
4 \cos 2 \theta+-\frac{4}{3}-\leqq \frac{2}{3}-X^{3 / 2} \leqq \frac{16}{3} \cos ^{3} \theta, \tag{5}
\end{equation*}
$$

then we can combine the above two functions to obtain a function which maps the domain $|z|>1, \Im z>0$ into the upper half w-plane. We put $Y=\cos 2 \theta$. Then the condition (5) is equivalent to the condition (2). By reflection this function extends to a function $g^{*}(z ; X, Y)$ which maps $|z|>1$ onto a domain admissible with respect to $Q^{*}(w ; X) d w^{2}$. The function $g^{*}(z ; X, Y)$ satisfies the algebraic equation (3). Inserting

$$
w=z+b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+b_{3} z^{-3}+b_{4} z^{-4}+b_{5} z^{-5}+\cdots
$$

in (3) we have

$$
\begin{align*}
& b_{0}=0, \\
& b_{1}=X-2 Y-1, \\
& b_{2}=0, \\
& b_{3}=2 X Y-4 Y^{2}+X-6 Y-2, \tag{6}\\
& b_{4}=0, \\
& b_{5}=\frac{1}{3}+\Phi(X, Y) .
\end{align*}
$$

This completes the proof of Lemma 1.
Let \mathfrak{D}_{1} denote the domain in the $X Y$-plane defined by $X>0,2 Y-X+2>0$ and $32 Y-4 X+11<0$. We can verify that if $(X, Y) \in \bar{D}_{1}$ then X and Y satisfy the condition (2) and that $\overline{\mathfrak{D}}_{1}$ is mapped by (6) onto the closed domain in the $b_{1} b_{3}$-plane defined by $b_{3}+b_{1}^{2}-b_{1} \leqq 0$ and $12 b_{3}-4 b_{1}^{2}-b_{1}+5 \geqq 0$.

Lemma 2. On $\overline{\mathfrak{D}}_{1}$

$$
\Phi(X, Y) \leqq \frac{1}{147}
$$

Equality occurs only for $X=3 / 7, \quad Y=-3 / 7$.
Proof. The points which satisfy $\Phi_{X}=\Phi_{Y}=0$ are the following four points

$$
\left(\frac{3}{7},-\frac{3}{7}\right),\left(0,-\frac{1}{2}\right),\left(\frac{3+\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{4}\right),\left(\frac{3-\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{4}\right) .
$$

These points are not contained in \mathfrak{D}_{1} except the point $(3 / 7,-3 / 7)$. At the point ($3 / 7,-3 / 7$) we have $\Phi=1 / 147, \Phi_{X X}<0, \Phi_{X Y}^{2}-\Phi_{X X} \Phi_{Y Y}<0$. On the other hand we have on the boundary of \mathfrak{D}_{1}

$$
\begin{aligned}
& \Phi(0, Y)=-\frac{40}{3} Y^{3}-28 Y^{2}-18 Y-\frac{11}{3} \leqq 0,-1 \leqq Y \leqq-\frac{1}{3}, \\
& \Phi\left(X, \frac{1}{2} X-1\right)=-\frac{1}{3}, \quad 0 \leqq X \leqq \frac{7}{4}
\end{aligned}
$$

and

$$
\begin{aligned}
\Phi\left(X, \frac{1}{8} X-\frac{11}{32}\right)=-\frac{15}{64} X^{3} & +\frac{87}{256} X^{2}+\frac{75}{1024} X \\
& -\frac{3025}{12288}<0, \quad 0 \leqq X \leqq \frac{7}{4}
\end{aligned}
$$

Hence we have the desired result.
Lemma 3. Let $\widetilde{Q}(w ; X) d w^{2}$ be the quadratic differentral $\left(w^{4}+X w^{2}\right) d w^{2}$, $(0 \leqq X \leqq 4)$. Let Y be a real number satısfying the condition

$$
\begin{equation*}
Y+1 \geqq 0, \quad 12 Y+X^{3 / 2}+4 \leqq 0 \tag{7}
\end{equation*}
$$

