J. SUZUKI AND N. TODA KODAI MATH. SEM. REP. 26 (1974), 69-74

SOME NOTES ON PICARD CONSTANT

By Junji Suzuki and Nobushige Toda

1. Introduction. Let R be an open Riemann surface, M(R) the set of nonconstant meromorphic functions on R and P(f) the number of lacunal values for f belonging to M(R). Introducing the quantity

$$P(R) = \sup_{f \in M(R)} P(f)$$
 ,

which is called the Picard constant of R, Ozawa [3] discussed the existence of analytic mappings from R into another Riemann surface. When R is the proper existence domain of an *n*-valued algebroid function in $|z| < \infty$, it is known that $2 \le P(R) \le 2n$ ([3]). Further, when n=2 or 3, there are many interesting results on P(R) ([2], [3], [4], etc.). Recently, Aogai [1] has treated a general case and given the following result:

"Let R be an n-sheeted regularly branched covering surface of $|z| < \infty$. If P(R) > 3n/2, then P(R) = 2n and R can be represented by an algebroid function y such that

$$y^{n} = (e^{H} - \alpha)(e^{H} - \beta)^{n-1}$$
,

where H is a non-constant entire function and α , β are constants satisfying $\alpha\beta(\alpha-\beta)\neq 0$."

An *n*-sheeted covering surface is called regularly branched when it has no branch point other than those of order n-1.

We should like to generalize some of these results in this paper. Let w(z) be an *n*-valued transcendental algebroid function in $|z| < \infty$ defined by an irreducible equation

(1)
$$A_0(z)w^n + A_1(z)w^{n-1} + \cdots + A_n(z) = 0$$

where $A_0(\equiv 0), \dots, A_n$ are entire functions without common zero and at least one of A_j/A_0 $(j=1,\dots,n)$ is not rational, and let R_w be the proper existence domain of w(z), which is *n*-sheeted covering surface of $|z| < \infty$.

Let f be a non-constant meromorphic function on R_w , then there are entire functions $S_0(z)(\equiv 0), \dots, S_n(z)$ without common zero such that

$$S_0(z)f^n + S_1(z)f^{n-1} + \cdots + S_n(z) = 0$$
.

Received Apr. 13, 1973.

We say that f is transcendental if there exists at least one ratio S_j/S_0 $(1 \le j \le n)$ which is not rational. Let $T(R_w)$ be the set of transcendental meromorphic functions on R_w and

$$F(R_w) = \sup_{f \in T(R_w)} F(f),$$

where F(f) is the number of Picard exceptional values for f. A value w_0 is called Picard exceptional when there are at most a finite number of roots of $f=w_0$ on R_w . By a result of Selberg [6] and definitions, it is clear that

$$2 \leq P(R_w) \leq F(R_w) \leq 2n$$
.

As in the case of P(R), it is an interesting problem to determine the quantity $F(R_w)$, which is conformally invariant.

In §2, we give some cases of R_w such that $F(R_w) \leq n$ and in §3, following the method used in [1], we characterize the surface R_w when it is regularly branched and $F(R_w)=2n$.

2. Some cases of R_w such that $F(R_w) \leq n$. Let w(z) be an *n*-valued transcendental algebroid function in $|z| < \infty$ defined by (1) and R_w the proper existence domain of w(z). We should like to determine $F(R_w)$. As a first step to this problem, we give the following.

LEMMA 1. If w(z) has at least n+1 Picard exceptional values, then w(z) is of regular growth and the order of w(z) is positive and integral or infinite ([7], Th. 7).

Let $N(r, R_w)$ be the quantity $N(r, \mathfrak{X})$ defined by Selberg [6] for R_w . We call

$$\limsup_{r \to \infty} \frac{\log N(r, R_w)}{\log r}$$

the order of the branch points of R_w .

THEOREM 1. Let w(z) and R_w be as above. If $N(r, R_w)$ is of finite order and of irregular growth or of non-integral order or of order zero, then $F(R_w) \leq n$.

Proof. Suppose that there exists a transcendental meromorphic function f on R_w such that $F(f) \ge n+1$. As in §1, there are entire functions $S_0(z)(\equiv 0)$, \cdots , $S_n(z)$ without common zero such that

$$S_0(z)f^n + S_1(z)f^{n-1} + \cdots + S_n(z) = 0.$$

The equation is irreducible and f is an n-valued algebroid function in $|z| < \infty$.

By the branch point theorem of Ullrich [8] and the second fundamental theorem of Selberg [6], we nave the following inequalities:

(2)
$$N(r, R_w) \leq 2(n-1)T(r, f) + O(1)$$
,

(3)
$$(n-1)T(r, f) < \sum_{i=1}^{n+1} N(r, a_i) + N(r, R_w) + S(r)$$

where a_i $(i=1, \dots, n+1)$ are Picard exceptional values for f and S(r) is the socalled error term in the second fundamental theorem. From (2), the order of $f (=\rho_f)$ is not less than that of $N(r, R_w) (=\rho_w): \rho_f \ge \rho_w$.

