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ON FREELY ACTING AUTOMORPHISMS OF

OPERATOR ALGEBRAS

BY HISASHI CHODA

§ 1. Introduction. The free action for automorphisms of operator algebras
plays an important role from the begining in the theory of operator algebras.
Murray and von Neumann used namelessly the notion for abelian von Neumann
algebras to construct their factors in [16]. Afterwards, von Neumann named
it in [21].

Many authors have investigated an automorphism with a property equi-
valent to the condition to be freely acting for an automorphism due to von
Neumann ([2], [8], [9], [18], [22], [34] and others).

Recently, in [13] R. Kallman generalized the notion due to von Neumann
and defined a freely acting automorphism of (not necessarily abelian) von
Neumann algebras.

Very recently, M. Choda, I. Kasahara and R. Nakamoto [7] found that the
definition of free action due to Kallman is applicable to any C*-algebra and
extendable some theorems in [13]. They introduced a concept of a dependent
element of an automorphism of a C*-algebra in order to investigate properties
of a freely acting automorphism.

In this paper, we shall treat a freely acting automorphism of a operator
algebra.

In § 2, we shall restate the definition and show a theorem on an automor-
phism of a C*-algebra in [7]. A few additional properties of freely acting
automorphisms are discussed.

In § 3, we shall prove that the tensor product a(&β of automorphisms a
and β of C*-algebras is freely acting if and only if a is freely acting or β is
freely acting.

In § 4, we shall treat automorphisms of von Neumann algebras. We shall
prove that the n-th power of an ergodic automorphism of a von Neumann
algebra without minimal projections is freely acting, for every nonzero integer
n. We shall show also that an automorphism commuting with an ergodic auto-
morphism group is either freely acting or inner. As an application, we shall
show that an ergodic abelian automorphism group is, in some sense, maximally
abelian in the full group determined by it.

Finally, in § 6, we shall consider a unitary operator with a transversal
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group. Using properties of an automorphism of an abelian von Neumann alge-
bra and a theorem of Arveson [1] we shall show that the spectrum of a uni-
tary operator with a transversal group is the entire unit circle.

§2. Freely acting automorphisms. In this paper, we shall assume that a
C*-algebra contains always the identity. A ^-automorphism of a C*-algebra is
called simply an automorphism. We shall use the terminologies and the nota-
tions due to [8] without further explanations.

For an automorphism a of a C*-algebra Jl, an element A in Jl is called a
dependant element of a if

(2.1) AB=a(B)A

is satisfied for every B in Jl (cf. [7]). If there is no dependent element of a
up to 0, then a is called a freely acting automorphism of Jί (cf. [7] and [13]).
This definition is a generalization of the following von Neumann's definition
for an automorphism of an abelian von Neumann algebra (cf. [13]): For an
abelian von Neumann algebra Jί, an automorphism a of Jί is freely acting if
for any nonzero projection P in Jl, there exists a nonzero projection Q in Jί
dominated by P such that

(2.2) a(Q)Q=0.

An automorphism a of a C*-algebra Jί is called to be ergodic if every A
in Jί such as

(2.3) a(A)=A

is scalar.
Let G be a group of automorphisms of a C*-algebra Jί. G is called to be

freely acting if any ^ 1 in G is freely acting, where 1 is the unit of G. G is
ergodic if A in Jί which satisfies (2.3) for every g in G is scalar.

The following theorem on dependent elements is obtained in [7]. For the
sake of completeness, we shall give a proof which is partly simplified.

THEOREM 1. Let Jί be a C*-algebra, a an automorphism of Jί and % the
center of Jί. If A is a dependent element of a, then A satisfies the following
conditions

(1) A*AZΞZ and AA*ΪΞZ,

(2) A*A=AA*,

(3) A* is a dependent element of a'1,'

and

(4) a(A)=A.
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Proof. By the equality (2.1), we have

(2.4) BA*=A*a(B)

for every B in Jί. Multiplying A from the left in the both sides of (2.4), we
have, for every B in Jί,

AA*a(B) = ABA*=a(B)AA*,

so that AA*eZ. Similarly, we have A*A<=Z.
Using (1),

(AA*-A*A)*(AA*-A*A)=AA*AA*-AA*A*A-A*AAA*+A*AA*A

= A* A A A* - A* A A A* - A* A A A*+A* A A A*

=0.

