SOME NOTES ON PICARD CONSTANT

By Junji Suzuki and Nobushige Toda

1. Introduction. Let R be an open Riemann surface, $M(R)$ the set of nonconstant meromorphic functions on R and $P(f)$ the number of lacunal values for f belonging to $M(R)$. Introducing the quantity

$$
P(R)=\sup _{f \in M(R)} P(f),
$$

which is called the Picard constant of R, 'Ozawa [3] discussed the existence of analytic mappings from R into another Riemann surface. When R is the proper existence domain of an n-valued algebroid function in $|z|<\infty$, it is known that $2 \leqq P(R) \leqq 2 n$ ([3]). Further, when $n=2$ or 3 , there are many interesting results on $P(R)$ ([2], [3], [4], etc.). Recently, Aogai [1] has treated a general case and given the following result:
"Let R be an n-sheeted regularly branched covering surface of $|z|<\infty$. If $P(R)>3 n / 2$, then $P(R)=2 n$ and R can be represented by an algebroid function y such that

$$
y^{n}=\left(e^{H}-\alpha\right)\left(e^{H}-\beta\right)^{n-1},
$$

where H is a non-constant entire function and α, β are constants satisfying $\alpha \beta(\alpha-\beta) \neq 0$."

An n-sheeted covering surface is called regularly branched when it has no branch point other than those of order $n-1$.

We should like to generalize some of these results in this paper. Let $w(z)$ be an n-valued transcendental algebroid function in $|z|<\infty$ defined by an irreducible equation

$$
\begin{equation*}
A_{0}(z) w^{n}+A_{1}(z) w^{n-1}+\cdots+A_{n}(z)=0 \tag{1}
\end{equation*}
$$

where $A_{0}(\not \equiv 0), \cdots, A_{n}$ are entire functions without common zero and at least one of $A_{j} / A_{0}(j=1, \cdots, n)$ is not rational, and let R_{w} be the proper existence domain of $w(z)$, which is n-sheeted covering surface of $|z|<\infty$.

Let f be a non-constant meromorphic function on R_{w}, then there are entire functions $S_{0}(z)(\not \equiv 0), \cdots, S_{n}(z)$ without common zero such that

$$
S_{0}(z) f^{n}+S_{1}(z) f^{n-1}+\cdots+S_{n}(z)=0 .
$$

Recerved Apr. 13, 1973.

We say that f is transcendental if there exists at least one ratio S_{\jmath} / S_{0} ($1 \leqq j \leqq n$) which is not rational. Let $T\left(R_{w}\right)$ be the set of transcendental meromorphic fuuctions on R_{w} and

$$
F\left(R_{w}\right)=\sup _{f \in T\left(R_{w}\right)} F(f),
$$

where $F(f)$ is the number of Picard exceptional values for f. A value w_{0} is called Picard exceptional when there are at most a finite number of roots of $f=w_{0}$ on R_{w}. By a result of Selberg [6] and definitions, it is clear that

$$
2 \leqq P\left(R_{w}\right) \leqq F\left(R_{w}\right) \leqq 2 n .
$$

As in the case of $P(R)$, it is an interesting problem to determine the quantity $F\left(R_{w}\right)$, which is conformally invariant.

In $\S 2$, we give some cases of R_{w} such that $F\left(R_{w}\right) \leqq n$ and in $\S 3$, following the method used in [1], we characterize the surface R_{w} when it is regularly branched and $F\left(R_{w}\right)=2 n$.
2. Some cases of R_{w} such that $F\left(R_{w}\right) \leqq n$. Let $w(z)$ be an n-valued transcendental algebroid function in $|z|<\infty$ defined by (1) and R_{w} the proper existence domain of $w(z)$. We should like to determine $F\left(R_{w}\right)$. As a first step to this problem, we give the following.

Lemma 1. If $w(z)$ has at least $n+1$ Picard exceptronal values, then $w(z)$ is of regular growth and the order of $w(z)$ is positive and integral or infinite ([7], Th. 7).

Let $N\left(r, R_{w}\right)$ be the quantity $N(r, \mathfrak{X})$ defined by Selberg [6] for R_{w}. We call

$$
\limsup _{r \rightarrow \infty} \frac{\log N\left(r, R_{w}\right)}{\log r}
$$

the order of the branch points of R_{w}.
Theorem 1. Let $w(z)$ and R_{w} be as above. If $N\left(r, R_{w}\right)$ is of finte order and of irregular growth or of non-integral order or of order zero, then $F\left(R_{w}\right) \leqq n$.