1) When ρ_w is not integral or $\rho_w=0$. Now $\rho_f \ge \rho_w$ and ρ_f is positive and integral by Lemma 1, so that $\rho_f > \rho_w$. On the other hand, as there exists a sequence $r_n \nearrow \infty$ such that

$$\lim_{n\to\infty}\frac{\mathbf{S}(r_n)}{T(r_n,f)}=0,$$

from (3) we have

$$\rho_f = \lim_{u \to \infty} \frac{\log T(r_n, f)}{\log r_n} \leq \liminf_{n \to \infty} \frac{\log N(r_n, R_w)}{\log r_n} \leq \rho_w$$

because f is of regular growth by Lemma 1 and

$$N(r, a_{\iota}) = O(\log r) = o(T(r, f)) \qquad (r \to \infty, \ \iota = 1, \cdots, n+1).$$

This shows $\rho_f \leq \rho_w$, which is absurd. That is, it must be $F(f) \leq n$, so that $F(R_w) \leq n$.

2) When $N(r, R_w)$ is of irregular growth and $\rho_w < \infty$. From the inequalities (2) and (3) and by Lemma 1, $N(r, R_w)$ must be of regular growth, which is a contradiction. That is, $F(R_w) \leq n$.

Example 1. Let R be an ultrahyperelliptic surface defined by an equation $y^2 = g(z)$ with an entire function g(z) of non-integral order or of finite order and of irregular growth or of order zero. Then, F(R)=2. (In the first case, Ozawa [3] proved that P(R)=2.)

Example 2. Let R be a regularly branched three sheeted covering surface defined by an equation $y^3 = g(z)$ with an entire function g(z) (see [2]). If g(z) is of non-integral order or of finite order and of irregular growth or of order zero, then $F(R) \leq 3$.

Example 3. Let R be an n-sheeted covering surface defined by an equation $y^n = g(z)$ with an entire function g(z) of non-integral order or of finite order and of irregular growth or of order zero. If the multiplicities of zeros of g(z) are all less than n, then $F(R) \leq n$.

Example 4. In Theorem 1, even if w(z) is of non-integral order or of finite order and of irregular growth, the conclusion is not always true.

In fact, let $f_1(z)$ be an entire function of non-integral order ρ_1 (resp. of finite order and of irregular growth) greater than 1 and $f_2(z)=f_1(z)^2-e^z-1$. Let w(z) be two-valued algebroid function defined by

$$w^2 - 2f_1(z)w + f_2(z) = 0$$
.

Then, w(z) is of non-integral order ρ_1 (resp. of finite order and of irregular growth) and $N(r, R_w) = N(r, -1, e^z)$, so that $N(r, R_w)$ is of regular growth of

order 1. The function $f = \sqrt{e^z + 1}$ is analytic and transcendental on R_w and 1, -1 and ∞ are Picard exceptional for f. This shows $F(R_w) \ge 3$.

3. Characterization. In this section, we shall give a characterization of some *n*-sheeted covering surface R defined by a transcendental algebroid function with F(R)=2n. Our method used here is essentially due to Aogai [1]. We start from the following lemma.

LEMMA 2. Let f be an n-valued algebroid function in $|z| < \infty$ satisfying F(f)=2n. Then there exist a non-constant entire function H(z), a rational function $R(z)(\equiv 0)$ and constants a_1, a_2, \dots, a_n ; b_1, b_2, \dots, b_n such that the defining equation of f has the following form:

(4)
$$F(f, z) \equiv G_1(f) + R(z)e^{H(z)}G_2(f) = 0,$$

where $G_1(f) = f^n + b_1 f^{n-1} + \dots + b_n$ and $G_2(f) = a_1 f^{n-1} + a_2 f^{n-2} + \dots + a_n$.

Further, the two algebraic equations $G_1(z)=0$ and $G_2(z)=0$ have no common root, the roots of $G_1(z)=0$ are non-formal Picard exceptional values and those of $G_2(z)=0$ are formal in the sense of Rémoundos [5].

Proof. Let f be defined by

(5)
$$S_0(z)f^n + S_1(z)f^{n-1} + \cdots + S_n(z) = 0,$$

where $S_0(z)(\neq 0), \dots, S_n(z)$ are entire functions without common zero. As F(f) = 2n, we may suppose that ∞ is formal and according to Rémoundos [5], there are n-1 finite formal values $\alpha_1, \dots, \alpha_{n-1}$ and n non-formal values β_1, \dots, β_n . That is, in (5) $S_0(z)$ is equal to a polynomial $P_0(z)$ and

(6)
$$\sum_{k=0}^{n} S_{k}(z) \alpha_{i}^{n-k} = P_{i}(z) \quad (i=1, \dots, n-1)$$

(7)
$$\sum_{k=0}^{n} S_{k}(z)\beta_{j}^{n-k} = Q_{j}(z)e^{H_{j}(z)} \qquad (j=1, \cdots, n)$$

where P_i , Q_j $(i=1, \dots, n-1; j=1, \dots, n)$ are polynomials and H_j $(j=1, \dots, n)$ are non-constant entire functions satisfying $H_j(0)=0$.