Then there is a function $\tilde{g}(z ; X, Y) \in \Sigma_{0}$ which satisfies the algebraic equation

$$
\begin{equation*}
\left(w^{2}+X\right)^{3}=\left\{z^{3}-(6 Y+3) z-(6 Y+3) z^{-1}+z^{-3}\right\}^{2} \tag{8}
\end{equation*}
$$

and which maps $|z|>1$ onto a domain admessible with respect to $\widetilde{Q}(w ; X) d w^{2}$. The expansion of $\tilde{g}(z ; X, Y)$ at the point at infinity begins

$$
\begin{gathered}
z-\left(\frac{1}{2} X+2 Y+1\right) z^{-1}-\left(\frac{1}{8} X^{2}+X Y+4 Y^{2}+\frac{1}{2} X+6 Y+2\right) z^{-3} \\
+\left(\frac{1}{3}+\Psi(X, Y)\right) z^{-5}+\cdots
\end{gathered}
$$

where

$$
\begin{gathered}
\Psi(X, Y)=-\frac{1}{16} X^{3}-\frac{3}{4} X^{2} Y-4 X Y^{2}-\frac{40}{3} Y^{3}-\frac{3}{8} X^{2}-5 X Y-28 Y^{2} \\
-\frac{3}{2} X-18 Y-\frac{11}{3} .
\end{gathered}
$$

Proof. There are three end domains $\tilde{\mathcal{E}}_{1}, \tilde{\mathcal{E}_{2}}, \tilde{\mathcal{E}_{3}}$ in the trajectory structure of $\widetilde{Q}(w ; X) d w^{2}$ on the upper half w-plane. For a suitable choice of determination the function

$$
\zeta=\int w\left(w^{2}+X\right)^{1 / 2} d w
$$

maps $\tilde{\mathcal{E}}_{1}, \tilde{\mathcal{E}}_{2}, \tilde{\mathcal{E}}_{3}$ respectively onto an upper half-plane, a lower half-plane and an upper half-plane, the positive real axis corresponding to the half-infinite segment $\Im \zeta=0, X^{3 / 2} / 3<\Re \zeta<\infty$. If X and θ satisfy the condition

$$
\begin{equation*}
4 \cos 2 \theta+\frac{4}{3} \leqq-\frac{1}{3} X^{3 / 2}, \tag{9}
\end{equation*}
$$

then we can combine this function with (4) to obtain a function which maps
the domain $|z|>1, \Im z>0$ into the upper half w-plane. We put $Y=\cos 2 \theta$. Then the condition (9) is equivalent to the condition (7). By reflection this function extends to a function $\tilde{g}(z ; X, Y)$ which maps $|z|>1$ onto a domain admissible with respect to $\widetilde{Q}(w ; X) d w^{2}$. The function $\tilde{g}(z ; X, Y)$ satisfies the algebraic equation (8). Inserting

$$
w=z+b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+b_{3} z^{-3}+b_{4} z^{-4}+b_{5} z^{-5}+\cdots
$$

in (8) we have

$$
\begin{align*}
& b_{0}=0, \\
& b_{1}=-\frac{1}{2} X-2 Y-1, \\
& b_{2}=0, \tag{10}\\
& b_{3}=-\frac{1}{8} X^{2}-X Y-4 Y^{2}-\frac{1}{2} X-6 Y-2, \\
& b_{4}=0, \\
& b_{5}=\frac{1}{3}+\Psi(X, Y) .
\end{align*}
$$

This completes the proof of Lemma 3.
Let \mathfrak{D}_{2} denote the domain in the $X Y$-plane defined by $X>0, Y+1>0$, $12 Y+X+4<0$ and $36 Y+7 X+8<0$. We can verify that if $(X, Y) \in \overline{\mathfrak{D}}_{2}$ then X and Y satisfy the condition (7) and that $\overline{\mathfrak{D}}_{2}$ is mapped by (10) onto the closed domain in the $b_{1} b_{3}$-plane defined by $b_{3}+b_{1}^{2}-b_{1} \geqq 0,2 b_{3}+b_{1}^{2}-1 \leqq 0,8 b_{3}+53 b_{1}^{2}+98 b_{1}+45$ $\geqq 0$ and $8 b_{3}+5 b_{1}^{2}+6 b_{1}+5 \geqq 0$.