Therefore we have A*A=AA*.

In the equality (2.4), replacing B by OL~\B),

(2.5) A*B=cr\B)A*

for every B in Jί, that is, 4̂* is a dependent element of a'1.
Using the relations (2.1), (2) and (2.4),

(2.6) 0^(a(A)-A)*(a(A)-A)

=a(A*A)-a(A*)A-A*a(A) + A*A

=a(A*A)-AA*-AA*+A*A

=a(A*A)-A*A.

Hence we have

(2.7) A*A^a(A*A).

On the other hand, in the above calculation (2.6), we can replace a by a'1

using the relation (2.5). Hence we have

(2.8)

it follows that

(2.9) a(A*A)=A*A.

Therefore, by (2.6), we conclude that a(A)=A. This completes the proof.

In the special case, the free action of an automorphism of a C*-algebra is
characterized as the following:

PROPOSITION 1. Let Jί be a C*-algebra of operators on a Hubert space £>
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and a an automorphism of Jί induced by a unitary operator U on £>;

for each A in Jί. Then a is freely acting on Jί if and only if U satisfies

(2.Γ) UJL'r\Λ=Q),

where Jί' is the commutant of Jί.

Proof. Assume that a is freely acting on Jί. For every A in UJί''r\Jl,
there exists an operator Af in Jί' such as

A=UA'.
For any B in Jί,

AB=UA'B=UBA'=a(B)UA'=a(B)A.

By the assumption that a is freely acting on Jί, we have A—^), that is, UJί'r\Jί
=(0).

Conversely, assume that UJί'Γλ<^ί—(0). Take any dependent element A of
a and fix. For any B in Jί, by (2.1),

AB=a(B)A=UBU*A.
So,

U*AB=BU*A,

for any B in Jί, it follows that U*A(ΞJI'. Therefore,

A<=UJί'Γ\Jί={ϋ),

that is, A=0. Hence a is freely acting on JL.

In the case that an automorphism of a C*-algebra of operators on a Hubert
space can be extended to its weak closure, we have the following

PROPOSITION 2. Let Jί be a C*-algebra of operators on a Hilbert space £>, &
the weak closure of Jί and a an automorphism of Jί which can be extended to
an automorphism β of £B. If β is freely acting on <B, then a is freely acting
on Jί.

Proof. Let A be a dependent element of a, then we have

AB=a(B)A=β(B)A

for every B in Jί. Since Jί is σ-weakly dense in B and β is <τ-weakly con-
tinuous, we have

AB=β(B)A

for every B in <B, that is, A is a dependent element of β. By the assumption
that β is freely acting on $, it follows that ^4=0. Therefore a is freely acting
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on Jl.

REMARK. The converse of Proposition 2 is not true. In fact, let €> be an
infinite dimentional Hubert space, Jl the C*-algebra generated by all compact
operators and the identity operator on § and a an automorphism of Jl induced
by a unitary operator U on ξ> such as U&Jl. Then Jl' is the algebra of scalar
multiples of the identity operator on £>. Therefore

ΌJl'={λΌ\ λ is a scalar} .

Since U&Jl, it follows that

Hence, by Proposition 1, a is freely acting on Jl.
On the other hand, since the weak closure of Jl is the von Neumann alge-

bra of all bounded operators on ξ>, a is inner on the weak closure of Jl.

§ 3. Tensor product. R. Kallman [13] has shown the following Theorem.

THEOREM 2 (Kallman). Let Jl and B be two von Neumann algebras, and a
and β automorphisms of Jl and B respectively. Then the automorphism a®β of
the tensor product Jl®B of Jl and B is freely acting if and only if either a or
β is freely acting.

The Kallman Theorem is a generalization of a theorem for factors of type
Hi by M. Nakamura and Z. Takeda [19]. The proof of Kallman depends on the
matrix representation of elements of the tensor product.

In this section, we shall prove the Kallman Theorem for C*-algebras using
an expectation.