Proof. Suppose that there exists a transcendental meromorphic function f on R_{w} such that $F(f) \geqq n+1$. As in $\S 1$, there are entire functions $S_{0}(z)(\not \equiv 0)$, $\cdots, S_{n}(z)$ without common zero such that

$$
S_{0}(z) f^{n}+S_{1}(z) f^{n-1}+\cdots+S_{n}(z)=0 .
$$

The equation is irreducible and f is an n-valued algebroid function in $|z|<\infty$.
By the branch point theorem of Ullrich [8] and the second fundamental theorem of Selberg [6], we nave the following inequalities:

$$
\begin{equation*}
N\left(r, R_{w}\right) \leqq 2(n-1) T(r, f)+O(1), \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
(n-1) T(r, f)<\sum_{\imath=1}^{n+1} N\left(r, a_{\imath}\right)+N\left(r, R_{w}\right)+S(r) \tag{3}
\end{equation*}
$$

where $a_{\imath}(\imath=1, \cdots, n+1)$ are Picard exceptional values for f and $S(r)$ is the socalled error term in the second fundamental theorem. From (2), the order of $f\left(=\rho_{f}\right)$ is not less than that of $N\left(r, R_{w}\right)\left(=\rho_{w}\right): \rho_{f} \geqq \rho_{w}$.

1) When ρ_{w} is not integral or $\rho_{w}=0$. Now $\rho_{f} \geqq \rho_{w}$ and ρ_{f} is positive and integral by Lemma 1 , so that $\rho_{f}>\rho_{w}$. On the other hand, as there exists a sequence r_{n} / ∞ such that

$$
\lim _{n \rightarrow \infty} \frac{S\left(r_{n}\right)}{T\left(r_{n}, f\right)}=0
$$

from (3) we have

$$
\rho_{f}=\lim _{n \rightarrow \infty} \frac{\log T\left(r_{n}, f\right)}{\log r_{n}} \leqq \liminf _{n \rightarrow \infty} \frac{\log N\left(r_{n}, R_{w}\right)}{\log r_{n}} \leqq \rho_{w}
$$

because f is of regular growth by Lemma 1 and

$$
N\left(r, a_{\imath}\right)=O(\log r)=o(T(r, f)) \quad(r \rightarrow \infty, \imath=1, \cdots, n+1)
$$

This shows $\rho_{f} \leqq \rho_{w}$, which is absurd. That is, it must be $F(f) \leqq n$, so that $F\left(R_{w}\right) \leqq n$.
2) When $N\left(r, R_{w}\right)$ is of irregular growth and $\rho_{w}<\infty$. From the inequalities (2) and (3) and by Lemma $1, N\left(r, R_{w}\right)$ must be of regular growth, which is a contradiction. That is, $F\left(R_{w}\right) \leqq n$.

Example 1. Let R be an ultrahyperelliptic surface defined by an equation $y^{2}=g(z)$ with an entire function $g(z)$ of non-integral order or of finite order and of irregular growth or of order zero. Then, $F(R)=2$. (In the first case, Ozawa [3] proved that $P(R)=2$.)

Example 2. Let R be a regularly branched three sheeted covering surface defined by an equation $y^{3}=g(z)$ with an entire function $g(z)$ (see [2]). If $g(z)$ is of non-integral order or of finite order and of irregular growth or of order zero, then $F(R) \leqq 3$.

Example 3. Let R be an n-sheeted covering surface defined by an equation $y^{n}=g(z)$ with an entire function $g(z)$ of non-integral order or of finite order and of irregular growth or of order zero. If the multiplicities of zeros of $g(z)$ are all less than n, then $F(R) \leqq n$.

Example 4. In Theorem 1, even if $w(z)$ is of non-integral order or of finite order and of irregular growth, the conclusion is not always true.