Lemma 4. On $\overline{\mathfrak{D}}_{2}$

$$
\Psi(X, Y) \leqq \frac{4}{507}
$$

Equality occurs only for $X=12 / 13, Y=-15 / 26$.
Proof. The points which satisfy $\Psi_{X}=\Psi_{Y}=0$ are the following four points

$$
\left(\frac{12}{13},-\frac{15}{26}\right),\left(0,-\frac{1}{2}\right),\left(2+\frac{2 \sqrt{3}}{3},-1\right),\left(2-\frac{2 \sqrt{3}}{3},-1\right) .
$$

These points are not contained in \mathfrak{D}_{2} except the point $(12 / 13,-15 / 26)$. At the point (12/13, $-15 / 26$) we have $\Psi=4 / 507, \Psi_{X X}<0, \Psi_{X Y}^{2}-\Psi_{X X} \Psi_{Y Y}<0$. On the other hand we have on the boundary of \mathfrak{D}_{2}

$$
\begin{aligned}
& \Psi(0, Y)=-\frac{40}{3} Y^{3}-28 Y^{2}-18 Y-\frac{11}{3} \leqq 0, \quad-1 \leqq Y \leqq-\frac{1}{3}, \\
& \Psi(X,-1)=-\frac{1}{16} X^{3}+\frac{3}{8} X^{2}-\frac{1}{2} X-\frac{1}{3}<0, \quad 0 \leqq X \leqq 4,
\end{aligned}
$$

$$
\begin{aligned}
& \Psi\left(X,-\frac{1}{12} X-\frac{1}{3}\right)=-\frac{13}{648} X^{3}- \frac{7}{216} X^{2}+\frac{1}{27} X \\
&-\frac{23}{81}<0, \quad 0 \leqq X \leqq 1
\end{aligned}
$$

and

$$
\begin{aligned}
\Psi\left(X,-\frac{7}{36} X-\frac{2}{9}\right)=\frac{527}{17496} X^{3}- & \frac{1775}{5832} X^{2}+\frac{640}{729} X \\
- & \frac{1975}{2187}<0, \quad 1 \leqq X \leqq 4
\end{aligned}
$$

Hence we have the desired result.
4. Now we prove the following theorem which includes as a special case the theorem stated in $\S 1$.

Theorem. Let $g(z)$ be a function of class Σ_{0} having the expansion at the point at infinity

$$
g(z)=z+\sum_{n=1}^{\infty} b_{n} z^{-n}
$$

where b_{1} and b_{2} are real.
If $b_{1} \geqq 0$, then

$$
\mathfrak{R} b_{5} \leqq \frac{1}{3}+\frac{1}{147}
$$

with equality holding only for the function $g *\left(z ; \frac{3}{7},-\frac{3}{7}\right)$. The expansion of this function at the point at infinity begins

$$
z+\frac{2}{7} z^{-1}-\frac{5}{49} z^{-3}+\left(\frac{1}{3}+\frac{1}{147}\right) z^{-5}+\cdots
$$

If $b_{1} \leqq 0$, then

$$
\Re b_{5} \leqq \frac{1}{3}+\frac{4}{507}
$$

with equality holding only for the functıon $\tilde{g}\left(z ; \frac{12}{13},-\frac{15}{26}\right)$. The expansion of this function at the point at infinty begins

$$
z-\frac{4}{13} z^{-1}+\frac{16}{169} z^{-3}+\left(\frac{1}{3}+\frac{4}{507}\right) z^{-5}+\cdots .
$$

Proof. Firstly we consider the case $b_{1} \geqq 0$. We divide this case into several subcases.

Case 1. $\mathfrak{R b} b_{3} \geqq 0$. By Lemma B we have

$$
\Re b_{5} \leqq \Re\left\{b_{5}+b_{1} b_{3}+b_{2}^{2}+\frac{1}{3} b_{1}^{3}\right\} \leqq \frac{1}{3} .
$$

Case 2. $\left(4 b_{1}^{2}+b_{1}-5\right) / 12 \leqq \Re b_{3} \leqq 0$. In this case there is a point $\left(X_{0}, Y_{0}\right)$ in $\overline{\mathscr{D}}_{1}$
such that

$$
\begin{aligned}
& b_{1}=X_{0}-2 Y_{0}-1, \\
& \Re b_{3}=2 X_{0} Y_{0}-4 Y_{0}^{2}+X_{0}-6 Y_{0}-2 .
\end{aligned}
$$

We apply Lemma A with

$$
\begin{aligned}
& Q(w) d w^{2}=\left(w^{4}-2 X_{0} w^{2}+X_{0}^{2}\right) d w^{2}, \\
& g^{*}(z)=g^{*}\left(z ; X_{0}, Y_{0}\right) .
\end{aligned}
$$