Let Jl and B be two C*-algebras, and J©B the algebraic tensor product
of Jl and B. Then, for an element X in Jl@B, define a norm by

where π and p run over all representations of Jl and IB respectively. Denote
by J®a$ the C*-tensor product of Jl and B, the completion of Jl@B by this
norm (cf. [30]).

Let a and β be automorphisms of Jl and B respectively. Then by the
definition of the norm of the C*-tensor product, there exists an automorphism
a®β of Jl®aB which satisfies

(3.1) (a®β)(A®B)=a(A)®β{B)

for each A in Jl and B in B. The automorphism a®β is called the tensor
product automorphism of a and β.



6 HISASHI CHODA

THEOREM 3. Let Jί (rasp. &) be a C*-algebra and a (resp. β) an automor-
phism of Jί {resp. B). Then the tensor product automorphism a®β of <JL®aB is
freely acting if and only if a or β is freely acting.

In this place, we shall review briefly the theory of expectations developed
by H. Umegaki and the others (cf. [17], [25] and [32]).

Let C be a C*-algebra and 2) a C*-subalgebra of C. A positive linear
mapping π of C onto 3) is called an expectation of C onto 3) if it satisfies the
following conditions.

(3.2) *r( l)=l,

(3.3) π(CD)=π(C)D

for every C in C and D in 3). An expectation π of C onto 3) satisfies

(3.4) π(DC)=Dπ(C)

for every C in C and D in 3), by the positivity of π and (3.3).
Especially let C be a von Neumann algebra and S) be a von Neumann sub-

algebra of C, then an expectation π of C onto S) is called normal if

(3.5) CV\C implies ττ(Q T π(C),

where Cv\ C means that (Cv) is a directed set of nondecreasing elements of C
having C as the supremum.

The following theorem with respect to expectations is proved in [26] (also
cf. [6], [27], [28] and [29]).

THEOREM A. Let Jί and & be C*-algebras. Then there exist sufficiently
many expectations of Jl®a$ onto Jί and <B identifying Jί with Jl®I and $ with
7®^, namely for each nonzero element X, there exists an expectation π such as
π(X)Φθ. On the other hand, if Jί and & are von Neumann algebras, then there
exist sufficiently many normal expectations of JK&B onto Jί and <B with same
identification in

As we can prove two theorems by same technique, we shall give a proof
of Theorem 3 in this place.

Necessity. Assume that neither a nor β is freely acting. Then there exist
a nonzero dependent element A of a and a nonzero dependent element B of β.
For X=ΣU

{A®B)X= Σ A
ι = l

= Σ a(At
1
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Since JL@B is uniformly dense in Jl®a$, the mapping X-*(A®B)X is con-
tinuous and a®β is continuous, it follows that for any X in

that is, A®B is a nonzero dependent element of a®β. Therefore a®β is not
free.

Sufficiency. Assume that a or β is freely acting. It is sufficient to prove
that if a is freely acting, then a®β is freely acting.

Take and fix any dependent element X(=Jί®a$ of a®β, then

XY=(a®β)(Y)X

for every Y in Jί®a$. Especially, we have

(3.6) XA=a(A)X

for every A in Jί.

Let π be an expectation of <A®aB onto <Jί, and operate π on the both sides
of (3.6), then (3.3) and (3.4) imply

(3.7) π(X)A=a(A)π(X)

for every A in Jί. Therefore π(X) is a dependent element of a in <JL On the
other hand, a is freely acting, and so π(X)=Q. For any expectation π of
Jί<g)a$ onto <_i, π(JSf)=O, so that by Theorem A, it follows that X=0. Thus
a(g)β is freely acting.

§4. Ergodic automorphisms. In this section, we shall show an improve-
ment of the previous note [4] and its consequence.

Let Jί be a von Neumann algebra. Denote by s(A) (resp. c(A)) the support
(resp. central support) of an operator A in Jί which is the minimum projection
E in Jί (resp. JίΓ\Jί') with

(4.1) AE=A.

At first, we shall show the following lemma on the support of a fixed point
of an automorphism of a von Neumann algebra.