In fact, let $f_{1}(z)$ be an entire function of non-integral order ρ_{1} (resp. of finite order and of irregular growth) greater than 1 and $f_{2}(z)=f_{1}(z)^{2}-e^{z}-1$. Let $w(z)$ be two-valued algebroid function defined by

$$
w^{2}-2 f_{1}(z) w+f_{2}(z)=0
$$

Then, $w(z)$ is of non-integral order ρ_{1} (resp. of finite order and of irregular growth) and $N\left(r, R_{w}\right)=N\left(r,-1, e^{z}\right)$, so that $N\left(r, R_{w}\right)$ is of regular growth of
order 1. The function $f=\sqrt{e^{2}+1}$ is analytic and transcendental on R_{w} and 1, -1 and ∞ are Picard exceptional for f. This shows $F\left(R_{w}\right) \geqq 3$.
3. Characterization. In this section, we shall give a characterization of some n-sheeted covering surface R defined by a transcendental algebroid function with $F(R)=2 n$. Our method used here is essentially due to Aogai [1]. We start from the following lemma.

Lemma 2. Let f be an n-valued algebroid function in $|z|<\infty$ satisfying $F(f)=2 n$. Then there exist a non-constant entire function $H(z)$, a rational function $R(z)(\not \equiv 0)$ and constants $a_{1}, a_{2}, \cdots, a_{n} ; b_{1}, b_{2}, \cdots, b_{n}$ such that the defining equation of f has the following form:

$$
\begin{equation*}
F(f, z) \equiv G_{1}(f)+R(z) e^{H(2)} G_{2}(f)=0, \tag{4}
\end{equation*}
$$

where $G_{1}(f)=f^{n}+b_{1} f^{n-1}+\cdots+b_{n}$ and $G_{2}(f)=a_{1} f^{n-1}+a_{2} f^{n-2}+\cdots+a_{n}$.
Further, the two algebraic equations $G_{1}(z)=0$ and $G_{2}(z)=0$ have no common root, the roots of $G_{1}(z)=0$ are non-formal Picard exceptional values and those of $G_{2}(z)=0$ are formal in the sense of Rémoundos [5].

Proof. Let f be defined by

$$
\begin{equation*}
S_{0}(z) f^{n}+S_{1}(z) f^{n-1}+\cdots+S_{n}(z)=0 \tag{5}
\end{equation*}
$$

where $S_{0}(z)(\not \equiv 0), \cdots, S_{n}(z)$ are entire functions without common zero. As $F(f)$ $=2 n$, we may suppose that ∞ is formal and according to Rémoundos [5], there are $n-1$ finite formal values $\alpha_{1}, \cdots, \alpha_{n-1}$ and n non-formal values $\beta_{1}, \cdots, \beta_{n}$. 'That is, in (5) $S_{0}(z)$ is equal to a polynomial $P_{0}(z)$ and

$$
\begin{align*}
& \sum_{k=0}^{n} S_{k}(z) \alpha_{2}^{n-k}=P_{i}(z) \quad(i=1, \cdots, n-1) \tag{6}\\
& \sum_{k=0}^{n} S_{k}(z) \beta_{j}^{n-k}=Q_{j}(z) e^{H j(z)} \quad(j=1, \cdots, n) \tag{7}
\end{align*}
$$

where $P_{i}, Q_{j}(i=1, \cdots, n-1 ; j=1, \cdots, n)$ are polynomials and $H_{j}(j=1, \cdots, n)$ are non-constant entire functions satisfying $H_{j}(0)=0$.

Picking up any two from (7) and all from (6) and eliminating S_{1}, \cdots, S_{n}, we have, as $S_{0}=P_{0}$,

$$
c_{0} P_{0}+c_{1} P_{1}+\cdots+c_{n-1} P_{n-1}+d_{\mu} Q_{\mu} e^{H / \mu}+d_{\nu} Q_{\nu} e^{H \nu}=0
$$

where $c_{0}, \cdots, c_{n-1}, d_{\mu}, d_{\nu}$ are non-zero constants ($1 \leqq \mu \neq \nu \leqq n$). By the impossibility of Borel's identity (see [5]),

$$
H_{\mu}(z)-H_{\nu}(z)=\text { constant }(=0)
$$

and

$$
d_{\mu} Q_{i \mu}=-d_{\nu} Q_{\nu}
$$

Noting that μ, ν are any two from $j=1, \cdots, n$ and $H_{j}(0)=0(j=1, \cdots, n)$, we have

$$
H_{1}=H_{2}=\cdots=H_{n}=H, \quad H(0)=0
$$

and

$$
Q_{3}=-\frac{d_{1}}{d_{j}} Q_{1} \quad\left(d_{1} d_{2} \cdots d_{n} \neq 0, j=1, \cdots, n\right)
$$