Then we have

$$
\mathfrak{R}\left\{b_{5}+i\left(X_{0}-6 Y_{0}-3\right) \Im b_{3}+b_{2}^{2}\right\} \leqq \frac{1}{3}+\Phi\left(X_{0}, Y_{0}\right) .
$$

Hence by using Lemma 2 we obtain

$$
\Re b_{5} \leqq \frac{1}{3}+\frac{1}{147} .
$$

Case 3. $\Re b_{3} \leqq\left(4 b_{1}^{2}+b_{1}-5\right) / 12$. By Lemma C we have

$$
\begin{aligned}
\left|b_{5}\right|^{2} & \leqq \frac{1}{5}-\frac{3}{5}\left|\frac{1}{3} b_{1}^{2}+\frac{1}{12} b_{1}-\frac{5}{12}\right|^{2}-\frac{1}{5}\left|b_{1}\right|^{2} \\
& =-\frac{1}{720}\left(48 b_{1}^{4}+24 b_{1}^{3}+27 b_{1}^{2}-30 b_{1}+11\right)+\frac{1}{9} .
\end{aligned}
$$

Put $P(x)=48 x^{4}+24 x^{3}+27 x^{2}-30 x+11$. It is very easy to prove that $P^{\prime}(x)$ is monotone increasing for $0 \leqq x \leqq 1$ and $P^{\prime}(0)<0, P^{\prime}(1 / 3)>0$. Let λ be the root of $P^{\prime}(x)=0,0<\lambda<1 / 3$. Construct $N(x)=4 P(x)-x P^{\prime}(x)$. Then $N(x)$ is monotone decreasing for $0 \leqq x \leqq 1 / 3$ and $N(1 / 3)>0$. Hence $N(x)>0$ for $0 \leqq x \leqq 1 / 3$. Especially $N(\lambda)>0$ which implies that $P(\lambda)>0$. Therefore $P(x)>0$ for $0 \leqq x \leqq 1$. Hence by the above inequality we have $\Re b_{5}<1 / 3$.

Thus we obtain that if $b_{1} \geqq 0$ then

$$
\Re b_{5} \leqq \frac{1}{3}+\frac{1}{147} .
$$

If equality occurs, then $b_{2}=0$ and, by Lemma $2, b_{1}=2 / 7$. Hence by Lemma A we have $g(z) \equiv g^{*}\left(z ; \frac{3}{7},-\frac{3}{7}\right)$.

Next we consider the case $b_{1} \leqq 0$. We also divide this case into several subcases.

Case 1. $\Re b_{3} \geqq-\left(b_{1}^{2}-1\right) / 2$. By Lemma C we have

$$
\begin{aligned}
\left|b_{5}\right|^{2} & \leqq \frac{1}{5}-\frac{3}{5}\left|-\frac{1}{2} b_{1}^{2}+\frac{1}{2}\right|^{2}-\frac{1}{5}\left|b_{1}\right|^{2} \\
& =-\frac{3}{20}\left(b_{1}^{2}-\frac{1}{3}\right)^{2}+\frac{1}{15}<\frac{1}{9} .
\end{aligned}
$$

This implies that $\Re b_{5}<1 / 3$.

Case 2. $\max \left\{-b_{1}^{2}+b_{1},-\left(5 b_{1}^{2}+6 b_{1}+5\right) / 8,-\left(53 b_{1}^{2}+98 b_{1}+45\right) / 8\right\} \leqq \Re b_{3} \leqq-\left(b_{1}^{2}-1\right) / 2$. In this case there is a point $\left(X_{0}, Y_{0}\right)$ in \bar{D}_{2} such that

$$
\begin{aligned}
& b_{1}=-\frac{1}{2} X_{0}-2 Y_{0}-1 \\
& \Re b_{3}=-\frac{1}{8} X_{0}^{2}-X_{0} Y_{0}-4 Y_{0}^{2}-\frac{1}{2} X_{0}-6 Y_{0}-2
\end{aligned}
$$

We apply Lemma A with

$$
\begin{aligned}
& Q(w) d w^{2}=\left(w^{4}+X_{0} w^{2}\right) d w^{2} \\
& g^{*}(z)=\tilde{g}\left(z ; X_{0}, Y_{0}\right)
\end{aligned}
$$