LEMMA 1. Let a be an automorphism of a von Neumann algebra Jί. If an
element A in Jί satisfies

(4.2) a(A)=A,

then A satisfies

a(s(A))=s(A)

and
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a(c(A))=c(A).

Proof, Since a is an automorphism of Jί, a(s(A)) is a projection in Jί and
a(c(A)) is a central projection. By the following calculation

Aa(s(A))=a(As(A))=a(A)=A,

a(s(A)) satisfies the condition (4.1). Hence, by the definition of the support,

On the other hand, since a(A)=A, it follows that a~\A)=A. Replacing a
by a'1 in the above calculations, we have

Therefore we have

a(s(A))=s(A).

By the same argument, we have

a{c{A))=c{A).

Next, we shall give an another form of [11, Lemma 2] and [13, Theorem 1.1]
(also cf. [7]).

LEMMA 2. Let a be an automorphism of a von Neumann algebra Jί and A
a dependent element of a. Then there exists a unitary operator U in Jί such that

(4.3) a(Bc(A))=UBc(A)U*

for each B in Jί.

Proof By the Theorem 1 (2) and (1), A has a polar representation;

(4.4) A=U\A\

for a unitary operator U in Jί and | A | in the center of Jί. By the condition
(2.1), we have

U\A\B=a(B)U\A\

for every B in Jί, that is,

a(B)\A\=UBU*\A\

for every B in Jί.
On the other hand, since \A\ belongs to Jίr\Jlf, it follows that the range

projection of \A\ is the central support of \A\, which equals to the central
support c{A) of A.

Therefore we have

(4.5) a(B)c(A)=UBU*c(A)

for every B in Jί. By (4) of Theorem 1 and Lemma 1, the relation (4.5) equals
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to the following;

a(Bc(A))=UBc(A)U*

for every B in JL, which completes the proof of Lemma.

The following lemma may be known among specialists.

LEMMA 3. Let Jl be a von Neumann algebra acting on a Hubert space £>.
/ / Jl has no minimal projections, then every maximal abelian von Neumann sub-
algebra B of Jl is non-atomic.

Proof. If B is not non-atomic, then there exists a minimal projection P
in B. The reduced von Neumann algebra BP is the algebra CP§ of scalar
multiples of the identity operator on the Hubert space P€>.

Therefore, by PΪΞJIΓΛB' and JLf\Bf—B, we have

which implies that P is minimal in Jl. This contradicts the assumption.

It is known that all the powers of an ergodic measure preserving automor-
phism on a non-atomic probability measure space are freely acting [9]. As an
analogous statement for factors of type Πlf Kallman proved in [14] that all
the powers of an ergodic automorphism of a factor of type Hi are outer.

In this place, we shall give a generalization of those results, which is an
improvement of [4, Theorem 4].

THEOREM 4. Let Jl be a von Neumann algebra acting on a Hilbert space £>
and a an ergodic automorphism of Jl. If Jl has no minimal projections, then
every nonzero power of a is freely acting on Jl.

Proof (cf. [14]). Assume that an is not freely acting on Jl for some posi-
tive integer n. Then there exists a nonzero dependent element A of an. Put
P=c(A), then PφO and by Lemma 2 there exists a unitary operator U in Jl
which satisfies

an(BP)=UBPU*

for every B in Jl. Let B be a maximal abelian von Neumann subalgebra of
JL containing U, then by (4.3), we have

(4.6) an(BP)=BP

for every B in B. Take a nonzero projection Q in B dominated by P and put

(4.7) R=Q+a(Q)+ ••• +an~\Q).

Then by (4.6), we have

an(Q)=an(PQ)=PQ=Q,
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which implies that a(R)=R. Therefore R is some scalar multiple of the identity
operator, say R=λl. Since Q is a nonzero projection, it follows that ΛΞ>1.

Let oi* be the conjugate space of JL and Σ the state space of Jl, then Σ
is a w*-compact convex subset of Jl*. Therefore, by the Markov-Kakutani
fixed point theorem, there exists a φ^Σ such as

for every integer k and every A in Jl.
On the other hand, by Lemma 3, there exists a nonzero projection Q in B

such that

and
?>«?)< 1/n.