Picking up any two from (7) and all from (6) and eliminating S_1, \dots, S_n , we have, as $S_0 = P_0$,

$$c_0 P_0 + c_1 P_1 + \dots + c_{n-1} P_{n-1} + d_\mu Q_\mu e^{H\mu} + d_\nu Q_\nu e^{H\nu} = 0$$

where $c_0, \dots, c_{n-1}, d_{\mu}, d_{\nu}$ are non-zero constants $(1 \le \mu \ne \nu \le n)$. By the impossibility of Borel's identity (see [5]),

$$H_{\mu}(z) - H_{\nu}(z) = \text{constant} (=0)$$

and

$$d_{\mu}Q_{\mu} = -d_{\nu}Q_{\nu}$$

Noting that μ, ν are any two from $j=1, \dots, n$ and $H_j(0)=0$ $(j=1, \dots, n)$, we have

$$H_1 = H_2 = \cdots = H_n = H, \qquad H(0) = 0$$

and

$$Q_{j} = -\frac{d_{1}}{d_{j}}Q_{1}$$
 $(d_{1}d_{2}\cdots d_{n}\neq 0, j=1, \cdots, n).$

Thus, the equation (7) with respect to S_1, \dots, S_n can be written as follows:

$$\sum_{k=1}^{n} S_{k} \beta_{j}^{n-k} = d_{j}' Q_{1} e^{H} - \beta_{j}^{n} P_{0} \qquad (j=1, \cdots, n)$$

where $d'_{j} = -d_{1}/d_{j}$. Solving this, we have

$$S_j = a_j Q_1 e^H + b_j P_0$$
 (j=1, ..., n).

Substituting these into (5),

$$P_0 f^n + (a_1 Q_1 e^H + b_1 P_0) f^{n-1} + \dots + (a_n Q_1 e^H + b_n P_0)$$

= $P_0 (f^n + b_1 f^{n-1} + \dots + b_n) + Q_1 e^H (a_1 f^{n-1} + \dots + a_n) = 0$

Thus, putting $G_1(f) = f^n + b_1 f^{n-1} + \dots + b_n$, $G_2(f) = a_1 f^{n-1} + \dots + a_n$ and $R(z) = Q_1(z)/P_0(z)$, the defining equation of f becomes

$$G_1(f) + R(z)e^{H(z)}G_2(f) = 0$$
.

Naturally, $R \not\equiv 0$ by the assumption and the algebraic equations $G_1(z) = 0$ and $G_2(z) = 0$ have no common zero because of the irreducibility of the defining equation. It is trivial that the roots of $G_1(z) = 0$ are non-formal, those of $G_2(z) = 0$ are formal and f has no other finite exceptional values.

Using this lemma, we can prove the following

THEOREM 2. Let R be an n-sheeted regularly branched covering surface of $|z| < \infty$ defined by a transcendental algebroid function in $|z| < \infty$. If F(R)=2n, then R can be represented by an algebroid function

$$y^{n} = (R(z)e^{H(z)} - \alpha)(R(z)e^{H(z)} - \beta)^{n-1}$$

where H(z) is a non-constant entire function, $R(z)(\equiv 0)$ is rational and α, β are constants with $\alpha\beta(\alpha-\beta)\neq 0$.

Proof. By the assumption F(R)=2n, there exists a transcendental meromorphic function f on R such that F(f)=2n. f may be regarded as an n-valued algebroid function in $|z| < \infty$ having 2n Picard exceptional values. By Lemma 2, we may suppose that f is defined by (4). The equation (4) is irreducible and the proper existence domain of f is conformally equivalent to R. Therefore, using that for any $\gamma \in \{0 < |z| < \infty\}$, the equation $R(z)e^{H(z)} = \gamma$ has an infinite number of simple roots, we can prove this theorem as in the proof of Theorem 2 in [1].

References

- [1] AOGAI, H., Picard constant of a finitely sheeted covering surface. Ködai Math. Sem. Rep. 25 (1973), 219-224.
- [2] HIROMI, G. AND K. NIINO, On a characterization of regularly branched three sheeted covering Rimann surfaces. Kodai Math. Sem. Rep. 17 (1965), 250-260.
- [3] OZAWA, M., On complex analytic mappings. Ködai Math. Sem. Rep. 17 (1965), 93-102.
- [4] OZAWA, M., On ultrahyperelliptic surfaces. Ködai Math. Sem. Rep. 17 (1965), 103-108.
- [5] RÉMOUNDOS, G., Extensions aux fonctions algébroïdes multiformes du théorème du M. Picard et de ses généralisations. Mém. Sci. Math. Paris (1927).
- [6] SELBERG, H.L., Algebroide Funktionen und Umkehrfunktionen Abelscher Integrale. Avh. Norske Vid. Akad. Oslo 8 (1934), 1-72.
- [7] TODA, N., Sur la croissance de fonctions algébroïdes à valeurs déficientes. Kōdai Math. Sem. Rep. 22 (1970), 324-337.
- [8] ULLRICH, E., Uber den Einfluss der Verzweigtheit einer Algebroide auf ihre Wertverteilung. J. rei. und angw. Math. 167 (1931), 198-220.

MIE UNIVERSITY AND NAGOYA UNIVERSITY.