Thus, the equation (7) with respect to S_{1}, \cdots, S_{n} can be written as follows:

$$
\sum_{k=1}^{n} S_{k} \beta_{j}^{n-k}=d_{j}^{\prime} Q_{1} e^{H}-\beta_{j}^{n} \cdot P_{0} \quad(\jmath=1, \cdots, n)
$$

where $d_{j}^{\prime}=-d_{1} / d_{j}$. Solving this, we have

$$
S_{j}=a_{j} Q_{1} e^{H}+b_{j} P_{0} \quad(j=1, \cdots, n) .
$$

Substituting these into (5),

$$
\begin{aligned}
& P_{0} f^{n}+\left(a_{1} Q_{1} e^{H}+b_{1} P_{0}\right) f^{n-1}+\cdots+\left(a_{n} Q_{1} e^{H}+b_{n} P_{0}\right) \\
= & P_{0}\left(f^{n}+b_{1} f^{n-1}+\cdots+b_{n}\right)+Q_{1} e^{H}\left(a_{1} f^{n-1}+\cdots+a_{n}\right)=0 .
\end{aligned}
$$

Thus, putting $G_{1}(f)=f^{n}+b_{1} f^{n-1}+\cdots+b_{n}, G_{2}(f)=a_{1} f^{n-1}+\cdots+a_{n}$ and $R(z)$ $=Q_{1}(z) / P_{0}(z)$, the defining equation of f becomes

$$
G_{1}(f)+R(z) e^{H(z)} G_{2}(f)=0 .
$$

Naturally, $R \not \equiv 0$ by the assumption and the algebraic equations $G_{1}(z)=0$ and $G_{2}(z)=0$ have no common zero because of the irreducibility of the defining equation. It is trivial that the roots of $G_{1}(z)=0$ are non-formal, those of $G_{2}(z)=0$ are formal and f has no other finite exceptional values.

Using this lemma, we can prove the following
Theorem 2. Let R be an n-sheeted regularly branched covering surface of $|z|<\infty$ defined by a transcendental algebrozd function in $|z|<\infty$. If $F(R)=2 n$, then R can be represented by an algebrozd function

$$
y^{n}=\left(R(z) e^{H(z)}-\alpha\right)\left(R(z) e^{H(z)}-\beta\right)^{n-1},
$$

where $H(z)$ is a non-constant entire function, $R(z)(\equiv 0)$ is rational and α, β are constants with $\alpha \beta(\alpha-\beta) \neq 0$.

Proof. By the assumption $F(R)=2 n$, there exists a transcendental meromorphic function f on R such that $F(f)=2 n . \quad f$ may be regarded as an n-valued algebroid function in $|z|<\infty$ having $2 n$ Picard exceptional values. By Lemma 2 , we may suppose that f is defined by (4). The equation (4) is irreducible and the proper existence domain of f is conformally equivalent to R. Therefore,
using that for any $\gamma \in\{0<|z|<\infty\}$, the equation $R(z) e^{H(z)}=\gamma$ has an infinite number of simple roots, we can prove this theorem as in the proof of Theorem 2 in [1].

References

[1] Aogai, H., Picard constant of a finitely sheeted coverıng surface. Kōdai Math. Sem. Rep. 25 (1973), 219-224.
[2] Hiromi, G. and K. Niino, On a characterization of regularly branched three sheeted covering Rimann surfaces. Kōda1 Math. Sem. Rep. 17 (1965), 250-260.
[3] Ozawa, M., On complex analytıc mappıngs. Kōdaı Math. Sem. Rep. 17 (1965), 93-102.
[4] Ozawa, M., On ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 17 (1965), 103-108.
[5] Rémoundos, G., Extensions aux fonctions algébroïdes multıformes du théorème du M. Picard et de ses généralisations. Mém. Scı. Math. Parıs (1927).
[6] Selberg, H.L., Algebroide Funktionen und Umkehrfunktionen Abelscher Integrale. Avh. Norske Vid. Akad. Oslo 8 (1934), 1-72.
[7] Toda, N., Sur la croissance de fonctıons algébroïdes à valeurs déficientes. Kōdaı Math. Sem. Rep. 22 (1970), 324-337.
[8] Ullrich, E., Uber den Einfluss der Verzweigtheit einer Algebroide auf ihre Wertverteilung. J. rei. und angw. Math. 167 (1931), 198-220.

Mie University and Nagoya University.