For this nonzero projection Q in B, we have

λ=φ{B)=φ(Q)+φ(a(Q))+

which contradicts that λ^l.

R. Kallman has shown in [13] that every automorphism a of a von Neu-
mann algebra oί can be decomposed into the direct sum of the freely acting
part and the inner part. That is, there exists a central projection P in Jl
such that

a is inner on JlP

and
a is freely acting on JLj-P.

Denote by Fa this central projection P which determines the inner part of α,
then Fa satisfies the following

(4.9) Fa=$\xρ{c(A): A is a dependent element of a} .

Let a and β be automorphisms of a von Neumann algebra Jl. Put

(4.10) F(a9β)=Fa.lβ.

Let G be a group of automorphisms of Jl and α an automorphism of Jl.
Then, Y. Haga and Z. Takeda [11] have defined that a depends on G if

(4.11) sup F(a,g)=I,

and denoted by [G] the set of all automorphisms which depend on G and called
[G] the /w// group of G. This set [G] is also a group [11, Lemma 3]. This
definition is a generalization of a notion for an abelian von Neumann alge-
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bra due to H.A. Dye [9].
For an abelian ergodic group G of automorphisms of a von Neumann alge-

bra Jl, we shall discuss a property of an automorphism commuting with every
element of G.

LEMMA 4 ([4, Lemma 1]). Let Jl be a von Neumann algebra, G an ergodic
group of automorphisms of Jl and a an automorphism of Jl such that

ag=ga

for every g^G. Then the automorphism a is either freely acting or inner.

Proof By the definition of Fa, there exists a unitary U in Jl satisfying

(4.12) a(A)Fa=UAFaU*

for every A in Jl. For every g in G, we have

a(g{A))g{Fa)=g{U)g{A)g{Fa)g{U)*

by the condition that ag—ga and (4.12). Therefore, we have

a(A)g(FaU)=g(FaU)A

for every A in Jl, which implies that g(FaU) is a dependent element of a.
Hence, by (4.9), we have

g(Fa)=Fa

for any g in G.
On the other hand, by the assumption that G is ergodic, we have

Fa=0 or Fa=I,

that is, a is either freely acting or inner.

THEOREM 5. Let Jl be a von Neumann algebra, and G an abelian ergodic
group of automorphisms of Jl. If an automorphism a in [G] satisfies

(4.13) ag=ga

for every g in G, then there exist a g in G and a unitary U in Jl such as

a=g-φu,

where φυ is an inner automorphism of Jl induced by U.

Proof For every g in G, we have

(g-1a)h=h(g-1a)

for every h in G, because ha—ah and G is abelian. Therefore, by Lemma 4,
g~xa is either freely acting or inner for each g<^G, that is,

F(a,g)=0 or /
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for each
On the other hand, by the condition that αe[G], we have

sap F(a, g)=I.

Therefore, we have
F(a, g)=I

for some g in G, which implies that there exists a unitary U in Jί such as

g-'a^φu .
This completes the proof.

As a consequence of Theorem 5, we have a'theorem of Tarn [24, Theorem
(ii)], which is a sharpening of [5, Theorem 6]

COROLLARY. Let Jί be an abelian von Neumann algebra and G an ergodic
abelian group of automorphisms of Jί. Then G is maximally abelian in [G], that
is, z'/αe[G] satisfies

ag=ga

for every g in G, then a belongs to G.

Proof Such an automorphism a is written in a form

for some g in G and some unitary operator U in Jί, by Theorem 5. On the
other hand, Jί is abelian, so

017 = 1.

Therefore we have a—g for some g in G.

We shall need subsequently the following theorem [4, Theorem 2], which
is a generalization of Tarn's Theorem [24, Theorem (i)]. For the sake of com-
pleteness, we shall give a proof.

THEOREM 6. Let Jί be a von Neumann algebra and G an abelian ergodic
group of outer automorphisms of Jί. Then G is freely acting on Jί.