Then we have

$$
\Re\left\{b_{5}-i\left(\frac{1}{2} X_{0}+6 Y_{0}+3\right) \Im b_{3}+b_{2}^{2}\right\} \leqq \frac{1}{3}+\Psi\left(X_{0}, Y_{0}\right)
$$

Hence by using Lemma 4 we have

$$
\Re b_{5} \leqq \frac{1}{3}+\frac{4}{507}
$$

Case 3. $\left(4 b_{1}^{2}+b_{1}-5\right) / 12 \leqq \Re b_{3} \leqq-b_{1}^{2}+b_{1}$. In this case there is a point $\left(X_{0}, Y_{0}\right)$ in $\overline{\mathfrak{D}}_{1}$ such that

$$
\begin{aligned}
& b_{1}=X_{0}-2 Y_{0}-1 \\
& \Re b_{3}=2 X_{0} Y_{0}-4 Y_{0}^{2}+X_{0}-6 Y_{0}-2
\end{aligned}
$$

Hence we have

$$
\mathfrak{R} b_{5} \leqq \frac{1}{3}+\frac{1}{147}
$$

Case 4. $-5 / 16 \leqq b_{1} \leqq 0$ and $\Re b_{3} \leqq\left(4 b_{1}^{2}+b_{1}-5\right) / 12$. By Lemma C we have

$$
\begin{aligned}
\left|b_{5}\right|^{2} & \leqq \frac{1}{5}-\frac{3}{5}\left|\frac{1}{3} b_{1}^{2}+\frac{1}{12} b_{1}-\frac{5}{12}\right|^{2}-\frac{1}{5}\left|b_{1}\right|^{2} \\
& =-\frac{1}{720}\left(48 b_{1}^{4}+24 b_{1}^{3}+27 b_{1}^{2}-30 b_{1}+11\right)+\frac{1}{9}<\frac{1}{9} .
\end{aligned}
$$

This implies that $\Re b_{5}<1 / 3$.
Case 5. $-2 / 3 \leqq b_{1} \leqq-5 / 16$ and $\mathfrak{R} b_{3} \leqq \max \left\{-b_{1}^{2}+b_{1},-\left(5 b_{1}^{2}+6 b_{1}+5\right) / 8\right\}$. In this case $b_{1} \leqq-5 / 16, \Re b_{3} \leqq-2 / 5$. Hence by Lemma C we have

$$
\left|b_{5}\right|^{2} \leqq \frac{1}{5}-\frac{3}{5} \cdot \frac{4}{25}-\frac{1}{5} \cdot \frac{25}{256}<\frac{1}{9}
$$

This implies that $\Re b_{5}<1 / 3$.
Case 6. $b_{1} \leqq-2 / 3$ and $\Re b_{3} \leqq-\left(53 b_{1}^{2}+98 b_{1}+45\right) / 8$. By Lemma C we have

$$
\left|b_{5}\right|^{2} \leqq \frac{1}{5}-\frac{1}{5} \cdot \frac{4}{9}=\frac{1}{9}
$$

This implies that $\Re b_{5} \leqq 1 / 3$.
Thus we have that if $b_{1} \leqq 0$ then

$$
\Re b_{5} \leqq \frac{1}{3}+\frac{4}{507} .
$$

If equality occurs, then $b_{2}=0$ and, by Lemma $4, b_{1}=-4 / 13$. Hence by Lemma A we have $g(z) \equiv \tilde{g}\left(z ; \frac{12}{13},-\frac{15}{26}\right)$.

References

[1] Garabedian, P.R. and M. Schiffer, A coefficient inequality for schlicht functions. Ann. of Math. 61 (1955), 116-136.
[2] Grunsky, H., Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen. Math. Zeits. 4 (1939), 29-61.
[3] Jenkins, J.A., Univalent functions and conformal mapping. Berlin-GöttingenHeidelberg, Springer-Verlag, 1958.
[4] Jenkins, J. A., An extension of the general coefficient theorem. Trans. Amer. Math. Soc. 95 (1960), 387-407.
[5] Jenkins, J.A., On certain coefficients of univalent functions. II. Trans. Amer. Math. Soc. 96 (1960), 534-545.
[6.] Jenkins, J. A., An addendum to the general coefficient theorem. Trans. Amer. Math. Soc. 107 (1963), 125-128.

Tokyo Gakugei University.