Proof. For any element g in G, we have

gh=hg

for every h in G. Then, by Lemma 4, g is either freely acting or inner. Since
G is a group of outer automorphisms of Jl, it follows that gφl (unit of G) is
freely acting on Jί, that is, G is freely acting on Jί.

§5. Crossed product. In [5], we have considered the extension of an
automorphism of an abelian von Neumann algebra to the crossed product of
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the von Neumann algebra by an automorphism group, in several cases.
In this section, we shall generalize some theorems in [5].
In this note, we shall use the notions in [11] for the crossed product.

According to [11], we shall give the definition of crossed product, briefly (also
cf. [18], [23] and [31]).

Let J be a von Neumann algebra acting on a separable Hubert space §
and G a countable group of automorphisms of Jί. Denote by G®ξ> the product
space in the sense of H. Umegaki [33] and by

an element of G®$. Define an operator g®A (#eG, i e J ) on G<g>%> by

(5.1) (g®A)(Έh®xh)==Έhg-ι®h{A)xh.
h h

Then, we have

(5.2) (g®A)(h®B)=gh®h-\A)B

and

(5.3)

The crossed product G®Jί is defined as the von Neumann algebra on
generated by {g®A: g^G, A^Jί}. Since Jί is isomorphic to {\®A\
we shall identify A^Jί with l®A^G®Jί and we consider Jί as a von Neu-
mann subalgebra of G®Jί. g®I (geG) is a unitary operator in G®Jl, and it
induces the automorphism g on Jί

(5.4) (g®I)(X®A)(g®I)*=l®g(A).

We need the following theorem due to Y. Haga and Z. Takeda [11] :

THEOREM B. Let Jί be a von Neumann algebra and G a countable freely
acting group of automorphisms of Jί. Assume that a unitary operator U in
G®Jί satisfies

UJίU*=Jί.

Then U has a unique decomposition

(5.5) U=Έ(gΘQs)dΘV),

where V is a unitary operator in Jί and {Qg} (resp. {g(Qg)}) is a family of
mutually orthogonal central projections having sum I.

In Theorem B, denote by a an automorphism of Jί induced by U, then the
relation (5.5) is equivalent to the following form
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As a generalization of [5, Theorem 4], we shall show the following

THEOREM 7. Let Jί be a von Neumann algebra, G a countable group o]
freely acting automorphisms of Jί and φ a faithful G-invariant state on Jί.
Assume that the set ^—{hgh"1: /I<ΞG} is infinite for each g (^1) in G. // an
automorphism a of Jί is extended to an automorphism σ of G®Jl such that

(5.6) σ(g<g)I)=g(g)I

for every g in G, then either σ is outer or a is inner.

Proof. Let σ is an inner automorphism induced by a unitary operator U
in G®Jί. Since σ is an extension of an automorphism a of Jί, it follows that

UJIU*=JI.

Then, by Theorem B, U has a decomposition such as (5.5). On the other hand,
by (5.6), we have

g®I=σ(g®I)=lKg®I)U*,

for every g in G, so that

U(g®I)=(g®I)U

for every g in G, or we have

(5.7) Σ hg®g-\Qh)g~\V)= Σ gh®QhV

JKΞG hκ-G

for each g in G. Therefore, we have

Σ h®g-\Qhg-ι)g-\V)= Σ h®Qg-\hV
h^G h^G

for each g in G, which implies

for each g^G and ΛeG. Replace g~ιh to h, so we have

for each g^G and / I G G . By the assumption, for each Λ^FI in G, Ih is an
infinite set, and so

for any positive integer n. Therefore we have

for each Λ^FI in G. Since φ is faithful, it follows that Qh—0 for each h^l in
G. Since
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hΞGΣ <
hΞG

we have <?i=/, that is, U=1®V. Therefore σ is induced by a unitary operator
1®V in <-Λ, which implies that a is inner.

THEOREM 8. Let Jί be a von Neumann algebra and G an abelian ergodic
countable group of outer automorphisms of Jί. If an automorphism a of Jί is
extended to an inner automorphism σ of G®Jί satisfying the condition (5.6) for
every g in G, then σ is induced by /ι®7 for some h in G. Especially a—h for
some h in G.

Proof. By Theorem 6, G is freely acting on Jί. By Theorem B, a unitary
operator U in G(g)Jl, which induces σ, has a decomposition such as (5.5). Since
σ satisfies (5.6), we have

QhV)= Σ gh®QhV,
h^G

by (5.7) in the proof of Theorem 7. Since G is abelian, it follows that

for each g^G and AeG. Since G is ergodic, it follows that QhV is a scalar
for each h in G. Therefore we have, for each h in G,

Qh=Q or /.

On the other hand,

Σ <?*=/,
h<^G

so we have that Qh=I for some h in G. It follows that

for all £ in G. Therefore, by the ergodicity of G, F is a scalar λ with absolute
value 1. So that, U has a form

U=(h®I)λ.

Hence, the automorphism σ induced by U is equal to an automorphism induced

by h(g)I for some ΛeG.

§6. Transversal group. In this section, we shall treat an automorphism
induced by a unitary operator having a transversal group.

A strongly continuous unitary representation of the additive group of real
numbers is called a one-parameter group of unitary operators. A one-parameter
group of unitary operators {Vt} on a Hubert space €> is called a transversal
group with λ for a unitary operator U on § if {Vt} satisfies the following
commutation relation
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(6.1) uvt=vλtu (-oo<α<+oo)

for a nonzero real number λ. The notion of transversal groups of unitary
operators is due to M. Kowada [15].

Assume that U has a transversal group {Vt} with U|=£l. Let J b e a von
Neumann algebra generated by {Vt}. Put

(6.2) a(A)=UAU*

for each A in Jl, then by (6.1), a is an automorphism of Jί and satisfies the
following condition

(6.3) a(Vt)=Vλt ( - o o < ί < + oo).

LEMMA 5. Let Fa be the central projection in Jί which determines the inner
part of the above automorphism α, then

(6.4) VtFa=Fa

for every real t.

Proof. Since Jί is abelian, a is the identity on J<Fa> Therefore, we have

a(VtFa)=VtFa (_oo<f< + oo).

On the other hand, by (6.3) we have

VtFa=a(VtFa)=a(VMFa)=V»Fa, (-oo<f<+oo).

So, for any integer n, we have

(6.5) VλntFa=VtFa, (

Since, for λ with U | < 1 (resp. \λ\ >1), λnt converges to 0 as n->+oo (resp. — oo),
it follows that

Vλnt — > I (strongly).

Hence, by (6.5), we have

VtFa=Fa, ( - o o < ί < + oo).

T H E O R E M 9. / / U has a transversal group {Vt} with \λ\Φl satisfying the

condition

(6.6) Vtx=x {for all t) implies x=Q,

then the automorphism a defined by (6.2) is a freely acting automorphism of the
von Neumann algebra Jl generated by {Vt}.

Proof Let Fa be the central projection in Jί which determines the inner
part of a. By Lemma 5, we have

VtFa=Fa ( -
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On the other hand, Vt satisfies (β.β), so that Fa=Q. Therefore, a is freely
acting on JL.

COROLLARY. Let {Vt}, U be as same as in Theorem 9 and $ a C*-algebra
generated by {Vt}. Then an automorphism β induced by U is freely acting on B.

Proof. Since β is induced by the unitary operator U, β is extended to the
automorphism a of the weak closure JL of B. By Theorem 9, a is freely acting
on JL. Therefore, by Proposition 2, β is freely acting on & too.

Let Q be an abelian unitary group on a Hubert space £>. The action of Q
is said to be nondegenerate if, for every finite subset £F of Q, there exists a
nonzero vector x in €> such that Ux is orthogonal to Vx for every pair U, V
of distinct elements of £F. This notion is introduced by W. Arveson [1] (also
cf. [34, Theorem 5.5] and [20]) and he has proved

THEOREM C. Let Q be an abelian unitary group on a Hilber space £>, JL a
C*-algebra generated by Q and σ(JL) the maximal ideal space of JL. Then the
natural injection p of σ(JL) into the compact character group Γ of the discrete
group Q is onto if and only if the action of Q is nondegenerate.

Furthermore, as an appropriately translated version of Theorem C, Arveson
has pointed out

THEOREM D. The spectrum of a unitary operator U on a Hilbert space £> is
the entire unit circle if and only if, for every integer n ^ l , there exists a nonzero
vector x in ξ> such that {x, Ux, •••, Unx} are mutually orthogonal.

Using Theorem D, we shall determine the spectrum of a unitary operator
having a transversal group (cf. [10]).

THEOREM 10. Let U be a unitary operator on a Hilbert space £>. // U hasf

for \λ\Φ\, a transversal group {Vt} with

(6.7) VtΦl

for some real t, the spectrum σ{U) of U is the entire unit circle.

Proof. Put

Vl={xeί$: Vtx=x for all t] ,

then 91 reduces F £ ( - o o < ί < + co). By (6.1), 91 reduces U and by (6.7) 911^=(O).
Therefore, it is sufficient to assume that 91=(0). Hence {Vt} satisfies the con-
dition (6.6). Let a be the automorphism defined by (6.2) on the von Neumann
algebra Jl generated by {Vt}, then a is freely acting on JL by Theorem 9.
Since {Vt} is a transversal group for U, we have

(6.8) UnVt=VλntU
n ( -
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for any integer n, by the condition (6.1), which implies that the automorphism
an induced by Un is freely acting on JL.

Since a is freely acting and JL is an abelian von Neumann algebra, there
exists a nonzero projection Px in JL such as

Since a2 is freely acting on JL too, there exists a nonzero projection P2 in JL
dominated by Plf such as

a\P2)P2=0.

Since an is freely acting for any integer n ^ l , inductively, there exists a non-
zero projection Q in JL such as

(6.9) ak(Q)Q=0 (l^k^n).

Take a nonzero vector x in ζ?€>, then for any k (l^k^ή), (6.9) implies that

(Ukx, x)=(UkQx, x)={QUkQx, x)

=(Qa\Q)Ukx, x)

= 0 .

Therefore, by Theorem D, the spectrum σ(U) is the entire unit circle.

By the proof of the theorem, we have the following

COROLLARY. Let Ω be a unitary group on a Hilbert space ξ>, JL an abelian
von Neumann algebra on £> which is invariant under every element of Ω (that is,
UJLU*=Jl for every element U of Ω) and G the group of automorphisms of Jl
induced by elements of Ω. If G is freely acting on JL, then, for every finite subset
£F of Ω, there exists a nonzero vector x in ξ> such that Ux is orthogonal to Vx
for every pair U, V of distinct elements of £F.

This corollary is generalized as the following;

THEOREM 11. Let Ω be a unitary group on a Hillbert space ξ> and Jl a von
Neumann algebra on ξ) which is invariant under every element of Ω. Assume
that there exists an expectation π of X(ξ>), the von Neumann algebra of all bounded
operators on £>, onto JL. If the automorphism group G of Jl induced by elements
of Ω is freely acting on JL, then there exists a state φ on X(%>) such as

for every Uφl in Ω.

Proof Denote by φυ an automorphism of JL induced by a unitary operator
U in Ω, then we have

(6.10) UA=φu(A)U
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for every A in Jl, which implies

(6.11) π(U)A=φσ(A)π(U)

for every A in Jί. Therefore, π(U) is a dependent element of φυ. Since every
φu (Uφl) is freely acting on Jί, it follows that

(6.12) π(C7)=0

for each UΦl in Q.
For a unit vector x in €>, put

cp(T)=(π(T)x, x)

for every operator T in -Γ(€>), ^ is a state on -£(£>) by the properties that π is
positive linear and π(I)=l. And, by (6.12), we have

for all £/=£/ in Q. This completes the proof.

REMARK. Let J b e a von Neumann algebra on a Hubert space €>. CJ? is
said to have an extension property if there exists an expectation of -£(€>) onto
Jί ([12] and [29]). As examples of von Neumann algebras with an extension
property, there are von Neumann algebras with property P due to J. Schwartz
([22]) and von Neumann algebras with property Q ([3]), that is, von Neumann
algebras generated by amenable unitary groups. Especially, an abelian von
Neumann algebra has an extension property.
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